qzxing/source/zxing/qrcode/detector/FinderPatternFinder.cpp

542 lines
18 KiB
C++

// -*- mode:c++; tab-width:2; indent-tabs-mode:nil; c-basic-offset:2 -*-
/*
* FinderPatternFinder.cpp
* zxing
*
* Created by Christian Brunschen on 13/05/2008.
* Copyright 2008 ZXing authors All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <zxing/qrcode/detector/FinderPatternFinder.h>
#include <zxing/ReaderException.h>
#include <zxing/DecodeHints.h>
#include <vector>
#include <cmath>
#include <cstdlib>
#include <algorithm>
namespace zxing {
namespace qrcode {
using namespace std;
class FurthestFromAverageComparator {
private:
const float averageModuleSize_;
public:
FurthestFromAverageComparator(float averageModuleSize) :
averageModuleSize_(averageModuleSize) {
}
bool operator()(Ref<FinderPattern> a, Ref<FinderPattern> b) {
float dA = abs(a->getEstimatedModuleSize() - averageModuleSize_);
float dB = abs(b->getEstimatedModuleSize() - averageModuleSize_);
return dA > dB;
}
};
class CenterComparator {
const float averageModuleSize_;
public:
CenterComparator(float averageModuleSize) :
averageModuleSize_(averageModuleSize) {
}
bool operator()(Ref<FinderPattern> a, Ref<FinderPattern> b) {
// N.B.: we want the result in descending order ...
if (a->getCount() != b->getCount()) {
return a->getCount() > b->getCount();
} else {
float dA = abs(a->getEstimatedModuleSize() - averageModuleSize_);
float dB = abs(b->getEstimatedModuleSize() - averageModuleSize_);
return dA < dB;
}
}
};
int FinderPatternFinder::CENTER_QUORUM = 2;
int FinderPatternFinder::MIN_SKIP = 3;
int FinderPatternFinder::MAX_MODULES = 57;
float FinderPatternFinder::centerFromEnd(int* stateCount, int end) {
return (float)(end - stateCount[4] - stateCount[3]) - stateCount[2] / 2.0f;
}
bool FinderPatternFinder::foundPatternCross(int* stateCount) {
int totalModuleSize = 0;
for (int i = 0; i < 5; i++) {
if (stateCount[i] == 0) {
return false;
}
totalModuleSize += stateCount[i];
}
if (totalModuleSize < 7) {
return false;
}
float moduleSize = (float)totalModuleSize / 7.0f;
float maxVariance = moduleSize / 2.0f;
// Allow less than 50% variance from 1-1-3-1-1 proportions
return abs(moduleSize - stateCount[0]) < maxVariance && abs(moduleSize - stateCount[1]) < maxVariance && abs(3.0f
* moduleSize - stateCount[2]) < 3.0f * maxVariance && abs(moduleSize - stateCount[3]) < maxVariance && abs(
moduleSize - stateCount[4]) < maxVariance;
}
float FinderPatternFinder::crossCheckVertical(size_t startI, size_t centerJ, int maxCount, int originalStateCountTotal) {
int maxI = image_->getHeight();
int stateCount[5];
for (int i = 0; i < 5; i++)
stateCount[i] = 0;
// Start counting up from center
int i = startI;
while (i >= 0 && image_->get(centerJ, i)) {
stateCount[2]++;
i--;
}
if (i < 0) {
return NAN;
}
while (i >= 0 && !image_->get(centerJ, i) && stateCount[1] <= maxCount) {
stateCount[1]++;
i--;
}
// If already too many modules in this state or ran off the edge:
if (i < 0 || stateCount[1] > maxCount) {
return NAN;
}
while (i >= 0 && image_->get(centerJ, i) && stateCount[0] <= maxCount) {
stateCount[0]++;
i--;
}
if (stateCount[0] > maxCount) {
return NAN;
}
// Now also count down from center
i = startI + 1;
while (i < maxI && image_->get(centerJ, i)) {
stateCount[2]++;
i++;
}
if (i == maxI) {
return NAN;
}
while (i < maxI && !image_->get(centerJ, i) && stateCount[3] < maxCount) {
stateCount[3]++;
i++;
}
if (i == maxI || stateCount[3] >= maxCount) {
return NAN;
}
while (i < maxI && image_->get(centerJ, i) && stateCount[4] < maxCount) {
stateCount[4]++;
i++;
}
if (stateCount[4] >= maxCount) {
return NAN;
}
// If we found a finder-pattern-like section, but its size is more than 40% different than
// the original, assume it's a false positive
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];
if (5 * abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal) {
return NAN;
}
return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : NAN;
}
float FinderPatternFinder::crossCheckHorizontal(size_t startJ, size_t centerI, int maxCount,
int originalStateCountTotal) {
int maxJ = image_->getWidth();
int stateCount[5];
for (int i = 0; i < 5; i++)
stateCount[i] = 0;
int j = startJ;
while (j >= 0 && image_->get(j, centerI)) {
stateCount[2]++;
j--;
}
if (j < 0) {
return NAN;
}
while (j >= 0 && !image_->get(j, centerI) && stateCount[1] <= maxCount) {
stateCount[1]++;
j--;
}
if (j < 0 || stateCount[1] > maxCount) {
return NAN;
}
while (j >= 0 && image_->get(j, centerI) && stateCount[0] <= maxCount) {
stateCount[0]++;
j--;
}
if (stateCount[0] > maxCount) {
return NAN;
}
j = startJ + 1;
while (j < maxJ && image_->get(j, centerI)) {
stateCount[2]++;
j++;
}
if (j == maxJ) {
return NAN;
}
while (j < maxJ && !image_->get(j, centerI) && stateCount[3] < maxCount) {
stateCount[3]++;
j++;
}
if (j == maxJ || stateCount[3] >= maxCount) {
return NAN;
}
while (j < maxJ && image_->get(j, centerI) && stateCount[4] < maxCount) {
stateCount[4]++;
j++;
}
if (stateCount[4] >= maxCount) {
return NAN;
}
// If we found a finder-pattern-like section, but its size is significantly different than
// the original, assume it's a false positive
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];
if (5 * abs(stateCountTotal - originalStateCountTotal) >= originalStateCountTotal) {
return NAN;
}
return foundPatternCross(stateCount) ? centerFromEnd(stateCount, j) : NAN;
}
bool FinderPatternFinder::handlePossibleCenter(int* stateCount, size_t i, size_t j) {
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];
float centerJ = centerFromEnd(stateCount, j);
float centerI = crossCheckVertical(i, (size_t)centerJ, stateCount[2], stateCountTotal);
if (!isnan(centerI)) {
// Re-cross check
centerJ = crossCheckHorizontal((size_t)centerJ, (size_t)centerI, stateCount[2], stateCountTotal);
if (!isnan(centerJ)) {
float estimatedModuleSize = (float)stateCountTotal / 7.0f;
bool found = false;
size_t max = possibleCenters_.size();
for (size_t index = 0; index < max; index++) {
Ref<FinderPattern> center = possibleCenters_[index];
// Look for about the same center and module size:
if (center->aboutEquals(estimatedModuleSize, centerI, centerJ)) {
possibleCenters_[index] = center->combineEstimate(centerI, centerJ, estimatedModuleSize);
found = true;
break;
}
}
if (!found) {
Ref<FinderPattern> newPattern(new FinderPattern(centerJ, centerI, estimatedModuleSize));
possibleCenters_.push_back(newPattern);
if (callback_ != 0) {
callback_->foundPossibleResultPoint(*newPattern);
}
}
return true;
}
}
return false;
}
int FinderPatternFinder::findRowSkip() {
size_t max = possibleCenters_.size();
if (max <= 1) {
return 0;
}
Ref<FinderPattern> firstConfirmedCenter;
for (size_t i = 0; i < max; i++) {
Ref<FinderPattern> center = possibleCenters_[i];
if (center->getCount() >= CENTER_QUORUM) {
if (firstConfirmedCenter == 0) {
firstConfirmedCenter = center;
} else {
// We have two confirmed centers
// How far down can we skip before resuming looking for the next
// pattern? In the worst case, only the difference between the
// difference in the x / y coordinates of the two centers.
// This is the case where you find top left first. Draw it out.
hasSkipped_ = true;
return (int)(abs(firstConfirmedCenter->getX() - center->getX()) - abs(firstConfirmedCenter->getY()
- center->getY()))/2;
}
}
}
return 0;
}
bool FinderPatternFinder::haveMultiplyConfirmedCenters() {
int confirmedCount = 0;
float totalModuleSize = 0.0f;
size_t max = possibleCenters_.size();
for (size_t i = 0; i < max; i++) {
Ref<FinderPattern> pattern = possibleCenters_[i];
if (pattern->getCount() >= CENTER_QUORUM) {
confirmedCount++;
totalModuleSize += pattern->getEstimatedModuleSize();
}
}
if (confirmedCount < 3) {
return false;
}
// OK, we have at least 3 confirmed centers, but, it's possible that one is a "false positive"
// and that we need to keep looking. We detect this by asking if the estimated module sizes
// vary too much. We arbitrarily say that when the total deviation from average exceeds
// 5% of the total module size estimates, it's too much.
float average = totalModuleSize / max;
float totalDeviation = 0.0f;
for (size_t i = 0; i < max; i++) {
Ref<FinderPattern> pattern = possibleCenters_[i];
totalDeviation += abs(pattern->getEstimatedModuleSize() - average);
}
return totalDeviation <= 0.05f * totalModuleSize;
}
vector<Ref<FinderPattern> > FinderPatternFinder::selectBestPatterns() {
size_t startSize = possibleCenters_.size();
if (startSize < 3) {
// Couldn't find enough finder patterns
throw zxing::ReaderException("Could not find three finder patterns");
}
// Filter outlier possibilities whose module size is too different
if (startSize > 3) {
// But we can only afford to do so if we have at least 4 possibilities to choose from
float totalModuleSize = 0.0f;
float square = 0.0f;
for (size_t i = 0; i < startSize; i++) {
float size = possibleCenters_[i]->getEstimatedModuleSize();
totalModuleSize += size;
square += size * size;
}
float average = totalModuleSize / (float) startSize;
float stdDev = (float)sqrt(square / startSize - average * average);
sort(possibleCenters_.begin(), possibleCenters_.end(), FurthestFromAverageComparator(average));
float limit = max(0.2f * average, stdDev);
for (size_t i = 0; i < possibleCenters_.size() && possibleCenters_.size() > 3; i++) {
if (abs(possibleCenters_[i]->getEstimatedModuleSize() - average) > limit) {
possibleCenters_.erase(possibleCenters_.begin()+i);
i--;
}
}
}
if (possibleCenters_.size() > 3) {
// Throw away all but those first size candidate points we found.
float totalModuleSize = 0.0f;
for (size_t i = 0; i < possibleCenters_.size(); i++) {
float size = possibleCenters_[i]->getEstimatedModuleSize();
totalModuleSize += size;
}
float average = totalModuleSize / (float) possibleCenters_.size();
sort(possibleCenters_.begin(), possibleCenters_.end(), CenterComparator(average));
}
if (possibleCenters_.size() > 3) {
possibleCenters_.erase(possibleCenters_.begin()+3,possibleCenters_.end());
}
vector<Ref<FinderPattern> > result(3);
result[0] = possibleCenters_[0];
result[1] = possibleCenters_[1];
result[2] = possibleCenters_[2];
return result;
}
vector<Ref<FinderPattern> > FinderPatternFinder::orderBestPatterns(vector<Ref<FinderPattern> > patterns) {
// Find distances between pattern centers
float abDistance = distance(patterns[0], patterns[1]);
float bcDistance = distance(patterns[1], patterns[2]);
float acDistance = distance(patterns[0], patterns[2]);
Ref<FinderPattern> topLeft;
Ref<FinderPattern> topRight;
Ref<FinderPattern> bottomLeft;
// Assume one closest to other two is top left;
// topRight and bottomLeft will just be guesses below at first
if (bcDistance >= abDistance && bcDistance >= acDistance) {
topLeft = patterns[0];
topRight = patterns[1];
bottomLeft = patterns[2];
} else if (acDistance >= bcDistance && acDistance >= abDistance) {
topLeft = patterns[1];
topRight = patterns[0];
bottomLeft = patterns[2];
} else {
topLeft = patterns[2];
topRight = patterns[0];
bottomLeft = patterns[1];
}
// Use cross product to figure out which of other1/2 is the bottom left
// pattern. The vector "top-left -> bottom-left" x "top-left -> top-right"
// should yield a vector with positive z component
if ((bottomLeft->getY() - topLeft->getY()) * (topRight->getX() - topLeft->getX()) < (bottomLeft->getX()
- topLeft->getX()) * (topRight->getY() - topLeft->getY())) {
Ref<FinderPattern> temp = topRight;
topRight = bottomLeft;
bottomLeft = temp;
}
vector<Ref<FinderPattern> > results(3);
results[0] = bottomLeft;
results[1] = topLeft;
results[2] = topRight;
return results;
}
float FinderPatternFinder::distance(Ref<ResultPoint> p1, Ref<ResultPoint> p2) {
float dx = p1->getX() - p2->getX();
float dy = p1->getY() - p2->getY();
return (float)sqrt(dx * dx + dy * dy);
}
FinderPatternFinder::FinderPatternFinder(Ref<BitMatrix> image,
Ref<ResultPointCallback>const& callback) :
image_(image), possibleCenters_(), hasSkipped_(false), callback_(callback) {
}
Ref<FinderPatternInfo> FinderPatternFinder::find(DecodeHints const& hints) {
bool tryHarder = hints.getTryHarder();
size_t maxI = image_->getHeight();
size_t maxJ = image_->getWidth();
// We are looking for black/white/black/white/black modules in
// 1:1:3:1:1 ratio; this tracks the number of such modules seen so far
// As this is used often, we use an integer array instead of vector
int stateCount[5];
bool done = false;
// Let's assume that the maximum version QR Code we support takes up 1/4
// the height of the image, and then account for the center being 3
// modules in size. This gives the smallest number of pixels the center
// could be, so skip this often. When trying harder, look for all
// QR versions regardless of how dense they are.
int iSkip = (3 * maxI) / (4 * MAX_MODULES);
if (iSkip < MIN_SKIP || tryHarder) {
iSkip = MIN_SKIP;
}
// This is slightly faster than using the Ref. Efficiency is important here
BitMatrix& matrix = *image_;
for (size_t i = iSkip - 1; i < maxI && !done; i += iSkip) {
// Get a row of black/white values
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
stateCount[3] = 0;
stateCount[4] = 0;
int currentState = 0;
for (size_t j = 0; j < maxJ; j++) {
if (matrix.get(j, i)) {
// Black pixel
if ((currentState & 1) == 1) { // Counting white pixels
currentState++;
}
stateCount[currentState]++;
} else { // White pixel
if ((currentState & 1) == 0) { // Counting black pixels
if (currentState == 4) { // A winner?
if (foundPatternCross(stateCount)) { // Yes
bool confirmed = handlePossibleCenter(stateCount, i, j);
if (confirmed) {
// Start examining every other line. Checking each line turned out to be too
// expensive and didn't improve performance.
iSkip = 2;
if (hasSkipped_) {
done = haveMultiplyConfirmedCenters();
} else {
int rowSkip = findRowSkip();
if (rowSkip > stateCount[2]) {
// Skip rows between row of lower confirmed center
// and top of presumed third confirmed center
// but back up a bit to get a full chance of detecting
// it, entire width of center of finder pattern
// Skip by rowSkip, but back off by stateCount[2] (size
// of last center of pattern we saw) to be conservative,
// and also back off by iSkip which is about to be
// re-added
i += rowSkip - stateCount[2] - iSkip;
j = maxJ - 1;
}
}
} else {
stateCount[0] = stateCount[2];
stateCount[1] = stateCount[3];
stateCount[2] = stateCount[4];
stateCount[3] = 1;
stateCount[4] = 0;
currentState = 3;
continue;
}
// Clear state to start looking again
currentState = 0;
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
stateCount[3] = 0;
stateCount[4] = 0;
} else { // No, shift counts back by two
stateCount[0] = stateCount[2];
stateCount[1] = stateCount[3];
stateCount[2] = stateCount[4];
stateCount[3] = 1;
stateCount[4] = 0;
currentState = 3;
}
} else {
stateCount[++currentState]++;
}
} else { // Counting white pixels
stateCount[currentState]++;
}
}
}
if (foundPatternCross(stateCount)) {
bool confirmed = handlePossibleCenter(stateCount, i, maxJ);
if (confirmed) {
iSkip = stateCount[0];
if (hasSkipped_) {
// Found a third one
done = haveMultiplyConfirmedCenters();
}
}
}
}
vector<Ref<FinderPattern> > patternInfo = selectBestPatterns();
patternInfo = orderBestPatterns(patternInfo);
Ref<FinderPatternInfo> result(new FinderPatternInfo(patternInfo));
return result;
}
}
}