mirror of https://github.com/status-im/qzxing.git
368 lines
13 KiB
C++
368 lines
13 KiB
C++
// -*- mode:c++; tab-width:2; indent-tabs-mode:nil; c-basic-offset:2 -*-
|
|
/*
|
|
* Copyright 2010 ZXing authors All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "ITFReader.h"
|
|
#include <zxing/oned/OneDResultPoint.h>
|
|
#include <zxing/common/Array.h>
|
|
#include <zxing/ReaderException.h>
|
|
#include <math.h>
|
|
|
|
namespace zxing {
|
|
namespace oned {
|
|
|
|
static const int W = 3; // Pixel width of a wide line
|
|
static const int N = 1; // Pixed width of a narrow line
|
|
|
|
const int DEFAULT_ALLOWED_LENGTHS_LEN = 10;
|
|
const int DEFAULT_ALLOWED_LENGTHS[DEFAULT_ALLOWED_LENGTHS_LEN] = { 44, 24, 20, 18, 16, 14, 12, 10, 8, 6 };
|
|
|
|
/**
|
|
* Start/end guard pattern.
|
|
*
|
|
* Note: The end pattern is reversed because the row is reversed before
|
|
* searching for the END_PATTERN
|
|
*/
|
|
static const int START_PATTERN_LEN = 4;
|
|
static const int START_PATTERN[START_PATTERN_LEN] = {N, N, N, N};
|
|
|
|
static const int END_PATTERN_REVERSED_LEN = 3;
|
|
static const int END_PATTERN_REVERSED[END_PATTERN_REVERSED_LEN] = {N, N, W};
|
|
|
|
/**
|
|
* Patterns of Wide / Narrow lines to indicate each digit
|
|
*/
|
|
static const int PATTERNS_LEN = 10;
|
|
static const int PATTERNS[PATTERNS_LEN][5] = {
|
|
{N, N, W, W, N}, // 0
|
|
{W, N, N, N, W}, // 1
|
|
{N, W, N, N, W}, // 2
|
|
{W, W, N, N, N}, // 3
|
|
{N, N, W, N, W}, // 4
|
|
{W, N, W, N, N}, // 5
|
|
{N, W, W, N, N}, // 6
|
|
{N, N, N, W, W}, // 7
|
|
{W, N, N, W, N}, // 8
|
|
{N, W, N, W, N} // 9
|
|
};
|
|
|
|
|
|
ITFReader::ITFReader() : narrowLineWidth(-1) {
|
|
}
|
|
|
|
|
|
Ref<Result> ITFReader::decodeRow(int rowNumber, Ref<BitArray> row) {
|
|
int* startRange = 0;
|
|
int* endRange = 0;
|
|
try {
|
|
// Find out where the Middle section (payload) starts & ends
|
|
startRange = decodeStart(row);
|
|
endRange = decodeEnd(row);
|
|
|
|
std::string tmpResult;
|
|
decodeMiddle(row, startRange[1], endRange[0], tmpResult);
|
|
|
|
// To avoid false positives with 2D barcodes (and other patterns), make
|
|
// an assumption that the decoded string must be a known length
|
|
int length = tmpResult.length();
|
|
bool lengthOK = false;
|
|
for (int i = 0; i < DEFAULT_ALLOWED_LENGTHS_LEN; i++) {
|
|
if (length == DEFAULT_ALLOWED_LENGTHS[i]) {
|
|
lengthOK = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!lengthOK) {
|
|
throw ReaderException("not enough characters count");
|
|
}
|
|
|
|
Ref<String> resultString(new String(tmpResult));
|
|
|
|
std::vector< Ref<ResultPoint> > resultPoints(2);
|
|
Ref<OneDResultPoint> resultPoint1(new OneDResultPoint(startRange[1], (float) rowNumber));
|
|
Ref<OneDResultPoint> resultPoint2(new OneDResultPoint(endRange[0], (float) rowNumber));
|
|
resultPoints[0] = resultPoint1;
|
|
resultPoints[1] = resultPoint2;
|
|
|
|
delete [] startRange;
|
|
delete [] endRange;
|
|
ArrayRef<unsigned char> resultBytes(1);
|
|
return Ref<Result>(new Result(resultString, resultBytes, resultPoints, BarcodeFormat_ITF));
|
|
} catch (ReaderException const& re) {
|
|
delete [] startRange;
|
|
delete [] endRange;
|
|
return Ref<Result>();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param row row of black/white values to search
|
|
* @param payloadStart offset of start pattern
|
|
* @param resultString {@link StringBuffer} to append decoded chars to
|
|
* @throws ReaderException if decoding could not complete successfully
|
|
*/
|
|
void ITFReader::decodeMiddle(Ref<BitArray> row, int payloadStart, int payloadEnd,
|
|
std::string& resultString) {
|
|
// Digits are interleaved in pairs - 5 black lines for one digit, and the
|
|
// 5
|
|
// interleaved white lines for the second digit.
|
|
// Therefore, need to scan 10 lines and then
|
|
// split these into two arrays
|
|
int counterDigitPairLen = 10;
|
|
int counterDigitPair[counterDigitPairLen];
|
|
for (int i=0; i<counterDigitPairLen; i++) {
|
|
counterDigitPair[i] = 0;
|
|
}
|
|
|
|
int counterBlack[5];
|
|
int counterWhite[5];
|
|
for (int i=0; i<5; i++) {
|
|
counterBlack[i] = 0;
|
|
counterWhite[i] = 0;
|
|
}
|
|
|
|
while (payloadStart < payloadEnd) {
|
|
// Get 10 runs of black/white.
|
|
if (!recordPattern(row, payloadStart, counterDigitPair, counterDigitPairLen)) {
|
|
throw ReaderException("");
|
|
}
|
|
// Split them into each array
|
|
for (int k = 0; k < 5; k++) {
|
|
int twoK = k << 1;
|
|
counterBlack[k] = counterDigitPair[twoK];
|
|
counterWhite[k] = counterDigitPair[twoK + 1];
|
|
}
|
|
|
|
int bestMatch = decodeDigit(counterBlack, 5);
|
|
resultString.append(1, (char) ('0' + bestMatch));
|
|
bestMatch = decodeDigit(counterWhite, 5);
|
|
resultString.append(1, (char) ('0' + bestMatch));
|
|
|
|
for (int i = 0; i < counterDigitPairLen; i++) {
|
|
payloadStart += counterDigitPair[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Identify where the start of the middle / payload section starts.
|
|
*
|
|
* @param row row of black/white values to search
|
|
* @return Array, containing index of start of 'start block' and end of
|
|
* 'start block'
|
|
* @throws ReaderException
|
|
*/
|
|
int* ITFReader::decodeStart(Ref<BitArray> row) {
|
|
int endStart = skipWhiteSpace(row);
|
|
int* startPattern = 0;
|
|
try {
|
|
startPattern = findGuardPattern(row, endStart, START_PATTERN, START_PATTERN_LEN);
|
|
|
|
// Determine the width of a narrow line in pixels. We can do this by
|
|
// getting the width of the start pattern and dividing by 4 because its
|
|
// made up of 4 narrow lines.
|
|
narrowLineWidth = (startPattern[1] - startPattern[0]) >> 2;
|
|
validateQuietZone(row, startPattern[0]);
|
|
return startPattern;
|
|
} catch (ReaderException const& re) {
|
|
delete [] startPattern;
|
|
throw re;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Identify where the end of the middle / payload section ends.
|
|
*
|
|
* @param row row of black/white values to search
|
|
* @return Array, containing index of start of 'end block' and end of 'end
|
|
* block'
|
|
* @throws ReaderException
|
|
*/
|
|
|
|
int* ITFReader::decodeEnd(Ref<BitArray> row) {
|
|
// For convenience, reverse the row and then
|
|
// search from 'the start' for the end block
|
|
row->reverse();
|
|
int* endPattern = 0;
|
|
try {
|
|
int endStart = skipWhiteSpace(row);
|
|
endPattern = findGuardPattern(row, endStart, END_PATTERN_REVERSED, END_PATTERN_REVERSED_LEN);
|
|
|
|
// The start & end patterns must be pre/post fixed by a quiet zone. This
|
|
// zone must be at least 10 times the width of a narrow line.
|
|
// ref: http://www.barcode-1.net/i25code.html
|
|
validateQuietZone(row, endPattern[0]);
|
|
|
|
// Now recalculate the indices of where the 'endblock' starts & stops to
|
|
// accommodate
|
|
// the reversed nature of the search
|
|
int temp = endPattern[0];
|
|
endPattern[0] = row->getSize() - endPattern[1];
|
|
endPattern[1] = row->getSize() - temp;
|
|
|
|
row->reverse();
|
|
return endPattern;
|
|
} catch (ReaderException const& re) {
|
|
delete [] endPattern;
|
|
row->reverse();
|
|
throw re;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The start & end patterns must be pre/post fixed by a quiet zone. This
|
|
* zone must be at least 10 times the width of a narrow line. Scan back until
|
|
* we either get to the start of the barcode or match the necessary number of
|
|
* quiet zone pixels.
|
|
*
|
|
* Note: Its assumed the row is reversed when using this method to find
|
|
* quiet zone after the end pattern.
|
|
*
|
|
* ref: http://www.barcode-1.net/i25code.html
|
|
*
|
|
* @param row bit array representing the scanned barcode.
|
|
* @param startPattern index into row of the start or end pattern.
|
|
* @throws ReaderException if the quiet zone cannot be found, a ReaderException is thrown.
|
|
*/
|
|
void ITFReader::validateQuietZone(Ref<BitArray> row, int startPattern) {
|
|
(void)row;
|
|
(void)startPattern;
|
|
//#pragma mark needs some corrections
|
|
// int quietCount = narrowLineWidth * 10; // expect to find this many pixels of quiet zone
|
|
//
|
|
// for (int i = startPattern - 1; quietCount > 0 && i >= 0; i--) {
|
|
// if (row->get(i)) {
|
|
// break;
|
|
// }
|
|
// quietCount--;
|
|
// }
|
|
// if (quietCount != 0) {
|
|
// // Unable to find the necessary number of quiet zone pixels.
|
|
// throw ReaderException("Unable to find the necessary number of quiet zone pixels");
|
|
// }
|
|
}
|
|
|
|
/**
|
|
* Skip all whitespace until we get to the first black line.
|
|
*
|
|
* @param row row of black/white values to search
|
|
* @return index of the first black line.
|
|
* @throws ReaderException Throws exception if no black lines are found in the row
|
|
*/
|
|
int ITFReader::skipWhiteSpace(Ref<BitArray> row) {
|
|
int width = row->getSize();
|
|
int endStart = 0;
|
|
while (endStart < width) {
|
|
if (row->get(endStart)) {
|
|
break;
|
|
}
|
|
endStart++;
|
|
}
|
|
if (endStart == width) {
|
|
throw ReaderException("");
|
|
}
|
|
return endStart;
|
|
}
|
|
|
|
/**
|
|
* @param row row of black/white values to search
|
|
* @param rowOffset position to start search
|
|
* @param pattern pattern of counts of number of black and white pixels that are
|
|
* being searched for as a pattern
|
|
* @return start/end horizontal offset of guard pattern, as an array of two
|
|
* ints
|
|
* @throws ReaderException if pattern is not found
|
|
*/
|
|
int* ITFReader::findGuardPattern(Ref<BitArray> row, int rowOffset, const int pattern[],
|
|
int patternLen) {
|
|
// TODO: This is very similar to implementation in UPCEANReader. Consider if they can be
|
|
// merged to a single method.
|
|
int patternLength = patternLen;
|
|
int counters[patternLength];
|
|
for (int i=0; i<patternLength; i++) {
|
|
counters[i] = 0;
|
|
}
|
|
int width = row->getSize();
|
|
bool isWhite = false;
|
|
|
|
int counterPosition = 0;
|
|
int patternStart = rowOffset;
|
|
for (int x = rowOffset; x < width; x++) {
|
|
bool pixel = row->get(x);
|
|
if (pixel ^ isWhite) {
|
|
counters[counterPosition]++;
|
|
} else {
|
|
if (counterPosition == patternLength - 1) {
|
|
if (patternMatchVariance(counters, patternLength, pattern,
|
|
MAX_INDIVIDUAL_VARIANCE) < MAX_AVG_VARIANCE) {
|
|
int* resultValue = new int[2];
|
|
resultValue[0] = patternStart;
|
|
resultValue[1] = x;
|
|
return resultValue;
|
|
}
|
|
patternStart += counters[0] + counters[1];
|
|
for (int y = 2; y < patternLength; y++) {
|
|
counters[y - 2] = counters[y];
|
|
}
|
|
counters[patternLength - 2] = 0;
|
|
counters[patternLength - 1] = 0;
|
|
counterPosition--;
|
|
} else {
|
|
counterPosition++;
|
|
}
|
|
counters[counterPosition] = 1;
|
|
isWhite = !isWhite;
|
|
}
|
|
}
|
|
throw ReaderException("");
|
|
}
|
|
|
|
/**
|
|
* Attempts to decode a sequence of ITF black/white lines into single
|
|
* digit.
|
|
*
|
|
* @param counters the counts of runs of observed black/white/black/... values
|
|
* @return The decoded digit
|
|
* @throws ReaderException if digit cannot be decoded
|
|
*/
|
|
int ITFReader::decodeDigit(int counters[], int countersLen){
|
|
unsigned int bestVariance = MAX_AVG_VARIANCE; // worst variance we'll accept
|
|
int bestMatch = -1;
|
|
int max = PATTERNS_LEN;
|
|
for (int i = 0; i < max; i++) {
|
|
int pattern[countersLen];
|
|
for(int ind = 0; ind<countersLen; ind++){
|
|
pattern[ind] = PATTERNS[i][ind];
|
|
}
|
|
unsigned int variance = patternMatchVariance(counters, countersLen, pattern,
|
|
MAX_INDIVIDUAL_VARIANCE);
|
|
if (variance < bestVariance) {
|
|
bestVariance = variance;
|
|
bestMatch = i;
|
|
}
|
|
}
|
|
if (bestMatch >= 0) {
|
|
return bestMatch;
|
|
} else {
|
|
throw ReaderException("digit didint found");
|
|
}
|
|
}
|
|
|
|
ITFReader::~ITFReader(){
|
|
}
|
|
}
|
|
}
|