qzxing/source/zxing/multi/qrcode/detector/MultiFinderPatternFinder.cpp

231 lines
9.3 KiB
C++

/*
* Copyright 2011 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#include <zxing/multi/qrcode/detector/MultiFinderPatternFinder.h>
#include <zxing/DecodeHints.h>
#include <zxing/ReaderException.h>
namespace zxing{
namespace multi {
using namespace zxing::qrcode;
const float MultiFinderPatternFinder::MAX_MODULE_COUNT_PER_EDGE = 180;
const float MultiFinderPatternFinder::MIN_MODULE_COUNT_PER_EDGE = 9;
const float MultiFinderPatternFinder::DIFF_MODSIZE_CUTOFF_PERCENT = 0.05f;
const float MultiFinderPatternFinder::DIFF_MODSIZE_CUTOFF = 0.5f;
bool compareModuleSize(Ref<FinderPattern> a, Ref<FinderPattern> b){
float value = a->getEstimatedModuleSize() - b->getEstimatedModuleSize();
return value < 0.0;
}
MultiFinderPatternFinder::MultiFinderPatternFinder(Ref<BitMatrix> image,
Ref<ResultPointCallback> resultPointCallback) :
FinderPatternFinder(image, resultPointCallback)
{
}
MultiFinderPatternFinder::~MultiFinderPatternFinder(){}
std::vector<Ref<FinderPatternInfo> > MultiFinderPatternFinder::findMulti(DecodeHints const& hints){
bool tryHarder = hints.getTryHarder();
Ref<BitMatrix> image = image_; // Protected member
int maxI = image->getHeight();
int maxJ = image->getWidth();
// We are looking for black/white/black/white/black modules in
// 1:1:3:1:1 ratio; this tracks the number of such modules seen so far
// Let's assume that the maximum version QR Code we support takes up 1/4 the height of the
// image, and then account for the center being 3 modules in size. This gives the smallest
// number of pixels the center could be, so skip this often. When trying harder, look for all
// QR versions regardless of how dense they are.
int iSkip = (int) (maxI / (MAX_MODULES * 4.0f) * 3);
if (iSkip < MIN_SKIP || tryHarder) {
iSkip = MIN_SKIP;
}
int stateCount[5];
for (int i = iSkip - 1; i < maxI; i += iSkip) {
// Get a row of black/white values
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
stateCount[3] = 0;
stateCount[4] = 0;
int currentState = 0;
for (int j = 0; j < maxJ; j++) {
if (image->get(j, i)) {
// Black pixel
if ((currentState & 1) == 1) { // Counting white pixels
currentState++;
}
stateCount[currentState]++;
} else { // White pixel
if ((currentState & 1) == 0) { // Counting black pixels
if (currentState == 4) { // A winner?
if (foundPatternCross(stateCount)) { // Yes
bool confirmed = handlePossibleCenter(stateCount, i, j);
if (!confirmed) {
do { // Advance to next black pixel
j++;
} while (j < maxJ && !image->get(j, i));
j--; // back up to that last white pixel
}
// Clear state to start looking again
currentState = 0;
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
stateCount[3] = 0;
stateCount[4] = 0;
} else { // No, shift counts back by two
stateCount[0] = stateCount[2];
stateCount[1] = stateCount[3];
stateCount[2] = stateCount[4];
stateCount[3] = 1;
stateCount[4] = 0;
currentState = 3;
}
} else {
stateCount[++currentState]++;
}
} else { // Counting white pixels
stateCount[currentState]++;
}
}
} // for j=...
if (foundPatternCross(stateCount)) {
handlePossibleCenter(stateCount, i, maxJ);
} // end if foundPatternCross
} // for i=iSkip-1 ...
std::vector<std::vector<Ref<FinderPattern> > > patternInfo = selectBestPatterns();
std::vector<Ref<FinderPatternInfo> > result;
for (unsigned int i = 0; i < patternInfo.size(); i++) {
std::vector<Ref<FinderPattern> > pattern = patternInfo[i];
FinderPatternFinder::orderBestPatterns(pattern);
result.push_back(Ref<FinderPatternInfo>(new FinderPatternInfo(pattern)));
}
return result;
}
std::vector<std::vector<Ref<FinderPattern> > > MultiFinderPatternFinder::selectBestPatterns(){
std::vector<Ref<FinderPattern> > possibleCenters = possibleCenters_;
int size = possibleCenters.size();
if (size < 3) {
// Couldn't find enough finder patterns
throw ReaderException("No code detected");
}
std::vector<std::vector<Ref<FinderPattern> > > results;
/*
* Begin HE modifications to safely detect multiple codes of equal size
*/
if (size == 3) {
results.push_back(possibleCenters_);
return results;
}
// Sort by estimated module size to speed up the upcoming checks
//TODO do a sort based on module size
std::sort(possibleCenters.begin(), possibleCenters.end(), compareModuleSize);
/*
* Now lets start: build a list of tuples of three finder locations that
* - feature similar module sizes
* - are placed in a distance so the estimated module count is within the QR specification
* - have similar distance between upper left/right and left top/bottom finder patterns
* - form a triangle with 90° angle (checked by comparing top right/bottom left distance
* with pythagoras)
*
* Note: we allow each point to be used for more than one code region: this might seem
* counterintuitive at first, but the performance penalty is not that big. At this point,
* we cannot make a good quality decision whether the three finders actually represent
* a QR code, or are just by chance layouted so it looks like there might be a QR code there.
* So, if the layout seems right, lets have the decoder try to decode.
*/
for (int i1 = 0; i1 < (size - 2); i1++) {
Ref<FinderPattern> p1 = possibleCenters[i1];
for (int i2 = i1 + 1; i2 < (size - 1); i2++) {
Ref<FinderPattern> p2 = possibleCenters[i2];
// Compare the expected module sizes; if they are really off, skip
float vModSize12 = (p1->getEstimatedModuleSize() - p2->getEstimatedModuleSize()) / std::min(p1->getEstimatedModuleSize(), p2->getEstimatedModuleSize());
float vModSize12A = abs(p1->getEstimatedModuleSize() - p2->getEstimatedModuleSize());
if (vModSize12A > DIFF_MODSIZE_CUTOFF && vModSize12 >= DIFF_MODSIZE_CUTOFF_PERCENT) {
// break, since elements are ordered by the module size deviation there cannot be
// any more interesting elements for the given p1.
break;
}
for (int i3 = i2 + 1; i3 < size; i3++) {
Ref<FinderPattern> p3 = possibleCenters[i3];
// Compare the expected module sizes; if they are really off, skip
float vModSize23 = (p2->getEstimatedModuleSize() - p3->getEstimatedModuleSize()) / std::min(p2->getEstimatedModuleSize(), p3->getEstimatedModuleSize());
float vModSize23A = abs(p2->getEstimatedModuleSize() - p3->getEstimatedModuleSize());
if (vModSize23A > DIFF_MODSIZE_CUTOFF && vModSize23 >= DIFF_MODSIZE_CUTOFF_PERCENT) {
// break, since elements are ordered by the module size deviation there cannot be
// any more interesting elements for the given p1.
break;
}
std::vector<Ref<FinderPattern> > test;
test.push_back(p1);
test.push_back(p2);
test.push_back(p3);
FinderPatternFinder::orderBestPatterns(test);
// Calculate the distances: a = topleft-bottomleft, b=topleft-topright, c = diagonal
Ref<FinderPatternInfo> info = Ref<FinderPatternInfo>(new FinderPatternInfo(test));
float dA = FinderPatternFinder::distance(info->getTopLeft(), info->getBottomLeft());
float dC = FinderPatternFinder::distance(info->getTopRight(), info->getBottomLeft());
float dB = FinderPatternFinder::distance(info->getTopLeft(), info->getTopRight());
// Check the sizes
float estimatedModuleCount = (dA + dB) / (p1->getEstimatedModuleSize() * 2.0f);
if (estimatedModuleCount > MAX_MODULE_COUNT_PER_EDGE || estimatedModuleCount < MIN_MODULE_COUNT_PER_EDGE) {
continue;
}
// Calculate the difference of the edge lengths in percent
float vABBC = abs((dA - dB) / std::min(dA, dB));
if (vABBC >= 0.1f) {
continue;
}
// Calculate the diagonal length by assuming a 90° angle at topleft
float dCpy = (float) sqrt(dA * dA + dB * dB);
// Compare to the real distance in %
float vPyC = abs((dC - dCpy) / std::min(dC, dCpy));
if (vPyC >= 0.1f) {
continue;
}
// All tests passed!
results.push_back(test);
} // end iterate p3
} // end iterate p2
} // end iterate p1
if (results.empty()){
// Nothing found!
throw ReaderException("No code detected");
}
return results;
}
} // End zxing::multi namespace
} // End zxing namespace