qzxing/source/zxing/common/reedsolomon/ReedSolomonDecoder.cpp

200 lines
6.4 KiB
C++

/*
* ReedSolomonDecoder.cpp
* zxing
*
* Created by Christian Brunschen on 05/05/2008.
* Copyright 2008 Google UK. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include <memory>
#include <zxing/common/reedsolomon/ReedSolomonDecoder.h>
#include <zxing/common/reedsolomon/ReedSolomonException.h>
#include <zxing/common/IllegalArgumentException.h>
using namespace std;
namespace zxing {
ReedSolomonDecoder::ReedSolomonDecoder(Ref<GenericGF> fld) :
field(fld) {
}
ReedSolomonDecoder::~ReedSolomonDecoder() {
}
void ReedSolomonDecoder::decode(ArrayRef<int> received, int twoS) {
Ref<GenericGFPoly> poly(new GenericGFPoly(field, received));
#ifdef DEBUG
cout << "decoding with poly " << *poly << "\n";
#endif
ArrayRef<int> syndromeCoefficients(new Array<int> (twoS));
#ifdef DEBUG
cout << "syndromeCoefficients array = " <<
syndromeCoefficients.array_ << "\n";
#endif
bool dataMatrix = (field.object_ == GenericGF::DATA_MATRIX_FIELD_256.object_);
bool noError = true;
for (int i = 0; i < twoS; i++) {
int eval = poly->evaluateAt(field->exp(dataMatrix ? i + 1 : i));
syndromeCoefficients[syndromeCoefficients->size() - 1 - i] = eval;
if (eval != 0) {
noError = false;
}
}
if (noError) {
return;
}
Ref<GenericGFPoly> syndrome(new GenericGFPoly(field, syndromeCoefficients));
Ref<GenericGFPoly> monomial = field->buildMonomial(twoS, 1);
vector<Ref<GenericGFPoly> > sigmaOmega = runEuclideanAlgorithm(monomial, syndrome, twoS);
ArrayRef<int> errorLocations = findErrorLocations(sigmaOmega[0]);
ArrayRef<int> errorMagitudes = findErrorMagnitudes(sigmaOmega[1], errorLocations, dataMatrix);
for (unsigned i = 0; i < errorLocations->size(); i++) {
int position = received->size() - 1 - field->log(errorLocations[i]);
//TODO: check why the position would be invalid
if (position < 0 || (size_t)position >= received.size())
throw IllegalArgumentException("Invalid position (ReedSolomonDecoder)");
received[position] = GenericGF::addOrSubtract(received[position], errorMagitudes[i]);
}
}
vector<Ref<GenericGFPoly> > ReedSolomonDecoder::runEuclideanAlgorithm(Ref<GenericGFPoly> a,
Ref<GenericGFPoly> b,
int R) {
// Assume a's degree is >= b's
if (a->getDegree() < b->getDegree()) {
Ref<GenericGFPoly> tmp = a;
a = b;
b = tmp;
}
Ref<GenericGFPoly> rLast(a);
Ref<GenericGFPoly> r(b);
Ref<GenericGFPoly> sLast(field->getOne());
Ref<GenericGFPoly> s(field->getZero());
Ref<GenericGFPoly> tLast(field->getZero());
Ref<GenericGFPoly> t(field->getOne());
// Run Euclidean algorithm until r's degree is less than R/2
while (r->getDegree() >= R / 2) {
Ref<GenericGFPoly> rLastLast(rLast);
Ref<GenericGFPoly> sLastLast(sLast);
Ref<GenericGFPoly> tLastLast(tLast);
rLast = r;
sLast = s;
tLast = t;
// Divide rLastLast by rLast, with quotient q and remainder r
if (rLast->isZero()) {
// Oops, Euclidean algorithm already terminated?
throw ReedSolomonException("r_{i-1} was zero");
}
r = rLastLast;
Ref<GenericGFPoly> q(field->getZero());
int denominatorLeadingTerm = rLast->getCoefficient(rLast->getDegree());
int dltInverse = field->inverse(denominatorLeadingTerm);
while (r->getDegree() >= rLast->getDegree() && !r->isZero()) {
int degreeDiff = r->getDegree() - rLast->getDegree();
int scale = field->multiply(r->getCoefficient(r->getDegree()), dltInverse);
q = q->addOrSubtract(field->buildMonomial(degreeDiff, scale));
r = r->addOrSubtract(rLast->multiplyByMonomial(degreeDiff, scale));
}
s = q->multiply(sLast)->addOrSubtract(sLastLast);
t = q->multiply(tLast)->addOrSubtract(tLastLast);
}
int sigmaTildeAtZero = t->getCoefficient(0);
if (sigmaTildeAtZero == 0) {
throw ReedSolomonException("sigmaTilde(0) was zero");
}
int inverse = field->inverse(sigmaTildeAtZero);
Ref<GenericGFPoly> sigma(t->multiply(inverse));
Ref<GenericGFPoly> omega(r->multiply(inverse));
#ifdef DEBUG
cout << "t = " << *t << "\n";
cout << "r = " << *r << "\n";
cout << "sigma = " << *sigma << "\n";
cout << "omega = " << *omega << "\n";
#endif
vector<Ref<GenericGFPoly> > result(2);
result[0] = sigma;
result[1] = omega;
return result;
}
ArrayRef<int> ReedSolomonDecoder::findErrorLocations(Ref<GenericGFPoly> errorLocator) {
// This is a direct application of Chien's search
int numErrors = errorLocator->getDegree();
if (numErrors == 1) { // shortcut
ArrayRef<int> result(new Array<int>(1));
result[0] = errorLocator->getCoefficient(1);
return result;
}
ArrayRef<int> result(new Array<int>(numErrors));
int e = 0;
for (int i = 1; i < field->getSize() && e < numErrors; i++) {
// cout << "errorLocator(" << i << ") == " << errorLocator->evaluateAt(i) << "\n";
if (errorLocator->evaluateAt(i) == 0) {
result[e] = field->inverse(i);
e++;
}
}
if (e != numErrors) {
throw ReedSolomonException("Error locator degree does not match number of roots");
}
return result;
}
ArrayRef<int> ReedSolomonDecoder::findErrorMagnitudes(Ref<GenericGFPoly> errorEvaluator, ArrayRef<int> errorLocations, bool dataMatrix) {
// This is directly applying Forney's Formula
int s = errorLocations.size();
ArrayRef<int> result(new Array<int>(s));
for (int i = 0; i < s; i++) {
int xiInverse = field->inverse(errorLocations[i]);
int denominator = 1;
for (int j = 0; j < s; j++) {
if (i != j) {
denominator = field->multiply(denominator, GenericGF::addOrSubtract(1, field->multiply(errorLocations[j],
xiInverse)));
}
}
result[i] = field->multiply(errorEvaluator->evaluateAt(xiInverse), field->inverse(denominator));
if (dataMatrix) {
result[i] = field->multiply(result[i], xiInverse);
}
}
return result;
}
}