/* * Copyright 2011 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include namespace zxing{ namespace multi { using namespace zxing::qrcode; const float MultiFinderPatternFinder::MAX_MODULE_COUNT_PER_EDGE = 180; const float MultiFinderPatternFinder::MIN_MODULE_COUNT_PER_EDGE = 9; const float MultiFinderPatternFinder::DIFF_MODSIZE_CUTOFF_PERCENT = 0.05f; const float MultiFinderPatternFinder::DIFF_MODSIZE_CUTOFF = 0.5f; bool compareModuleSize(Ref a, Ref b){ float value = a->getEstimatedModuleSize() - b->getEstimatedModuleSize(); return value < 0.0; } MultiFinderPatternFinder::MultiFinderPatternFinder(Ref image, Ref resultPointCallback) : FinderPatternFinder(image, resultPointCallback) { } MultiFinderPatternFinder::~MultiFinderPatternFinder(){} std::vector > MultiFinderPatternFinder::findMulti(DecodeHints const& hints){ bool tryHarder = hints.getTryHarder(); Ref image = image_; // Protected member int maxI = image->getHeight(); int maxJ = image->getWidth(); // We are looking for black/white/black/white/black modules in // 1:1:3:1:1 ratio; this tracks the number of such modules seen so far // Let's assume that the maximum version QR Code we support takes up 1/4 the height of the // image, and then account for the center being 3 modules in size. This gives the smallest // number of pixels the center could be, so skip this often. When trying harder, look for all // QR versions regardless of how dense they are. int iSkip = (int) (maxI / (MAX_MODULES * 4.0f) * 3); if (iSkip < MIN_SKIP || tryHarder) { iSkip = MIN_SKIP; } int stateCount[5]; for (int i = iSkip - 1; i < maxI; i += iSkip) { // Get a row of black/white values stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; int currentState = 0; for (int j = 0; j < maxJ; j++) { if (image->get(j, i)) { // Black pixel if ((currentState & 1) == 1) { // Counting white pixels currentState++; } stateCount[currentState]++; } else { // White pixel if ((currentState & 1) == 0) { // Counting black pixels if (currentState == 4) { // A winner? if (foundPatternCross(stateCount)) { // Yes bool confirmed = handlePossibleCenter(stateCount, i, j); if (!confirmed) { do { // Advance to next black pixel j++; } while (j < maxJ && !image->get(j, i)); j--; // back up to that last white pixel } // Clear state to start looking again currentState = 0; stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; } else { // No, shift counts back by two stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; } } else { stateCount[++currentState]++; } } else { // Counting white pixels stateCount[currentState]++; } } } // for j=... if (foundPatternCross(stateCount)) { handlePossibleCenter(stateCount, i, maxJ); } // end if foundPatternCross } // for i=iSkip-1 ... std::vector > > patternInfo = selectBestPatterns(); std::vector > result; for (unsigned int i = 0; i < patternInfo.size(); i++) { std::vector > pattern = patternInfo[i]; FinderPatternFinder::orderBestPatterns(pattern); result.push_back(Ref(new FinderPatternInfo(pattern))); } return result; } std::vector > > MultiFinderPatternFinder::selectBestPatterns(){ std::vector > possibleCenters = possibleCenters_; int size = possibleCenters.size(); if (size < 3) { // Couldn't find enough finder patterns throw ReaderException("No code detected"); } std::vector > > results; /* * Begin HE modifications to safely detect multiple codes of equal size */ if (size == 3) { results.push_back(possibleCenters_); return results; } // Sort by estimated module size to speed up the upcoming checks //TODO do a sort based on module size std::sort(possibleCenters.begin(), possibleCenters.end(), compareModuleSize); /* * Now lets start: build a list of tuples of three finder locations that * - feature similar module sizes * - are placed in a distance so the estimated module count is within the QR specification * - have similar distance between upper left/right and left top/bottom finder patterns * - form a triangle with 90° angle (checked by comparing top right/bottom left distance * with pythagoras) * * Note: we allow each point to be used for more than one code region: this might seem * counterintuitive at first, but the performance penalty is not that big. At this point, * we cannot make a good quality decision whether the three finders actually represent * a QR code, or are just by chance layouted so it looks like there might be a QR code there. * So, if the layout seems right, lets have the decoder try to decode. */ for (int i1 = 0; i1 < (size - 2); i1++) { Ref p1 = possibleCenters[i1]; for (int i2 = i1 + 1; i2 < (size - 1); i2++) { Ref p2 = possibleCenters[i2]; // Compare the expected module sizes; if they are really off, skip float vModSize12 = (p1->getEstimatedModuleSize() - p2->getEstimatedModuleSize()) / std::min(p1->getEstimatedModuleSize(), p2->getEstimatedModuleSize()); float vModSize12A = abs(p1->getEstimatedModuleSize() - p2->getEstimatedModuleSize()); if (vModSize12A > DIFF_MODSIZE_CUTOFF && vModSize12 >= DIFF_MODSIZE_CUTOFF_PERCENT) { // break, since elements are ordered by the module size deviation there cannot be // any more interesting elements for the given p1. break; } for (int i3 = i2 + 1; i3 < size; i3++) { Ref p3 = possibleCenters[i3]; // Compare the expected module sizes; if they are really off, skip float vModSize23 = (p2->getEstimatedModuleSize() - p3->getEstimatedModuleSize()) / std::min(p2->getEstimatedModuleSize(), p3->getEstimatedModuleSize()); float vModSize23A = abs(p2->getEstimatedModuleSize() - p3->getEstimatedModuleSize()); if (vModSize23A > DIFF_MODSIZE_CUTOFF && vModSize23 >= DIFF_MODSIZE_CUTOFF_PERCENT) { // break, since elements are ordered by the module size deviation there cannot be // any more interesting elements for the given p1. break; } std::vector > test; test.push_back(p1); test.push_back(p2); test.push_back(p3); FinderPatternFinder::orderBestPatterns(test); // Calculate the distances: a = topleft-bottomleft, b=topleft-topright, c = diagonal Ref info = Ref(new FinderPatternInfo(test)); float dA = FinderPatternFinder::distance(info->getTopLeft(), info->getBottomLeft()); float dC = FinderPatternFinder::distance(info->getTopRight(), info->getBottomLeft()); float dB = FinderPatternFinder::distance(info->getTopLeft(), info->getTopRight()); // Check the sizes float estimatedModuleCount = (dA + dB) / (p1->getEstimatedModuleSize() * 2.0f); if (estimatedModuleCount > MAX_MODULE_COUNT_PER_EDGE || estimatedModuleCount < MIN_MODULE_COUNT_PER_EDGE) { continue; } // Calculate the difference of the edge lengths in percent float vABBC = abs((dA - dB) / std::min(dA, dB)); if (vABBC >= 0.1f) { continue; } // Calculate the diagonal length by assuming a 90° angle at topleft float dCpy = (float) sqrt(dA * dA + dB * dB); // Compare to the real distance in % float vPyC = abs((dC - dCpy) / std::min(dC, dCpy)); if (vPyC >= 0.1f) { continue; } // All tests passed! results.push_back(test); } // end iterate p3 } // end iterate p2 } // end iterate p1 if (results.empty()){ // Nothing found! throw ReaderException("No code detected"); } return results; } } // End zxing::multi namespace } // End zxing namespace