// -*- mode:c++; tab-width:2; indent-tabs-mode:nil; c-basic-offset:2 -*- /* * GlobalHistogramBinarizer.cpp * zxing * * Copyright 2010 ZXing authors. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include namespace zxing { using namespace std; const int LUMINANCE_BITS = 5; const int LUMINANCE_SHIFT = 8 - LUMINANCE_BITS; const int LUMINANCE_BUCKETS = 1 << LUMINANCE_BITS; GlobalHistogramBinarizer::GlobalHistogramBinarizer(Ref source) : Binarizer(source), cached_matrix_(NULL), cached_row_(NULL), cached_row_num_(-1) { } GlobalHistogramBinarizer::~GlobalHistogramBinarizer() { } Ref GlobalHistogramBinarizer::getBlackRow(int y, Ref row) { if (y == cached_row_num_) { if (cached_row_ != NULL) { return cached_row_; } else { throw IllegalArgumentException("Too little dynamic range in luminance"); } } vector histogram(LUMINANCE_BUCKETS, 0); LuminanceSource& source = *getLuminanceSource(); int width = source.getWidth(); if (row == NULL || static_cast(row->getSize()) < width) { row = new BitArray(width); } else { row->clear(); } //TODO(flyashi): cache this instead of allocating and deleting per row unsigned char* row_pixels = NULL; try { row_pixels = new unsigned char[width]; row_pixels = source.getRow(y, row_pixels); for (int x = 0; x < width; x++) { histogram[row_pixels[x] >> LUMINANCE_SHIFT]++; } int blackPoint = estimate(histogram); BitArray& array = *row; int left = row_pixels[0]; int center = row_pixels[1]; for (int x = 1; x < width - 1; x++) { int right = row_pixels[x + 1]; // A simple -1 4 -1 box filter with a weight of 2. int luminance = ((center << 2) - left - right) >> 1; if (luminance < blackPoint) { array.set(x); } left = center; center = right; } cached_row_ = row; cached_row_num_ = y; delete [] row_pixels; return row; } catch (IllegalArgumentException const& iae) { // Cache the fact that this row failed. cached_row_ = NULL; cached_row_num_ = y; delete [] row_pixels; throw iae; } } Ref GlobalHistogramBinarizer::getBlackMatrix() { if (cached_matrix_ != NULL) { return cached_matrix_; } // Faster than working with the reference LuminanceSource& source = *getLuminanceSource(); int width = source.getWidth(); int height = source.getHeight(); vector histogram(LUMINANCE_BUCKETS, 0); // Quickly calculates the histogram by sampling four rows from the image. // This proved to be more robust on the blackbox tests than sampling a // diagonal as we used to do. ArrayRef ref (width); unsigned char* row = &ref[0]; for (int y = 1; y < 5; y++) { int rownum = height * y / 5; int right = (width << 2) / 5; row = source.getRow(rownum, row); for (int x = width / 5; x < right; x++) { histogram[row[x] >> LUMINANCE_SHIFT]++; } } int blackPoint = estimate(histogram); Ref matrix_ref(new BitMatrix(width, height)); BitMatrix& matrix = *matrix_ref; for (int y = 0; y < height; y++) { row = source.getRow(y, row); for (int x = 0; x < width; x++) { if (row[x] < blackPoint) matrix.set(x, y); } } cached_matrix_ = matrix_ref; // delete [] row; return matrix_ref; } int GlobalHistogramBinarizer::estimate(vector &histogram) { int numBuckets = histogram.size(); int maxBucketCount = 0; // Find tallest peak in histogram int firstPeak = 0; int firstPeakSize = 0; for (int i = 0; i < numBuckets; i++) { if (histogram[i] > firstPeakSize) { firstPeak = i; firstPeakSize = histogram[i]; } if (histogram[i] > maxBucketCount) { maxBucketCount = histogram[i]; } } // Find second-tallest peak -- well, another peak that is tall and not // so close to the first one int secondPeak = 0; int secondPeakScore = 0; for (int i = 0; i < numBuckets; i++) { int distanceToBiggest = i - firstPeak; // Encourage more distant second peaks by multiplying by square of distance int score = histogram[i] * distanceToBiggest * distanceToBiggest; if (score > secondPeakScore) { secondPeak = i; secondPeakScore = score; } } // Put firstPeak first if (firstPeak > secondPeak) { int temp = firstPeak; firstPeak = secondPeak; secondPeak = temp; } // Kind of arbitrary; if the two peaks are very close, then we figure there is // so little dynamic range in the image, that discriminating black and white // is too error-prone. // Decoding the image/line is either pointless, or may in some cases lead to // a false positive for 1D formats, which are relatively lenient. // We arbitrarily say "close" is // "<= 1/16 of the total histogram buckets apart" if (secondPeak - firstPeak <= numBuckets >> 4) { throw IllegalArgumentException("Too little dynamic range in luminance"); } // Find a valley between them that is low and closer to the white peak int bestValley = secondPeak - 1; int bestValleyScore = -1; for (int i = secondPeak - 1; i > firstPeak; i--) { int fromFirst = i - firstPeak; // Favor a "valley" that is not too close to either peak -- especially not // the black peak -- and that has a low value of course int score = fromFirst * fromFirst * (secondPeak - i) * (maxBucketCount - histogram[i]); if (score > bestValleyScore) { bestValley = i; bestValleyScore = score; } } return bestValley << LUMINANCE_SHIFT; } Ref GlobalHistogramBinarizer::createBinarizer(Ref source) { return Ref (new GlobalHistogramBinarizer(source)); } } // namespace zxing