Progressing the support of QR encoder. Ported MartixUtil, MaskUtil, applied fixes to ByteMatrix and extended BitArray to support array building.

This commit is contained in:
favoritas37 2015-06-01 22:29:56 +03:00
parent a176fd841b
commit a57f8b24d3
14 changed files with 1590 additions and 1273 deletions

View File

@ -128,7 +128,8 @@ HEADERS += $$PWD/QZXing_global.h \
$$PWD/zxing/zxing/qrcode/encoder/Encoder.h \
$$PWD/zxing/zxing/qrcode/encoder/MaskUtil.h \
$$PWD/zxing/zxing/qrcode/encoder/MatrixUtil.h \
$$PWD/zxing/zxing/qrcode/encoder/QRCode.h
$$PWD/zxing/zxing/qrcode/encoder/QRCode.h \
$$PWD/zxing/zxing/WriterException.h
SOURCES += $$PWD/CameraImageWrapper.cpp \
$$PWD/qzxing.cpp \

View File

@ -0,0 +1,17 @@
#ifndef WRITEREXCEPTION_H
#define WRITEREXCEPTION_H
#include <zxing/Exception.h>
namespace zxing {
class WriterException : public Exception {
public:
WriterException() throw() {}
WriterException(char const* msg) throw() : Exception(msg) {}
~WriterException() throw() {}
};
}
#endif // WRITEREXCEPTION_H

View File

@ -16,96 +16,101 @@
*/
#include <zxing/common/BitArray.h>
#include <zxing/common/Array.h>
#include <cstring>
using std::vector;
using zxing::BitArray;
// VC++
using zxing::Ref;
int BitArray::makeArraySize(int size) {
return (size + bitsPerWord-1) >> logBits;
return (size + bitsPerWord-1) >> logBits;
}
BitArray::BitArray(): size(0), bits(1) {}
BitArray::BitArray(int size_)
: size(size_), bits(makeArraySize(size)) {}
: size(size_), bits(makeArraySize(size)) {}
BitArray::~BitArray() {
}
int BitArray::getSize() const {
return size;
return size;
}
void BitArray::setBulk(int i, int newBits) {
bits[i >> logBits] = newBits;
bits[i >> logBits] = newBits;
}
void BitArray::clear() {
int max = bits->size();
for (int i = 0; i < max; i++) {
bits[i] = 0;
}
int max = bits->size();
for (int i = 0; i < max; i++) {
bits[i] = 0;
}
}
bool BitArray::isRange(int start, int end, bool value) {
if (end < start) {
throw IllegalArgumentException();
}
if (end == start) {
return true; // empty range matches
}
end--; // will be easier to treat this as the last actually set bit -- inclusive
int firstInt = start >> logBits;
int lastInt = end >> logBits;
for (int i = firstInt; i <= lastInt; i++) {
int firstBit = i > firstInt ? 0 : start & bitsMask;
int lastBit = i < lastInt ? (bitsPerWord-1) : end & bitsMask;
int mask;
if (firstBit == 0 && lastBit == (bitsPerWord-1)) {
mask = -1;
} else {
mask = 0;
for (int j = firstBit; j <= lastBit; j++) {
mask |= 1 << j;
}
if (end < start) {
throw IllegalArgumentException();
}
// Return false if we're looking for 1s and the masked bits[i] isn't all 1s (that is,
// equals the mask, or we're looking for 0s and the masked portion is not all 0s
if ((bits[i] & mask) != (value ? mask : 0)) {
return false;
if (end == start) {
return true; // empty range matches
}
}
return true;
end--; // will be easier to treat this as the last actually set bit -- inclusive
int firstInt = start >> logBits;
int lastInt = end >> logBits;
for (int i = firstInt; i <= lastInt; i++) {
int firstBit = i > firstInt ? 0 : start & bitsMask;
int lastBit = i < lastInt ? (bitsPerWord-1) : end & bitsMask;
int mask;
if (firstBit == 0 && lastBit == (bitsPerWord-1)) {
mask = -1;
} else {
mask = 0;
for (int j = firstBit; j <= lastBit; j++) {
mask |= 1 << j;
}
}
// Return false if we're looking for 1s and the masked bits[i] isn't all 1s (that is,
// equals the mask, or we're looking for 0s and the masked portion is not all 0s
if ((bits[i] & mask) != (value ? mask : 0)) {
return false;
}
}
return true;
}
vector<int>& BitArray::getBitArray() {
return bits->values();
return bits->values();
}
void BitArray::reverse() {
ArrayRef<int> newBits(bits->size());
int size = this->size;
for (int i = 0; i < size; i++) {
if (get(size - i - 1)) {
newBits[i >> logBits] |= 1 << (i & bitsMask);
ArrayRef<int> newBits(bits->size());
int size = this->size;
for (int i = 0; i < size; i++) {
if (get(size - i - 1)) {
newBits[i >> logBits] |= 1 << (i & bitsMask);
}
}
}
bits = newBits;
bits = newBits;
}
BitArray::Reverse::Reverse(Ref<BitArray> array_) : array(array_) {
array->reverse();
array->reverse();
}
BitArray::Reverse::~Reverse() {
array->reverse();
array->reverse();
}
namespace {
// N.B.: This only works for 32 bit ints ...
int numberOfTrailingZeros(int i) {
// N.B.: This only works for 32 bit ints ...
int numberOfTrailingZeros(int i) {
// HD, Figure 5-14
int y;
if (i == 0) return 32;
@ -115,41 +120,86 @@ namespace {
y = i << 4; if (y != 0) { n = n - 4; i = y; }
y = i << 2; if (y != 0) { n = n - 2; i = y; }
return n - (((unsigned int)(i << 1)) >> 31);
}
}
}
int BitArray::getNextSet(int from) {
if (from >= size) {
return size;
}
int bitsOffset = from >> logBits;
int currentBits = bits[bitsOffset];
// mask off lesser bits first
currentBits &= ~((1 << (from & bitsMask)) - 1);
while (currentBits == 0) {
if (++bitsOffset == (int)bits->size()) {
return size;
if (from >= size) {
return size;
}
currentBits = bits[bitsOffset];
}
int result = (bitsOffset << logBits) + numberOfTrailingZeros(currentBits);
return result > size ? size : result;
int bitsOffset = from >> logBits;
int currentBits = bits[bitsOffset];
// mask off lesser bits first
currentBits &= ~((1 << (from & bitsMask)) - 1);
while (currentBits == 0) {
if (++bitsOffset == (int)bits->size()) {
return size;
}
currentBits = bits[bitsOffset];
}
int result = (bitsOffset << logBits) + numberOfTrailingZeros(currentBits);
return result > size ? size : result;
}
int BitArray::getNextUnset(int from) {
if (from >= size) {
return size;
}
int bitsOffset = from >> logBits;
int currentBits = ~bits[bitsOffset];
// mask off lesser bits first
currentBits &= ~((1 << (from & bitsMask)) - 1);
while (currentBits == 0) {
if (++bitsOffset == (int)bits->size()) {
return size;
if (from >= size) {
return size;
}
currentBits = ~bits[bitsOffset];
}
int result = (bitsOffset << logBits) + numberOfTrailingZeros(currentBits);
return result > size ? size : result;
int bitsOffset = from >> logBits;
int currentBits = ~bits[bitsOffset];
// mask off lesser bits first
currentBits &= ~((1 << (from & bitsMask)) - 1);
while (currentBits == 0) {
if (++bitsOffset == (int)bits->size()) {
return size;
}
currentBits = ~bits[bitsOffset];
}
int result = (bitsOffset << logBits) + numberOfTrailingZeros(currentBits);
return result > size ? size : result;
}
void BitArray::appendBit(bool bit)
{
ensureCapacity(size + 1);
if (bit) {
bits[size / 32] |= 1 << (size & 0x1F);
}
size++;
}
void BitArray::appendBits(int value, int numBits)
{
if (numBits < 0 || numBits > 32) {
throw IllegalArgumentException("Num bits must be between 0 and 32");
}
ensureCapacity(size + numBits);
for (int numBitsLeft = numBits; numBitsLeft > 0; numBitsLeft--) {
appendBit(((value >> (numBitsLeft - 1)) & 0x01) == 1);
}
}
void BitArray::ensureCapacity(int size)
{
if (size > bits->size() * 32)
{
ArrayRef<int> newBits = makeArray(size);
//memcpy(bits, newBits->, bits->size());
for (size_t i=0; i<bits->size(); ++i) {
newBits[i] = bits[i];
}
bits = newBits;
}
}
void BitArray::xor_(const BitArray& other)
{
if (bits->size() != other.bits->size()) {
throw IllegalArgumentException("Sizes don't match");
}
for (int i = 0; i < bits->size(); i++) {
// The last byte could be incomplete (i.e. not have 8 bits in
// it) but there is no problem since 0 XOR 0 == 0.
bits[i] ^= other.bits[i];
}
}

View File

@ -25,53 +25,65 @@
#include <vector>
#include <limits>
#include <iostream>
#include <vector>
namespace zxing {
class BitArray : public Counted {
public:
static const int bitsPerWord = std::numeric_limits<unsigned int>::digits;
static const int bitsPerWord = std::numeric_limits<unsigned int>::digits;
private:
int size;
ArrayRef<int> bits;
static const int logBits = ZX_LOG_DIGITS(bitsPerWord);
static const int bitsMask = (1 << logBits) - 1;
int size;
ArrayRef<int> bits;
static const int logBits = ZX_LOG_DIGITS(bitsPerWord);
static const int bitsMask = (1 << logBits) - 1;
public:
BitArray(int size);
~BitArray();
int getSize() const;
BitArray();
BitArray(int size);
~BitArray();
int getSize() const;
bool get(int i) const {
return (bits[i >> logBits] & (1 << (i & bitsMask))) != 0;
}
bool get(int i) const {
return (bits[i >> logBits] & (1 << (i & bitsMask))) != 0;
}
void set(int i) {
bits[i >> logBits] |= 1 << (i & bitsMask);
}
void set(int i) {
bits[i >> logBits] |= 1 << (i & bitsMask);
}
int getNextSet(int from);
int getNextUnset(int from);
int getNextSet(int from);
int getNextUnset(int from);
void setBulk(int i, int newBits);
void setRange(int start, int end);
void clear();
bool isRange(int start, int end, bool value);
std::vector<int>& getBitArray();
void reverse();
void setBulk(int i, int newBits);
void setRange(int start, int end);
void clear();
bool isRange(int start, int end, bool value);
std::vector<int>& getBitArray();
class Reverse {
private:
Ref<BitArray> array;
public:
Reverse(Ref<BitArray> array);
~Reverse();
};
void appendBit(bool bit);
void appendBits(int value, int numBits);
void ensureCapacity(int size);
void xor_(const BitArray& other);
static ArrayRef<int> makeArray(int size) {
return ArrayRef<int>((size + 31) / 32);
}
void reverse();
class Reverse {
private:
Ref<BitArray> array;
public:
Reverse(Ref<BitArray> array);
~Reverse();
};
private:
static int makeArraySize(int size);
static int makeArraySize(int size);
};
std::ostream& operator << (std::ostream&, BitArray const&);

View File

@ -75,7 +75,7 @@ int Version::N_VERSION_DECODE_INFOS = 34;
vector<Ref<Version> > Version::VERSIONS;
static int N_VERSIONS = Version::buildVersions();
int Version::getVersionNumber() {
int Version::getVersionNumber() const {
return versionNumber_;
}

View File

@ -68,7 +68,7 @@ public:
static std::vector<Ref<Version> > VERSIONS;
~Version();
int getVersionNumber();
int getVersionNumber() const;
std::vector<int> &getAlignmentPatternCenters();
int getTotalCodewords();
int getDimensionForVersion();

View File

@ -11,22 +11,22 @@ ByteMatrix::ByteMatrix(size_t width, size_t height) :
bytes_[i].resize(width);
}
size_t ByteMatrix::getHeight()
size_t ByteMatrix::getHeight() const
{
return height_;
}
size_t ByteMatrix::getWidth()
size_t ByteMatrix::getWidth() const
{
return width_;
}
char ByteMatrix::get(size_t x, size_t y)
char ByteMatrix::get(size_t x, size_t y) const
{
return bytes_[y][x];
}
std::vector< std::vector<char> > ByteMatrix::getArray()
std::vector< std::vector<char> > ByteMatrix::getArray() const
{
return bytes_;
}
@ -55,7 +55,7 @@ void ByteMatrix::clear(const char value)
}
}
const std::string ByteMatrix::toString()
const std::string ByteMatrix::toString() const
{
std::stringstream result;// = new StringBuilder(2 * width * height + 2);
for (size_t y = 0; y < height_; ++y) {

View File

@ -18,16 +18,16 @@ public:
ByteMatrix(size_t width, size_t height);
size_t getHeight();
size_t getWidth();
char get(size_t x, size_t y);
size_t getHeight() const;
size_t getWidth() const;
char get(size_t x, size_t y) const;
std::vector< std::vector<char> > getArray();
std::vector< std::vector<char> > getArray() const;
void set(size_t x, size_t y, const char value);
void set(size_t x, size_t y, size_t value);
void set(size_t x, size_t y, bool value);
void clear(const char value);
const std::string toString();
const std::string toString() const;
};

View File

@ -0,0 +1,545 @@
//#include "Encoder.h"
//#include
//namespace zxing {
//namespace qrcode {
//// The original table is defined in the table 5 of JISX0510:2004 (p.19).
//const int Encoder::ALPHANUMERIC_TABLE[] = {
// -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x00-0x0f
// -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x10-0x1f
// 36, -1, -1, -1, 37, 38, -1, -1, -1, -1, 39, 40, -1, 41, 42, 43, // 0x20-0x2f
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 44, -1, -1, -1, -1, -1, // 0x30-0x3f
// -1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, // 0x40-0x4f
// 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, -1, // 0x50-0x5f
//};
//const std::string DEFAULT_BYTE_MODE_ENCODING = "ISO-8859-1";
////static int Encoder::calculateMaskPenalty(ByteMatrix matrix) {
//// return MaskUtil.applyMaskPenaltyRule1(matrix)
//// + MaskUtil.applyMaskPenaltyRule2(matrix)
//// + MaskUtil.applyMaskPenaltyRule3(matrix)
//// + MaskUtil.applyMaskPenaltyRule4(matrix);
////}
//// /**
//// * Encode "bytes" with the error correction level "ecLevel". The encoding mode will be chosen
//// * internally by chooseMode(). On success, store the result in "qrCode".
//// *
//// * We recommend you to use QRCode.EC_LEVEL_L (the lowest level) for
//// * "getECLevel" since our primary use is to show QR code on desktop screens. We don't need very
//// * strong error correction for this purpose.
//// *
//// * Note that there is no way to encode bytes in MODE_KANJI. We might want to add EncodeWithMode()
//// * with which clients can specify the encoding mode. For now, we don't need the functionality.
//// */
//// public static QRCode encode(String content, ErrorCorrectionLevel ecLevel) throws WriterException {
//// return encode(content, ecLevel, null);
//// }
//// public static QRCode encode(String content,
//// ErrorCorrectionLevel ecLevel,
//// Map<EncodeHintType,?> hints) throws WriterException {
//// // Determine what character encoding has been specified by the caller, if any
//// String encoding = hints == null ? null : (String) hints.get(EncodeHintType.CHARACTER_SET);
//// if (encoding == null) {
//// encoding = DEFAULT_BYTE_MODE_ENCODING;
//// }
//// // Pick an encoding mode appropriate for the content. Note that this will not attempt to use
//// // multiple modes / segments even if that were more efficient. Twould be nice.
//// Mode mode = chooseMode(content, encoding);
//// // This will store the header information, like mode and
//// // length, as well as "header" segments like an ECI segment.
//// BitArray headerBits = new BitArray();
//// // Append ECI segment if applicable
//// if (mode == Mode.BYTE && !DEFAULT_BYTE_MODE_ENCODING.equals(encoding)) {
//// CharacterSetECI eci = CharacterSetECI.getCharacterSetECIByName(encoding);
//// if (eci != null) {
//// appendECI(eci, headerBits);
//// }
//// }
//// // (With ECI in place,) Write the mode marker
//// appendModeInfo(mode, headerBits);
//// // Collect data within the main segment, separately, to count its size if needed. Don't add it to
//// // main payload yet.
//// BitArray dataBits = new BitArray();
//// appendBytes(content, mode, dataBits, encoding);
//// // Hard part: need to know version to know how many bits length takes. But need to know how many
//// // bits it takes to know version. First we take a guess at version by assuming version will be
//// // the minimum, 1:
//// int provisionalBitsNeeded = headerBits.getSize()
//// + mode.getCharacterCountBits(Version.getVersionForNumber(1))
//// + dataBits.getSize();
//// Version provisionalVersion = chooseVersion(provisionalBitsNeeded, ecLevel);
//// // Use that guess to calculate the right version. I am still not sure this works in 100% of cases.
//// int bitsNeeded = headerBits.getSize()
//// + mode.getCharacterCountBits(provisionalVersion)
//// + dataBits.getSize();
//// Version version = chooseVersion(bitsNeeded, ecLevel);
//// BitArray headerAndDataBits = new BitArray();
//// headerAndDataBits.appendBitArray(headerBits);
//// // Find "length" of main segment and write it
//// int numLetters = mode == Mode.BYTE ? dataBits.getSizeInBytes() : content.length();
//// appendLengthInfo(numLetters, version, mode, headerAndDataBits);
//// // Put data together into the overall payload
//// headerAndDataBits.appendBitArray(dataBits);
//// Version.ECBlocks ecBlocks = version.getECBlocksForLevel(ecLevel);
//// int numDataBytes = version.getTotalCodewords() - ecBlocks.getTotalECCodewords();
//// // Terminate the bits properly.
//// terminateBits(numDataBytes, headerAndDataBits);
//// // Interleave data bits with error correction code.
//// BitArray finalBits = interleaveWithECBytes(headerAndDataBits,
//// version.getTotalCodewords(),
//// numDataBytes,
//// ecBlocks.getNumBlocks());
//// QRCode qrCode = new QRCode();
//// qrCode.setECLevel(ecLevel);
//// qrCode.setMode(mode);
//// qrCode.setVersion(version);
//// // Choose the mask pattern and set to "qrCode".
//// int dimension = version.getDimensionForVersion();
//// ByteMatrix matrix = new ByteMatrix(dimension, dimension);
//// int maskPattern = chooseMaskPattern(finalBits, ecLevel, version, matrix);
//// qrCode.setMaskPattern(maskPattern);
//// // Build the matrix and set it to "qrCode".
//// MatrixUtil.buildMatrix(finalBits, ecLevel, version, maskPattern, matrix);
//// qrCode.setMatrix(matrix);
//// return qrCode;
//// }
//// /**
//// * @return the code point of the table used in alphanumeric mode or
//// * -1 if there is no corresponding code in the table.
//// */
//// static int getAlphanumericCode(int code) {
//// if (code < ALPHANUMERIC_TABLE.length) {
//// return ALPHANUMERIC_TABLE[code];
//// }
//// return -1;
//// }
//// public static Mode chooseMode(String content) {
//// return chooseMode(content, null);
//// }
//// /**
//// * Choose the best mode by examining the content. Note that 'encoding' is used as a hint;
//// * if it is Shift_JIS, and the input is only double-byte Kanji, then we return {@link Mode#KANJI}.
//// */
//// private static Mode chooseMode(String content, String encoding) {
//// if ("Shift_JIS".equals(encoding)) {
//// // Choose Kanji mode if all input are double-byte characters
//// return isOnlyDoubleByteKanji(content) ? Mode.KANJI : Mode.BYTE;
//// }
//// boolean hasNumeric = false;
//// boolean hasAlphanumeric = false;
//// for (int i = 0; i < content.length(); ++i) {
//// char c = content.charAt(i);
//// if (c >= '0' && c <= '9') {
//// hasNumeric = true;
//// } else if (getAlphanumericCode(c) != -1) {
//// hasAlphanumeric = true;
//// } else {
//// return Mode.BYTE;
//// }
//// }
//// if (hasAlphanumeric) {
//// return Mode.ALPHANUMERIC;
//// }
//// if (hasNumeric) {
//// return Mode.NUMERIC;
//// }
//// return Mode.BYTE;
//// }
//// private static boolean isOnlyDoubleByteKanji(String content) {
//// byte[] bytes;
//// try {
//// bytes = content.getBytes("Shift_JIS");
//// } catch (UnsupportedEncodingException ignored) {
//// return false;
//// }
//// int length = bytes.length;
//// if (length % 2 != 0) {
//// return false;
//// }
//// for (int i = 0; i < length; i += 2) {
//// int byte1 = bytes[i] & 0xFF;
//// if ((byte1 < 0x81 || byte1 > 0x9F) && (byte1 < 0xE0 || byte1 > 0xEB)) {
//// return false;
//// }
//// }
//// return true;
//// }
//// private static int chooseMaskPattern(BitArray bits,
//// ErrorCorrectionLevel ecLevel,
//// Version version,
//// ByteMatrix matrix) throws WriterException {
//// int minPenalty = Integer.MAX_VALUE; // Lower penalty is better.
//// int bestMaskPattern = -1;
//// // We try all mask patterns to choose the best one.
//// for (int maskPattern = 0; maskPattern < QRCode.NUM_MASK_PATTERNS; maskPattern++) {
//// MatrixUtil.buildMatrix(bits, ecLevel, version, maskPattern, matrix);
//// int penalty = calculateMaskPenalty(matrix);
//// if (penalty < minPenalty) {
//// minPenalty = penalty;
//// bestMaskPattern = maskPattern;
//// }
//// }
//// return bestMaskPattern;
//// }
//// private static Version chooseVersion(int numInputBits, ErrorCorrectionLevel ecLevel) throws WriterException {
//// // In the following comments, we use numbers of Version 7-H.
//// for (int versionNum = 1; versionNum <= 40; versionNum++) {
//// Version version = Version.getVersionForNumber(versionNum);
//// // numBytes = 196
//// int numBytes = version.getTotalCodewords();
//// // getNumECBytes = 130
//// Version.ECBlocks ecBlocks = version.getECBlocksForLevel(ecLevel);
//// int numEcBytes = ecBlocks.getTotalECCodewords();
//// // getNumDataBytes = 196 - 130 = 66
//// int numDataBytes = numBytes - numEcBytes;
//// int totalInputBytes = (numInputBits + 7) / 8;
//// if (numDataBytes >= totalInputBytes) {
//// return version;
//// }
//// }
//// throw new WriterException("Data too big");
//// }
//// /**
//// * Terminate bits as described in 8.4.8 and 8.4.9 of JISX0510:2004 (p.24).
//// */
//// static void terminateBits(int numDataBytes, BitArray bits) throws WriterException {
//// int capacity = numDataBytes << 3;
//// if (bits.getSize() > capacity) {
//// throw new WriterException("data bits cannot fit in the QR Code" + bits.getSize() + " > " +
//// capacity);
//// }
//// for (int i = 0; i < 4 && bits.getSize() < capacity; ++i) {
//// bits.appendBit(false);
//// }
//// // Append termination bits. See 8.4.8 of JISX0510:2004 (p.24) for details.
//// // If the last byte isn't 8-bit aligned, we'll add padding bits.
//// int numBitsInLastByte = bits.getSize() & 0x07;
//// if (numBitsInLastByte > 0) {
//// for (int i = numBitsInLastByte; i < 8; i++) {
//// bits.appendBit(false);
//// }
//// }
//// // If we have more space, we'll fill the space with padding patterns defined in 8.4.9 (p.24).
//// int numPaddingBytes = numDataBytes - bits.getSizeInBytes();
//// for (int i = 0; i < numPaddingBytes; ++i) {
//// bits.appendBits((i & 0x01) == 0 ? 0xEC : 0x11, 8);
//// }
//// if (bits.getSize() != capacity) {
//// throw new WriterException("Bits size does not equal capacity");
//// }
//// }
//// /**
//// * Get number of data bytes and number of error correction bytes for block id "blockID". Store
//// * the result in "numDataBytesInBlock", and "numECBytesInBlock". See table 12 in 8.5.1 of
//// * JISX0510:2004 (p.30)
//// */
//// static void getNumDataBytesAndNumECBytesForBlockID(int numTotalBytes,
//// int numDataBytes,
//// int numRSBlocks,
//// int blockID,
//// int[] numDataBytesInBlock,
//// int[] numECBytesInBlock) throws WriterException {
//// if (blockID >= numRSBlocks) {
//// throw new WriterException("Block ID too large");
//// }
//// // numRsBlocksInGroup2 = 196 % 5 = 1
//// int numRsBlocksInGroup2 = numTotalBytes % numRSBlocks;
//// // numRsBlocksInGroup1 = 5 - 1 = 4
//// int numRsBlocksInGroup1 = numRSBlocks - numRsBlocksInGroup2;
//// // numTotalBytesInGroup1 = 196 / 5 = 39
//// int numTotalBytesInGroup1 = numTotalBytes / numRSBlocks;
//// // numTotalBytesInGroup2 = 39 + 1 = 40
//// int numTotalBytesInGroup2 = numTotalBytesInGroup1 + 1;
//// // numDataBytesInGroup1 = 66 / 5 = 13
//// int numDataBytesInGroup1 = numDataBytes / numRSBlocks;
//// // numDataBytesInGroup2 = 13 + 1 = 14
//// int numDataBytesInGroup2 = numDataBytesInGroup1 + 1;
//// // numEcBytesInGroup1 = 39 - 13 = 26
//// int numEcBytesInGroup1 = numTotalBytesInGroup1 - numDataBytesInGroup1;
//// // numEcBytesInGroup2 = 40 - 14 = 26
//// int numEcBytesInGroup2 = numTotalBytesInGroup2 - numDataBytesInGroup2;
//// // Sanity checks.
//// // 26 = 26
//// if (numEcBytesInGroup1 != numEcBytesInGroup2) {
//// throw new WriterException("EC bytes mismatch");
//// }
//// // 5 = 4 + 1.
//// if (numRSBlocks != numRsBlocksInGroup1 + numRsBlocksInGroup2) {
//// throw new WriterException("RS blocks mismatch");
//// }
//// // 196 = (13 + 26) * 4 + (14 + 26) * 1
//// if (numTotalBytes !=
//// ((numDataBytesInGroup1 + numEcBytesInGroup1) *
//// numRsBlocksInGroup1) +
//// ((numDataBytesInGroup2 + numEcBytesInGroup2) *
//// numRsBlocksInGroup2)) {
//// throw new WriterException("Total bytes mismatch");
//// }
//// if (blockID < numRsBlocksInGroup1) {
//// numDataBytesInBlock[0] = numDataBytesInGroup1;
//// numECBytesInBlock[0] = numEcBytesInGroup1;
//// } else {
//// numDataBytesInBlock[0] = numDataBytesInGroup2;
//// numECBytesInBlock[0] = numEcBytesInGroup2;
//// }
//// }
//// /**
//// * Interleave "bits" with corresponding error correction bytes. On success, store the result in
//// * "result". The interleave rule is complicated. See 8.6 of JISX0510:2004 (p.37) for details.
//// */
//// static BitArray interleaveWithECBytes(BitArray bits,
//// int numTotalBytes,
//// int numDataBytes,
//// int numRSBlocks) throws WriterException {
//// // "bits" must have "getNumDataBytes" bytes of data.
//// if (bits.getSizeInBytes() != numDataBytes) {
//// throw new WriterException("Number of bits and data bytes does not match");
//// }
//// // Step 1. Divide data bytes into blocks and generate error correction bytes for them. We'll
//// // store the divided data bytes blocks and error correction bytes blocks into "blocks".
//// int dataBytesOffset = 0;
//// int maxNumDataBytes = 0;
//// int maxNumEcBytes = 0;
//// // Since, we know the number of reedsolmon blocks, we can initialize the vector with the number.
//// Collection<BlockPair> blocks = new ArrayList<>(numRSBlocks);
//// for (int i = 0; i < numRSBlocks; ++i) {
//// int[] numDataBytesInBlock = new int[1];
//// int[] numEcBytesInBlock = new int[1];
//// getNumDataBytesAndNumECBytesForBlockID(
//// numTotalBytes, numDataBytes, numRSBlocks, i,
//// numDataBytesInBlock, numEcBytesInBlock);
//// int size = numDataBytesInBlock[0];
//// byte[] dataBytes = new byte[size];
//// bits.toBytes(8*dataBytesOffset, dataBytes, 0, size);
//// byte[] ecBytes = generateECBytes(dataBytes, numEcBytesInBlock[0]);
//// blocks.add(new BlockPair(dataBytes, ecBytes));
//// maxNumDataBytes = Math.max(maxNumDataBytes, size);
//// maxNumEcBytes = Math.max(maxNumEcBytes, ecBytes.length);
//// dataBytesOffset += numDataBytesInBlock[0];
//// }
//// if (numDataBytes != dataBytesOffset) {
//// throw new WriterException("Data bytes does not match offset");
//// }
//// BitArray result = new BitArray();
//// // First, place data blocks.
//// for (int i = 0; i < maxNumDataBytes; ++i) {
//// for (BlockPair block : blocks) {
//// byte[] dataBytes = block.getDataBytes();
//// if (i < dataBytes.length) {
//// result.appendBits(dataBytes[i], 8);
//// }
//// }
//// }
//// // Then, place error correction blocks.
//// for (int i = 0; i < maxNumEcBytes; ++i) {
//// for (BlockPair block : blocks) {
//// byte[] ecBytes = block.getErrorCorrectionBytes();
//// if (i < ecBytes.length) {
//// result.appendBits(ecBytes[i], 8);
//// }
//// }
//// }
//// if (numTotalBytes != result.getSizeInBytes()) { // Should be same.
//// throw new WriterException("Interleaving error: " + numTotalBytes + " and " +
//// result.getSizeInBytes() + " differ.");
//// }
//// return result;
//// }
//// static byte[] generateECBytes(byte[] dataBytes, int numEcBytesInBlock) {
//// int numDataBytes = dataBytes.length;
//// int[] toEncode = new int[numDataBytes + numEcBytesInBlock];
//// for (int i = 0; i < numDataBytes; i++) {
//// toEncode[i] = dataBytes[i] & 0xFF;
//// }
//// new ReedSolomonEncoder(GenericGF.QR_CODE_FIELD_256).encode(toEncode, numEcBytesInBlock);
//// byte[] ecBytes = new byte[numEcBytesInBlock];
//// for (int i = 0; i < numEcBytesInBlock; i++) {
//// ecBytes[i] = (byte) toEncode[numDataBytes + i];
//// }
//// return ecBytes;
//// }
//// /**
//// * Append mode info. On success, store the result in "bits".
//// */
//// static void appendModeInfo(Mode mode, BitArray bits) {
//// bits.appendBits(mode.getBits(), 4);
//// }
//// /**
//// * Append length info. On success, store the result in "bits".
//// */
//// static void appendLengthInfo(int numLetters, Version version, Mode mode, BitArray bits) throws WriterException {
//// int numBits = mode.getCharacterCountBits(version);
//// if (numLetters >= (1 << numBits)) {
//// throw new WriterException(numLetters + " is bigger than " + ((1 << numBits) - 1));
//// }
//// bits.appendBits(numLetters, numBits);
//// }
//// /**
//// * Append "bytes" in "mode" mode (encoding) into "bits". On success, store the result in "bits".
//// */
//// static void appendBytes(String content,
//// Mode mode,
//// BitArray bits,
//// String encoding) throws WriterException {
//// switch (mode) {
//// case NUMERIC:
//// appendNumericBytes(content, bits);
//// break;
//// case ALPHANUMERIC:
//// appendAlphanumericBytes(content, bits);
//// break;
//// case BYTE:
//// append8BitBytes(content, bits, encoding);
//// break;
//// case KANJI:
//// appendKanjiBytes(content, bits);
//// break;
//// default:
//// throw new WriterException("Invalid mode: " + mode);
//// }
//// }
//// static void appendNumericBytes(CharSequence content, BitArray bits) {
//// int length = content.length();
//// int i = 0;
//// while (i < length) {
//// int num1 = content.charAt(i) - '0';
//// if (i + 2 < length) {
//// // Encode three numeric letters in ten bits.
//// int num2 = content.charAt(i + 1) - '0';
//// int num3 = content.charAt(i + 2) - '0';
//// bits.appendBits(num1 * 100 + num2 * 10 + num3, 10);
//// i += 3;
//// } else if (i + 1 < length) {
//// // Encode two numeric letters in seven bits.
//// int num2 = content.charAt(i + 1) - '0';
//// bits.appendBits(num1 * 10 + num2, 7);
//// i += 2;
//// } else {
//// // Encode one numeric letter in four bits.
//// bits.appendBits(num1, 4);
//// i++;
//// }
//// }
//// }
//// static void appendAlphanumericBytes(CharSequence content, BitArray bits) throws WriterException {
//// int length = content.length();
//// int i = 0;
//// while (i < length) {
//// int code1 = getAlphanumericCode(content.charAt(i));
//// if (code1 == -1) {
//// throw new WriterException();
//// }
//// if (i + 1 < length) {
//// int code2 = getAlphanumericCode(content.charAt(i + 1));
//// if (code2 == -1) {
//// throw new WriterException();
//// }
//// // Encode two alphanumeric letters in 11 bits.
//// bits.appendBits(code1 * 45 + code2, 11);
//// i += 2;
//// } else {
//// // Encode one alphanumeric letter in six bits.
//// bits.appendBits(code1, 6);
//// i++;
//// }
//// }
//// }
//// static void append8BitBytes(String content, BitArray bits, String encoding)
//// throws WriterException {
//// byte[] bytes;
//// try {
//// bytes = content.getBytes(encoding);
//// } catch (UnsupportedEncodingException uee) {
//// throw new WriterException(uee);
//// }
//// for (byte b : bytes) {
//// bits.appendBits(b, 8);
//// }
//// }
//// static void appendKanjiBytes(String content, BitArray bits) throws WriterException {
//// byte[] bytes;
//// try {
//// bytes = content.getBytes("Shift_JIS");
//// } catch (UnsupportedEncodingException uee) {
//// throw new WriterException(uee);
//// }
//// int length = bytes.length;
//// for (int i = 0; i < length; i += 2) {
//// int byte1 = bytes[i] & 0xFF;
//// int byte2 = bytes[i + 1] & 0xFF;
//// int code = (byte1 << 8) | byte2;
//// int subtracted = -1;
//// if (code >= 0x8140 && code <= 0x9ffc) {
//// subtracted = code - 0x8140;
//// } else if (code >= 0xe040 && code <= 0xebbf) {
//// subtracted = code - 0xc140;
//// }
//// if (subtracted == -1) {
//// throw new WriterException("Invalid byte sequence");
//// }
//// int encoded = ((subtracted >> 8) * 0xc0) + (subtracted & 0xff);
//// bits.appendBits(encoded, 13);
//// }
//// }
//// private static void appendECI(CharacterSetECI eci, BitArray bits) {
//// bits.appendBits(Mode.ECI.getBits(), 4);
//// // This is correct for values up to 127, which is all we need now.
//// bits.appendBits(eci.getValue(), 8);
//// }
//}
//}

View File

@ -1,65 +1,44 @@
///*
// * Copyright 2008 ZXing authors
// *
// * Licensed under the Apache License, Version 2.0 (the "License");
// * you may not use this file except in compliance with the License.
// * You may obtain a copy of the License at
// *
// * http://www.apache.org/licenses/LICENSE-2.0
// *
// * Unless required by applicable law or agreed to in writing, software
// * distributed under the License is distributed on an "AS IS" BASIS,
// * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// * See the License for the specific language governing permissions and
// * limitations under the License.
// */
//#ifndef ENCODER_H
//#define ENCODER_H
////package com.google.zxing.qrcode.encoder;
//package com.google.zxing.qrcode.encoder;
////import com.google.zxing.EncodeHintType;
////import com.google.zxing.WriterException;
////import com.google.zxing.common.BitArray;
////import com.google.zxing.common.CharacterSetECI;
////import com.google.zxing.common.reedsolomon.GenericGF;
////import com.google.zxing.common.reedsolomon.ReedSolomonEncoder;
////import com.google.zxing.qrcode.decoder.ErrorCorrectionLevel;
////import com.google.zxing.qrcode.decoder.Mode;
////import com.google.zxing.qrcode.decoder.Version;
//import com.google.zxing.EncodeHintType;
//import com.google.zxing.WriterException;
//import com.google.zxing.common.BitArray;
//import com.google.zxing.common.CharacterSetECI;
//import com.google.zxing.common.reedsolomon.GenericGF;
//import com.google.zxing.common.reedsolomon.ReedSolomonEncoder;
//import com.google.zxing.qrcode.decoder.ErrorCorrectionLevel;
//import com.google.zxing.qrcode.decoder.Mode;
//import com.google.zxing.qrcode.decoder.Version;
////import java.io.UnsupportedEncodingException;
////import java.util.ArrayList;
////import java.util.Collection;
////import java.util.Map;
//import java.io.UnsupportedEncodingException;
//import java.util.ArrayList;
//import java.util.Collection;
//import java.util.Map;
//#include <string>
//#include <vector>
//#include <zxing/common/CharacterSetECI.h>
//#include <zxing/qrcode/ErrorCorrectionLevel.h>
//#include <zxing/qrcode/encoder/QRCode.h>
///**
// * @author satorux@google.com (Satoru Takabayashi) - creator
// * @author dswitkin@google.com (Daniel Switkin) - ported from C++
// */
//public final class Encoder {
//namespace zxing {
//namespace qrcode {
// // The original table is defined in the table 5 of JISX0510:2004 (p.19).
// private static final int[] ALPHANUMERIC_TABLE = {
// -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x00-0x0f
// -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x10-0x1f
// 36, -1, -1, -1, 37, 38, -1, -1, -1, -1, 39, 40, -1, 41, 42, 43, // 0x20-0x2f
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 44, -1, -1, -1, -1, -1, // 0x30-0x3f
// -1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, // 0x40-0x4f
// 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, -1, // 0x50-0x5f
// };
//class Encoder {
// static final String DEFAULT_BYTE_MODE_ENCODING = "ISO-8859-1";
//private:
// static const int ALPHANUMERIC_TABLE[];
// static const std::string DEFAULT_BYTE_MODE_ENCODING;
// private Encoder() {
// }
// Encoder() {}
// // The mask penalty calculation is complicated. See Table 21 of JISX0510:2004 (p.45) for details.
// // Basically it applies four rules and summate all penalties.
// private static int calculateMaskPenalty(ByteMatrix matrix) {
// return MaskUtil.applyMaskPenaltyRule1(matrix)
// + MaskUtil.applyMaskPenaltyRule2(matrix)
// + MaskUtil.applyMaskPenaltyRule3(matrix)
// + MaskUtil.applyMaskPenaltyRule4(matrix);
// }
// /**
// * The mask penalty calculation is complicated. See Table 21 of JISX0510:2004 (p.45) for details.
// * Basically it applies four rules and summate all penalties.
// */
// static int calculateMaskPenalty(ByteMatrix matrix);
// /**
// * Encode "bytes" with the error correction level "ecLevel". The encoding mode will be chosen
@ -72,231 +51,41 @@
// * Note that there is no way to encode bytes in MODE_KANJI. We might want to add EncodeWithMode()
// * with which clients can specify the encoding mode. For now, we don't need the functionality.
// */
// public static QRCode encode(String content, ErrorCorrectionLevel ecLevel) throws WriterException {
// return encode(content, ecLevel, null);
// }
//public:
// static QRCode encode(std::string content, ErrorCorrectionLevel ecLevel);
// public static QRCode encode(String content,
// ErrorCorrectionLevel ecLevel,
// Map<EncodeHintType,?> hints) throws WriterException {
// // Determine what character encoding has been specified by the caller, if any
// String encoding = hints == null ? null : (String) hints.get(EncodeHintType.CHARACTER_SET);
// if (encoding == null) {
// encoding = DEFAULT_BYTE_MODE_ENCODING;
// }
// // Pick an encoding mode appropriate for the content. Note that this will not attempt to use
// // multiple modes / segments even if that were more efficient. Twould be nice.
// Mode mode = chooseMode(content, encoding);
// // This will store the header information, like mode and
// // length, as well as "header" segments like an ECI segment.
// BitArray headerBits = new BitArray();
// // Append ECI segment if applicable
// if (mode == Mode.BYTE && !DEFAULT_BYTE_MODE_ENCODING.equals(encoding)) {
// CharacterSetECI eci = CharacterSetECI.getCharacterSetECIByName(encoding);
// if (eci != null) {
// appendECI(eci, headerBits);
// }
// }
// // (With ECI in place,) Write the mode marker
// appendModeInfo(mode, headerBits);
// // Collect data within the main segment, separately, to count its size if needed. Don't add it to
// // main payload yet.
// BitArray dataBits = new BitArray();
// appendBytes(content, mode, dataBits, encoding);
// // Hard part: need to know version to know how many bits length takes. But need to know how many
// // bits it takes to know version. First we take a guess at version by assuming version will be
// // the minimum, 1:
// int provisionalBitsNeeded = headerBits.getSize()
// + mode.getCharacterCountBits(Version.getVersionForNumber(1))
// + dataBits.getSize();
// Version provisionalVersion = chooseVersion(provisionalBitsNeeded, ecLevel);
// // Use that guess to calculate the right version. I am still not sure this works in 100% of cases.
// int bitsNeeded = headerBits.getSize()
// + mode.getCharacterCountBits(provisionalVersion)
// + dataBits.getSize();
// Version version = chooseVersion(bitsNeeded, ecLevel);
// BitArray headerAndDataBits = new BitArray();
// headerAndDataBits.appendBitArray(headerBits);
// // Find "length" of main segment and write it
// int numLetters = mode == Mode.BYTE ? dataBits.getSizeInBytes() : content.length();
// appendLengthInfo(numLetters, version, mode, headerAndDataBits);
// // Put data together into the overall payload
// headerAndDataBits.appendBitArray(dataBits);
// Version.ECBlocks ecBlocks = version.getECBlocksForLevel(ecLevel);
// int numDataBytes = version.getTotalCodewords() - ecBlocks.getTotalECCodewords();
// // Terminate the bits properly.
// terminateBits(numDataBytes, headerAndDataBits);
// // Interleave data bits with error correction code.
// BitArray finalBits = interleaveWithECBytes(headerAndDataBits,
// version.getTotalCodewords(),
// numDataBytes,
// ecBlocks.getNumBlocks());
// QRCode qrCode = new QRCode();
// qrCode.setECLevel(ecLevel);
// qrCode.setMode(mode);
// qrCode.setVersion(version);
// // Choose the mask pattern and set to "qrCode".
// int dimension = version.getDimensionForVersion();
// ByteMatrix matrix = new ByteMatrix(dimension, dimension);
// int maskPattern = chooseMaskPattern(finalBits, ecLevel, version, matrix);
// qrCode.setMaskPattern(maskPattern);
// // Build the matrix and set it to "qrCode".
// MatrixUtil.buildMatrix(finalBits, ecLevel, version, maskPattern, matrix);
// qrCode.setMatrix(matrix);
// return qrCode;
// }
// static QRCode encode(String content, ErrorCorrectionLevel ecLevel/*,
// Map<EncodeHintType,?> hints*/);
// /**
// * @return the code point of the table used in alphanumeric mode or
// * -1 if there is no corresponding code in the table.
// */
// static int getAlphanumericCode(int code) {
// if (code < ALPHANUMERIC_TABLE.length) {
// return ALPHANUMERIC_TABLE[code];
// }
// return -1;
// }
// static int getAlphanumericCode(int code);
// public static Mode chooseMode(String content) {
// return chooseMode(content, null);
// }
// static Mode chooseMode(String content);
// /**
// * Choose the best mode by examining the content. Note that 'encoding' is used as a hint;
// * if it is Shift_JIS, and the input is only double-byte Kanji, then we return {@link Mode#KANJI}.
// */
// private static Mode chooseMode(String content, String encoding) {
// if ("Shift_JIS".equals(encoding)) {
// // Choose Kanji mode if all input are double-byte characters
// return isOnlyDoubleByteKanji(content) ? Mode.KANJI : Mode.BYTE;
// }
// boolean hasNumeric = false;
// boolean hasAlphanumeric = false;
// for (int i = 0; i < content.length(); ++i) {
// char c = content.charAt(i);
// if (c >= '0' && c <= '9') {
// hasNumeric = true;
// } else if (getAlphanumericCode(c) != -1) {
// hasAlphanumeric = true;
// } else {
// return Mode.BYTE;
// }
// }
// if (hasAlphanumeric) {
// return Mode.ALPHANUMERIC;
// }
// if (hasNumeric) {
// return Mode.NUMERIC;
// }
// return Mode.BYTE;
// }
//private:
// static Mode chooseMode(std::string content, std::string encoding);
// private static boolean isOnlyDoubleByteKanji(String content) {
// byte[] bytes;
// try {
// bytes = content.getBytes("Shift_JIS");
// } catch (UnsupportedEncodingException ignored) {
// return false;
// }
// int length = bytes.length;
// if (length % 2 != 0) {
// return false;
// }
// for (int i = 0; i < length; i += 2) {
// int byte1 = bytes[i] & 0xFF;
// if ((byte1 < 0x81 || byte1 > 0x9F) && (byte1 < 0xE0 || byte1 > 0xEB)) {
// return false;
// }
// }
// return true;
// }
// static boolean isOnlyDoubleByteKanji(std::string content);
// private static int chooseMaskPattern(BitArray bits,
// static int chooseMaskPattern(BitArray bits,
// ErrorCorrectionLevel ecLevel,
// Version version,
// ByteMatrix matrix) throws WriterException {
// ByteMatrix matrix);
// int minPenalty = Integer.MAX_VALUE; // Lower penalty is better.
// int bestMaskPattern = -1;
// // We try all mask patterns to choose the best one.
// for (int maskPattern = 0; maskPattern < QRCode.NUM_MASK_PATTERNS; maskPattern++) {
// MatrixUtil.buildMatrix(bits, ecLevel, version, maskPattern, matrix);
// int penalty = calculateMaskPenalty(matrix);
// if (penalty < minPenalty) {
// minPenalty = penalty;
// bestMaskPattern = maskPattern;
// }
// }
// return bestMaskPattern;
// }
// private static Version chooseVersion(int numInputBits, ErrorCorrectionLevel ecLevel) throws WriterException {
// // In the following comments, we use numbers of Version 7-H.
// for (int versionNum = 1; versionNum <= 40; versionNum++) {
// Version version = Version.getVersionForNumber(versionNum);
// // numBytes = 196
// int numBytes = version.getTotalCodewords();
// // getNumECBytes = 130
// Version.ECBlocks ecBlocks = version.getECBlocksForLevel(ecLevel);
// int numEcBytes = ecBlocks.getTotalECCodewords();
// // getNumDataBytes = 196 - 130 = 66
// int numDataBytes = numBytes - numEcBytes;
// int totalInputBytes = (numInputBits + 7) / 8;
// if (numDataBytes >= totalInputBytes) {
// return version;
// }
// }
// throw new WriterException("Data too big");
// }
// static Version chooseVersion(int numInputBits, ErrorCorrectionLevel ecLevel) ;
// /**
// * Terminate bits as described in 8.4.8 and 8.4.9 of JISX0510:2004 (p.24).
// */
// static void terminateBits(int numDataBytes, BitArray bits) throws WriterException {
// int capacity = numDataBytes << 3;
// if (bits.getSize() > capacity) {
// throw new WriterException("data bits cannot fit in the QR Code" + bits.getSize() + " > " +
// capacity);
// }
// for (int i = 0; i < 4 && bits.getSize() < capacity; ++i) {
// bits.appendBit(false);
// }
// // Append termination bits. See 8.4.8 of JISX0510:2004 (p.24) for details.
// // If the last byte isn't 8-bit aligned, we'll add padding bits.
// int numBitsInLastByte = bits.getSize() & 0x07;
// if (numBitsInLastByte > 0) {
// for (int i = numBitsInLastByte; i < 8; i++) {
// bits.appendBit(false);
// }
// }
// // If we have more space, we'll fill the space with padding patterns defined in 8.4.9 (p.24).
// int numPaddingBytes = numDataBytes - bits.getSizeInBytes();
// for (int i = 0; i < numPaddingBytes; ++i) {
// bits.appendBits((i & 0x01) == 0 ? 0xEC : 0x11, 8);
// }
// if (bits.getSize() != capacity) {
// throw new WriterException("Bits size does not equal capacity");
// }
// }
//protected:
// static void terminateBits(int numDataBytes, BitArray bits);
// /**
// * Get number of data bytes and number of error correction bytes for block id "blockID". Store
@ -307,53 +96,8 @@
// int numDataBytes,
// int numRSBlocks,
// int blockID,
// int[] numDataBytesInBlock,
// int[] numECBytesInBlock) throws WriterException {
// if (blockID >= numRSBlocks) {
// throw new WriterException("Block ID too large");
// }
// // numRsBlocksInGroup2 = 196 % 5 = 1
// int numRsBlocksInGroup2 = numTotalBytes % numRSBlocks;
// // numRsBlocksInGroup1 = 5 - 1 = 4
// int numRsBlocksInGroup1 = numRSBlocks - numRsBlocksInGroup2;
// // numTotalBytesInGroup1 = 196 / 5 = 39
// int numTotalBytesInGroup1 = numTotalBytes / numRSBlocks;
// // numTotalBytesInGroup2 = 39 + 1 = 40
// int numTotalBytesInGroup2 = numTotalBytesInGroup1 + 1;
// // numDataBytesInGroup1 = 66 / 5 = 13
// int numDataBytesInGroup1 = numDataBytes / numRSBlocks;
// // numDataBytesInGroup2 = 13 + 1 = 14
// int numDataBytesInGroup2 = numDataBytesInGroup1 + 1;
// // numEcBytesInGroup1 = 39 - 13 = 26
// int numEcBytesInGroup1 = numTotalBytesInGroup1 - numDataBytesInGroup1;
// // numEcBytesInGroup2 = 40 - 14 = 26
// int numEcBytesInGroup2 = numTotalBytesInGroup2 - numDataBytesInGroup2;
// // Sanity checks.
// // 26 = 26
// if (numEcBytesInGroup1 != numEcBytesInGroup2) {
// throw new WriterException("EC bytes mismatch");
// }
// // 5 = 4 + 1.
// if (numRSBlocks != numRsBlocksInGroup1 + numRsBlocksInGroup2) {
// throw new WriterException("RS blocks mismatch");
// }
// // 196 = (13 + 26) * 4 + (14 + 26) * 1
// if (numTotalBytes !=
// ((numDataBytesInGroup1 + numEcBytesInGroup1) *
// numRsBlocksInGroup1) +
// ((numDataBytesInGroup2 + numEcBytesInGroup2) *
// numRsBlocksInGroup2)) {
// throw new WriterException("Total bytes mismatch");
// }
// if (blockID < numRsBlocksInGroup1) {
// numDataBytesInBlock[0] = numDataBytesInGroup1;
// numECBytesInBlock[0] = numEcBytesInGroup1;
// } else {
// numDataBytesInBlock[0] = numDataBytesInGroup2;
// numECBytesInBlock[0] = numEcBytesInGroup2;
// }
// }
// int numDataBytesInBlock[],
// int numECBytesInBlock[]);
// /**
// * Interleave "bits" with corresponding error correction bytes. On success, store the result in
@ -362,221 +106,43 @@
// static BitArray interleaveWithECBytes(BitArray bits,
// int numTotalBytes,
// int numDataBytes,
// int numRSBlocks) throws WriterException {
// int numRSBlocks);
// // "bits" must have "getNumDataBytes" bytes of data.
// if (bits.getSizeInBytes() != numDataBytes) {
// throw new WriterException("Number of bits and data bytes does not match");
// }
// // Step 1. Divide data bytes into blocks and generate error correction bytes for them. We'll
// // store the divided data bytes blocks and error correction bytes blocks into "blocks".
// int dataBytesOffset = 0;
// int maxNumDataBytes = 0;
// int maxNumEcBytes = 0;
// // Since, we know the number of reedsolmon blocks, we can initialize the vector with the number.
// Collection<BlockPair> blocks = new ArrayList<>(numRSBlocks);
// for (int i = 0; i < numRSBlocks; ++i) {
// int[] numDataBytesInBlock = new int[1];
// int[] numEcBytesInBlock = new int[1];
// getNumDataBytesAndNumECBytesForBlockID(
// numTotalBytes, numDataBytes, numRSBlocks, i,
// numDataBytesInBlock, numEcBytesInBlock);
// int size = numDataBytesInBlock[0];
// byte[] dataBytes = new byte[size];
// bits.toBytes(8*dataBytesOffset, dataBytes, 0, size);
// byte[] ecBytes = generateECBytes(dataBytes, numEcBytesInBlock[0]);
// blocks.add(new BlockPair(dataBytes, ecBytes));
// maxNumDataBytes = Math.max(maxNumDataBytes, size);
// maxNumEcBytes = Math.max(maxNumEcBytes, ecBytes.length);
// dataBytesOffset += numDataBytesInBlock[0];
// }
// if (numDataBytes != dataBytesOffset) {
// throw new WriterException("Data bytes does not match offset");
// }
// BitArray result = new BitArray();
// // First, place data blocks.
// for (int i = 0; i < maxNumDataBytes; ++i) {
// for (BlockPair block : blocks) {
// byte[] dataBytes = block.getDataBytes();
// if (i < dataBytes.length) {
// result.appendBits(dataBytes[i], 8);
// }
// }
// }
// // Then, place error correction blocks.
// for (int i = 0; i < maxNumEcBytes; ++i) {
// for (BlockPair block : blocks) {
// byte[] ecBytes = block.getErrorCorrectionBytes();
// if (i < ecBytes.length) {
// result.appendBits(ecBytes[i], 8);
// }
// }
// }
// if (numTotalBytes != result.getSizeInBytes()) { // Should be same.
// throw new WriterException("Interleaving error: " + numTotalBytes + " and " +
// result.getSizeInBytes() + " differ.");
// }
// return result;
// }
// static byte[] generateECBytes(byte[] dataBytes, int numEcBytesInBlock) {
// int numDataBytes = dataBytes.length;
// int[] toEncode = new int[numDataBytes + numEcBytesInBlock];
// for (int i = 0; i < numDataBytes; i++) {
// toEncode[i] = dataBytes[i] & 0xFF;
// }
// new ReedSolomonEncoder(GenericGF.QR_CODE_FIELD_256).encode(toEncode, numEcBytesInBlock);
// byte[] ecBytes = new byte[numEcBytesInBlock];
// for (int i = 0; i < numEcBytesInBlock; i++) {
// ecBytes[i] = (byte) toEncode[numDataBytes + i];
// }
// return ecBytes;
// }
// static std::vector<char> generateECBytes(const std::vector<char>& dataBytes[], int numEcBytesInBlock);
// /**
// * Append mode info. On success, store the result in "bits".
// */
// static void appendModeInfo(Mode mode, BitArray bits) {
// bits.appendBits(mode.getBits(), 4);
// }
// static void appendModeInfo(Mode mode, BitArray bits);
// /**
// * Append length info. On success, store the result in "bits".
// */
// static void appendLengthInfo(int numLetters, Version version, Mode mode, BitArray bits) throws WriterException {
// int numBits = mode.getCharacterCountBits(version);
// if (numLetters >= (1 << numBits)) {
// throw new WriterException(numLetters + " is bigger than " + ((1 << numBits) - 1));
// }
// bits.appendBits(numLetters, numBits);
// }
// static void appendLengthInfo(int numLetters, Version version, Mode mode, BitArray bits);
// /**
// * Append "bytes" in "mode" mode (encoding) into "bits". On success, store the result in "bits".
// */
// static void appendBytes(String content,
// static void appendBytes(std::string content,
// Mode mode,
// BitArray bits,
// String encoding) throws WriterException {
// switch (mode) {
// case NUMERIC:
// appendNumericBytes(content, bits);
// break;
// case ALPHANUMERIC:
// appendAlphanumericBytes(content, bits);
// break;
// case BYTE:
// append8BitBytes(content, bits, encoding);
// break;
// case KANJI:
// appendKanjiBytes(content, bits);
// break;
// default:
// throw new WriterException("Invalid mode: " + mode);
// }
// }
// std::string encoding);
// static void appendNumericBytes(CharSequence content, BitArray bits) {
// int length = content.length();
// int i = 0;
// while (i < length) {
// int num1 = content.charAt(i) - '0';
// if (i + 2 < length) {
// // Encode three numeric letters in ten bits.
// int num2 = content.charAt(i + 1) - '0';
// int num3 = content.charAt(i + 2) - '0';
// bits.appendBits(num1 * 100 + num2 * 10 + num3, 10);
// i += 3;
// } else if (i + 1 < length) {
// // Encode two numeric letters in seven bits.
// int num2 = content.charAt(i + 1) - '0';
// bits.appendBits(num1 * 10 + num2, 7);
// i += 2;
// } else {
// // Encode one numeric letter in four bits.
// bits.appendBits(num1, 4);
// i++;
// }
// }
// }
// static void appendNumericBytes( const std::vector<char>& content, BitArray bits);
// static void appendAlphanumericBytes(CharSequence content, BitArray bits) throws WriterException {
// int length = content.length();
// int i = 0;
// while (i < length) {
// int code1 = getAlphanumericCode(content.charAt(i));
// if (code1 == -1) {
// throw new WriterException();
// }
// if (i + 1 < length) {
// int code2 = getAlphanumericCode(content.charAt(i + 1));
// if (code2 == -1) {
// throw new WriterException();
// }
// // Encode two alphanumeric letters in 11 bits.
// bits.appendBits(code1 * 45 + code2, 11);
// i += 2;
// } else {
// // Encode one alphanumeric letter in six bits.
// bits.appendBits(code1, 6);
// i++;
// }
// }
// }
// static void appendAlphanumericBytes(const std::vector<char>& content, BitArray bits);
// static void append8BitBytes(String content, BitArray bits, String encoding)
// throws WriterException {
// byte[] bytes;
// try {
// bytes = content.getBytes(encoding);
// } catch (UnsupportedEncodingException uee) {
// throw new WriterException(uee);
// }
// for (byte b : bytes) {
// bits.appendBits(b, 8);
// }
// }
// static void append8BitBytes(std::string content, BitArray bits, std::string encoding);
// static void appendKanjiBytes(String content, BitArray bits) throws WriterException {
// byte[] bytes;
// try {
// bytes = content.getBytes("Shift_JIS");
// } catch (UnsupportedEncodingException uee) {
// throw new WriterException(uee);
// }
// int length = bytes.length;
// for (int i = 0; i < length; i += 2) {
// int byte1 = bytes[i] & 0xFF;
// int byte2 = bytes[i + 1] & 0xFF;
// int code = (byte1 << 8) | byte2;
// int subtracted = -1;
// if (code >= 0x8140 && code <= 0x9ffc) {
// subtracted = code - 0x8140;
// } else if (code >= 0xe040 && code <= 0xebbf) {
// subtracted = code - 0xc140;
// }
// if (subtracted == -1) {
// throw new WriterException("Invalid byte sequence");
// }
// int encoded = ((subtracted >> 8) * 0xc0) + (subtracted & 0xff);
// bits.appendBits(encoded, 13);
// }
// }
// static void appendKanjiBytes(std::string content, BitArray bits);
// private static void appendECI(CharacterSetECI eci, BitArray bits) {
// bits.appendBits(Mode.ECI.getBits(), 4);
// // This is correct for values up to 127, which is all we need now.
// bits.appendBits(eci.getValue(), 8);
// }
//private:
// static void appendECI(zxing::common::CharacterSetECI eci, BitArray bits);
//}
//}
//}
//#endif // ENCODER_H

View File

@ -0,0 +1,204 @@
#include "MaskUtil.h"
#include <zxing/common/IllegalArgumentException.h>
#include <stdlib.h>
namespace zxing {
namespace qrcode {
// Penalty weights from section 6.8.2.1
const int MaskUtil::N1 = 3;
const int MaskUtil::N2 = 3;
const int MaskUtil::N3 = 40;
const int MaskUtil::N4 = 10;
/**
* Apply mask penalty rule 1 and return the penalty. Find repetitive cells with the same color and
* give penalty to them. Example: 00000 or 11111.
*/
int MaskUtil::applyMaskPenaltyRule1(const ByteMatrix& matrix)
{
return applyMaskPenaltyRule1Internal(matrix, true) + applyMaskPenaltyRule1Internal(matrix, false);
}
/**
* Apply mask penalty rule 2 and return the penalty. Find 2x2 blocks with the same color and give
* penalty to them. This is actually equivalent to the spec's rule, which is to find MxN blocks and give a
* penalty proportional to (M-1)x(N-1), because this is the number of 2x2 blocks inside such a block.
*/
int MaskUtil::applyMaskPenaltyRule2(const ByteMatrix& matrix)
{
int penalty = 0;
const std::vector<std::vector<char> >& array = matrix.getArray();
int width = matrix.getWidth();
int height = matrix.getHeight();
for (int y = 0; y < height - 1; y++) {
for (int x = 0; x < width - 1; x++) {
int value = array[y][x];
if (value == array[y][x + 1] && value == array[y + 1][x] && value == array[y + 1][x + 1]) {
penalty++;
}
}
}
return N2 * penalty;
}
/**
* Apply mask penalty rule 3 and return the penalty. Find consecutive runs of 1:1:3:1:1:4
* starting with black, or 4:1:1:3:1:1 starting with white, and give penalty to them. If we
* find patterns like 000010111010000, we give penalty once.
*/
int MaskUtil::applyMaskPenaltyRule3(const ByteMatrix& matrix)
{
int numPenalties = 0;
const std::vector<std::vector<char> >& array = matrix.getArray();
int width = matrix.getWidth();
int height = matrix.getHeight();
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
const std::vector<char>& arrayY = array[y]; // We can at least optimize this access
if (x + 6 < width &&
arrayY[x] == 1 &&
arrayY[x + 1] == 0 &&
arrayY[x + 2] == 1 &&
arrayY[x + 3] == 1 &&
arrayY[x + 4] == 1 &&
arrayY[x + 5] == 0 &&
arrayY[x + 6] == 1 &&
(isWhiteHorizontal(arrayY, x - 4, x) || isWhiteHorizontal(arrayY, x + 7, x + 11))) {
numPenalties++;
}
if (y + 6 < height &&
array[y][x] == 1 &&
array[y + 1][x] == 0 &&
array[y + 2][x] == 1 &&
array[y + 3][x] == 1 &&
array[y + 4][x] == 1 &&
array[y + 5][x] == 0 &&
array[y + 6][x] == 1 &&
(isWhiteVertical(array, x, y - 4, y) || isWhiteVertical(array, x, y + 7, y + 11))) {
numPenalties++;
}
}
}
return numPenalties * N3;
}
bool MaskUtil::isWhiteHorizontal(const std::vector<char>& rowArray, int from, int to)
{
for (int i = from; i < to; i++) {
if (i >= 0 && i < rowArray.size() && rowArray[i] == 1) {
return false;
}
}
return true;
}
bool MaskUtil::isWhiteVertical(const std::vector<std::vector<char> >& array, int col, int from, int to)
{
for (int i = from; i < to; i++) {
if (i >= 0 && i < array.size() && array[i][col] == 1) {
return false;
}
}
return true;
}
/**
* Apply mask penalty rule 4 and return the penalty. Calculate the ratio of dark cells and give
* penalty if the ratio is far from 50%. It gives 10 penalty for 5% distance.
*/
int MaskUtil::applyMaskPenaltyRule4(const ByteMatrix& matrix)
{
int numDarkCells = 0;
const std::vector<std::vector<char> >& array = matrix.getArray();
int width = matrix.getWidth();
int height = matrix.getHeight();
for (int y = 0; y < height; y++) {
const std::vector<char>& arrayY = array[y];
for (size_t x = 0; x < width; x++) {
if (arrayY[x] == 1) {
numDarkCells++;
}
}
}
int numTotalCells = matrix.getHeight() * matrix.getWidth();
int fivePercentVariances = abs(numDarkCells * 2 - numTotalCells) * 10 / numTotalCells;
return fivePercentVariances * N4;
}
/**
* Return the mask bit for "getMaskPattern" at "x" and "y". See 8.8 of JISX0510:2004 for mask
* pattern conditions.
*/
bool MaskUtil::getDataMaskBit(int maskPattern, int x, int y)
{
int intermediate;
int temp;
switch (maskPattern) {
case 0:
intermediate = (y + x) & 0x1;
break;
case 1:
intermediate = y & 0x1;
break;
case 2:
intermediate = x % 3;
break;
case 3:
intermediate = (y + x) % 3;
break;
case 4:
intermediate = (((unsigned int)y >> (unsigned int)1) + (x / 3)) & 0x1;
break;
case 5:
temp = y * x;
intermediate = (temp & 0x1) + (temp % 3);
break;
case 6:
temp = y * x;
intermediate = ((temp & 0x1) + (temp % 3)) & 0x1;
break;
case 7:
temp = y * x;
intermediate = ((temp % 3) + ((y + x) & 0x1)) & 0x1;
break;
default:
throw new IllegalArgumentException("Invalid mask pattern: " + maskPattern);
}
return intermediate == 0;
}
/**
* Helper function for applyMaskPenaltyRule1. We need this for doing this calculation in both
* vertical and horizontal orders respectively.
*/
int MaskUtil::applyMaskPenaltyRule1Internal(const ByteMatrix& matrix, bool isHorizontal)
{
int penalty = 0;
int iLimit = isHorizontal ? matrix.getHeight() : matrix.getWidth();
int jLimit = isHorizontal ? matrix.getWidth() : matrix.getHeight();
const std::vector<std::vector<char> >& array = matrix.getArray();
for (size_t i = 0; i < iLimit; i++) {
int numSameBitCells = 0;
int prevBit = -1;
for (int j = 0; j < jLimit; j++) {
int bit = isHorizontal ? array[i][j] : array[j][i];
if (bit == prevBit) {
numSameBitCells++;
} else {
if (numSameBitCells >= 5) {
penalty += N1 + (numSameBitCells - 5);
}
numSameBitCells = 1; // Include the cell itself.
prevBit = bit;
}
}
if (numSameBitCells >= 5) {
penalty += N1 + (numSameBitCells - 5);
}
}
return penalty;
}
}
}

View File

@ -1,217 +1,70 @@
///*
// * Copyright 2008 ZXing authors
// *
// * Licensed under the Apache License, Version 2.0 (the "License");
// * you may not use this file except in compliance with the License.
// * You may obtain a copy of the License at
// *
// * http://www.apache.org/licenses/LICENSE-2.0
// *
// * Unless required by applicable law or agreed to in writing, software
// * distributed under the License is distributed on an "AS IS" BASIS,
// * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// * See the License for the specific language governing permissions and
// * limitations under the License.
// */
#ifndef MASKUTIL_H
#define MASKUTIL_H
//package com.google.zxing.qrcode.encoder;
#include "ByteMatrix.h"
#include <vector>
///**
// * @author Satoru Takabayashi
// * @author Daniel Switkin
// * @author Sean Owen
// */
//final class MaskUtil {
namespace zxing {
namespace qrcode {
// // Penalty weights from section 6.8.2.1
// private static final int N1 = 3;
// private static final int N2 = 3;
// private static final int N3 = 40;
// private static final int N4 = 10;
class MaskUtil {
// private MaskUtil() {
// // do nothing
// }
private:
static const int N1;
static const int N2;
static const int N3;
static const int N4;
// /**
// * Apply mask penalty rule 1 and return the penalty. Find repetitive cells with the same color and
// * give penalty to them. Example: 00000 or 11111.
// */
// static int applyMaskPenaltyRule1(ByteMatrix matrix) {
// return applyMaskPenaltyRule1Internal(matrix, true) + applyMaskPenaltyRule1Internal(matrix, false);
// }
MaskUtil() {}
// /**
// * Apply mask penalty rule 2 and return the penalty. Find 2x2 blocks with the same color and give
// * penalty to them. This is actually equivalent to the spec's rule, which is to find MxN blocks and give a
// * penalty proportional to (M-1)x(N-1), because this is the number of 2x2 blocks inside such a block.
// */
// static int applyMaskPenaltyRule2(ByteMatrix matrix) {
// int penalty = 0;
// byte[][] array = matrix.getArray();
// int width = matrix.getWidth();
// int height = matrix.getHeight();
// for (int y = 0; y < height - 1; y++) {
// for (int x = 0; x < width - 1; x++) {
// int value = array[y][x];
// if (value == array[y][x + 1] && value == array[y + 1][x] && value == array[y + 1][x + 1]) {
// penalty++;
// }
// }
// }
// return N2 * penalty;
// }
/**
* Apply mask penalty rule 1 and return the penalty. Find repetitive cells with the same color and
* give penalty to them. Example: 00000 or 11111.
*/
static int applyMaskPenaltyRule1(const ByteMatrix& matrix);
// /**
// * Apply mask penalty rule 3 and return the penalty. Find consecutive runs of 1:1:3:1:1:4
// * starting with black, or 4:1:1:3:1:1 starting with white, and give penalty to them. If we
// * find patterns like 000010111010000, we give penalty once.
// */
// static int applyMaskPenaltyRule3(ByteMatrix matrix) {
// int numPenalties = 0;
// byte[][] array = matrix.getArray();
// int width = matrix.getWidth();
// int height = matrix.getHeight();
// for (int y = 0; y < height; y++) {
// for (int x = 0; x < width; x++) {
// byte[] arrayY = array[y]; // We can at least optimize this access
// if (x + 6 < width &&
// arrayY[x] == 1 &&
// arrayY[x + 1] == 0 &&
// arrayY[x + 2] == 1 &&
// arrayY[x + 3] == 1 &&
// arrayY[x + 4] == 1 &&
// arrayY[x + 5] == 0 &&
// arrayY[x + 6] == 1 &&
// (isWhiteHorizontal(arrayY, x - 4, x) || isWhiteHorizontal(arrayY, x + 7, x + 11))) {
// numPenalties++;
// }
// if (y + 6 < height &&
// array[y][x] == 1 &&
// array[y + 1][x] == 0 &&
// array[y + 2][x] == 1 &&
// array[y + 3][x] == 1 &&
// array[y + 4][x] == 1 &&
// array[y + 5][x] == 0 &&
// array[y + 6][x] == 1 &&
// (isWhiteVertical(array, x, y - 4, y) || isWhiteVertical(array, x, y + 7, y + 11))) {
// numPenalties++;
// }
// }
// }
// return numPenalties * N3;
// }
/**
* Apply mask penalty rule 2 and return the penalty. Find 2x2 blocks with the same color and give
* penalty to them. This is actually equivalent to the spec's rule, which is to find MxN blocks and give a
* penalty proportional to (M-1)x(N-1), because this is the number of 2x2 blocks inside such a block.
*/
static int applyMaskPenaltyRule2(const ByteMatrix& matrix);
// private static boolean isWhiteHorizontal(byte[] rowArray, int from, int to) {
// for (int i = from; i < to; i++) {
// if (i >= 0 && i < rowArray.length && rowArray[i] == 1) {
// return false;
// }
// }
// return true;
// }
/**
* Apply mask penalty rule 3 and return the penalty. Find consecutive runs of 1:1:3:1:1:4
* starting with black, or 4:1:1:3:1:1 starting with white, and give penalty to them. If we
* find patterns like 000010111010000, we give penalty once.
*/
static int applyMaskPenaltyRule3(const ByteMatrix& matrix);
// private static boolean isWhiteVertical(byte[][] array, int col, int from, int to) {
// for (int i = from; i < to; i++) {
// if (i >= 0 && i < array.length && array[i][col] == 1) {
// return false;
// }
// }
// return true;
// }
private:
static bool isWhiteHorizontal(const std::vector<char>& rowArray, int from, int to);
// /**
// * Apply mask penalty rule 4 and return the penalty. Calculate the ratio of dark cells and give
// * penalty if the ratio is far from 50%. It gives 10 penalty for 5% distance.
// */
// static int applyMaskPenaltyRule4(ByteMatrix matrix) {
// int numDarkCells = 0;
// byte[][] array = matrix.getArray();
// int width = matrix.getWidth();
// int height = matrix.getHeight();
// for (int y = 0; y < height; y++) {
// byte[] arrayY = array[y];
// for (int x = 0; x < width; x++) {
// if (arrayY[x] == 1) {
// numDarkCells++;
// }
// }
// }
// int numTotalCells = matrix.getHeight() * matrix.getWidth();
// int fivePercentVariances = Math.abs(numDarkCells * 2 - numTotalCells) * 10 / numTotalCells;
// return fivePercentVariances * N4;
// }
static bool isWhiteVertical(const std::vector<std::vector<char> >& array, int col, int from, int to);
// /**
// * Return the mask bit for "getMaskPattern" at "x" and "y". See 8.8 of JISX0510:2004 for mask
// * pattern conditions.
// */
// static boolean getDataMaskBit(int maskPattern, int x, int y) {
// int intermediate;
// int temp;
// switch (maskPattern) {
// case 0:
// intermediate = (y + x) & 0x1;
// break;
// case 1:
// intermediate = y & 0x1;
// break;
// case 2:
// intermediate = x % 3;
// break;
// case 3:
// intermediate = (y + x) % 3;
// break;
// case 4:
// intermediate = ((y >>> 1) + (x / 3)) & 0x1;
// break;
// case 5:
// temp = y * x;
// intermediate = (temp & 0x1) + (temp % 3);
// break;
// case 6:
// temp = y * x;
// intermediate = ((temp & 0x1) + (temp % 3)) & 0x1;
// break;
// case 7:
// temp = y * x;
// intermediate = ((temp % 3) + ((y + x) & 0x1)) & 0x1;
// break;
// default:
// throw new IllegalArgumentException("Invalid mask pattern: " + maskPattern);
// }
// return intermediate == 0;
// }
public:
/**
* Apply mask penalty rule 4 and return the penalty. Calculate the ratio of dark cells and give
* penalty if the ratio is far from 50%. It gives 10 penalty for 5% distance.
*/
static int applyMaskPenaltyRule4(const ByteMatrix& matrix);
// /**
// * Helper function for applyMaskPenaltyRule1. We need this for doing this calculation in both
// * vertical and horizontal orders respectively.
// */
// private static int applyMaskPenaltyRule1Internal(ByteMatrix matrix, boolean isHorizontal) {
// int penalty = 0;
// int iLimit = isHorizontal ? matrix.getHeight() : matrix.getWidth();
// int jLimit = isHorizontal ? matrix.getWidth() : matrix.getHeight();
// byte[][] array = matrix.getArray();
// for (int i = 0; i < iLimit; i++) {
// int numSameBitCells = 0;
// int prevBit = -1;
// for (int j = 0; j < jLimit; j++) {
// int bit = isHorizontal ? array[i][j] : array[j][i];
// if (bit == prevBit) {
// numSameBitCells++;
// } else {
// if (numSameBitCells >= 5) {
// penalty += N1 + (numSameBitCells - 5);
// }
// numSameBitCells = 1; // Include the cell itself.
// prevBit = bit;
// }
// }
// if (numSameBitCells >= 5) {
// penalty += N1 + (numSameBitCells - 5);
// }
// }
// return penalty;
// }
/**
* Return the mask bit for "getMaskPattern" at "x" and "y". See 8.8 of JISX0510:2004 for mask
* pattern conditions.
*/
static bool getDataMaskBit(int maskPattern, int x, int y);
//}
/**
* Helper function for applyMaskPenaltyRule1. We need this for doing this calculation in both
* vertical and horizontal orders respectively.
*/
private:
static int applyMaskPenaltyRule1Internal(const ByteMatrix& matrix, bool isHorizontal);
};
}
}
#endif // MASKUTIL_H

View File

@ -0,0 +1,409 @@
#include "MatrixUtil.h"
#include "MaskUtil.h"
#include <zxing/WriterException.h>
#include "QRCode.h"
namespace zxing {
namespace qrcode {
const int MatrixUtil::POSITION_DETECTION_PATTERN[7][7] = {
{1, 1, 1, 1, 1, 1, 1},
{1, 0, 0, 0, 0, 0, 1},
{1, 0, 1, 1, 1, 0, 1},
{1, 0, 1, 1, 1, 0, 1},
{1, 0, 1, 1, 1, 0, 1},
{1, 0, 0, 0, 0, 0, 1},
{1, 1, 1, 1, 1, 1, 1},
};
const int MatrixUtil::POSITION_ADJUSTMENT_PATTERN[5][5] = {
{1, 1, 1, 1, 1},
{1, 0, 0, 0, 1},
{1, 0, 1, 0, 1},
{1, 0, 0, 0, 1},
{1, 1, 1, 1, 1},
};
// From Appendix E. Table 1, JIS0510X:2004 (p 71). The table was double-checked by komatsu.
const int MatrixUtil::POSITION_ADJUSTMENT_PATTERN_COORDINATE_TABLE[40][7] = {
{-1, -1, -1, -1, -1, -1, -1}, // Version 1
{ 6, 18, -1, -1, -1, -1, -1}, // Version 2
{ 6, 22, -1, -1, -1, -1, -1}, // Version 3
{ 6, 26, -1, -1, -1, -1, -1}, // Version 4
{ 6, 30, -1, -1, -1, -1, -1}, // Version 5
{ 6, 34, -1, -1, -1, -1, -1}, // Version 6
{ 6, 22, 38, -1, -1, -1, -1}, // Version 7
{ 6, 24, 42, -1, -1, -1, -1}, // Version 8
{ 6, 26, 46, -1, -1, -1, -1}, // Version 9
{ 6, 28, 50, -1, -1, -1, -1}, // Version 10
{ 6, 30, 54, -1, -1, -1, -1}, // Version 11
{ 6, 32, 58, -1, -1, -1, -1}, // Version 12
{ 6, 34, 62, -1, -1, -1, -1}, // Version 13
{ 6, 26, 46, 66, -1, -1, -1}, // Version 14
{ 6, 26, 48, 70, -1, -1, -1}, // Version 15
{ 6, 26, 50, 74, -1, -1, -1}, // Version 16
{ 6, 30, 54, 78, -1, -1, -1}, // Version 17
{ 6, 30, 56, 82, -1, -1, -1}, // Version 18
{ 6, 30, 58, 86, -1, -1, -1}, // Version 19
{ 6, 34, 62, 90, -1, -1, -1}, // Version 20
{ 6, 28, 50, 72, 94, -1, -1}, // Version 21
{ 6, 26, 50, 74, 98, -1, -1}, // Version 22
{ 6, 30, 54, 78, 102, -1, -1}, // Version 23
{ 6, 28, 54, 80, 106, -1, -1}, // Version 24
{ 6, 32, 58, 84, 110, -1, -1}, // Version 25
{ 6, 30, 58, 86, 114, -1, -1}, // Version 26
{ 6, 34, 62, 90, 118, -1, -1}, // Version 27
{ 6, 26, 50, 74, 98, 122, -1}, // Version 28
{ 6, 30, 54, 78, 102, 126, -1}, // Version 29
{ 6, 26, 52, 78, 104, 130, -1}, // Version 30
{ 6, 30, 56, 82, 108, 134, -1}, // Version 31
{ 6, 34, 60, 86, 112, 138, -1}, // Version 32
{ 6, 30, 58, 86, 114, 142, -1}, // Version 33
{ 6, 34, 62, 90, 118, 146, -1}, // Version 34
{ 6, 30, 54, 78, 102, 126, 150}, // Version 35
{ 6, 24, 50, 76, 102, 128, 154}, // Version 36
{ 6, 28, 54, 80, 106, 132, 158}, // Version 37
{ 6, 32, 58, 84, 110, 136, 162}, // Version 38
{ 6, 26, 54, 82, 110, 138, 166}, // Version 39
{ 6, 30, 58, 86, 114, 142, 170}, // Version 40
};
// Type info cells at the left top corner.
const int MatrixUtil::TYPE_INFO_COORDINATES[16][2] = {
{8, 0},
{8, 1},
{8, 2},
{8, 3},
{8, 4},
{8, 5},
{8, 7},
{8, 8},
{7, 8},
{5, 8},
{4, 8},
{3, 8},
{2, 8},
{1, 8},
{0, 8},
};
// From Appendix D in JISX0510:2004 (p. 67)
const int MatrixUtil::VERSION_INFO_POLY = 0x1f25; // 1 1111 0010 0101
// From Appendix C in JISX0510:2004 (p.65).
const int MatrixUtil::TYPE_INFO_POLY = 0x537;
const int MatrixUtil::TYPE_INFO_MASK_PATTERN = 0x5412;
void MatrixUtil::buildMatrix(const BitArray& dataBits,
ErrorCorrectionLevel& ecLevel,
Version& version,
int maskPattern,
ByteMatrix& matrix)
{
clearMatrix(matrix);
embedBasicPatterns(version, matrix);
// Type information appear with any version.
embedTypeInfo(ecLevel, maskPattern, matrix);
// Version info appear if version >= 7.
maybeEmbedVersionInfo(version, matrix);
// Data should be embedded at end.
embedDataBits(dataBits, maskPattern, matrix);
}
void MatrixUtil::embedBasicPatterns(const Version& version, ByteMatrix& matrix) {
// Let's get started with embedding big squares at corners.
embedPositionDetectionPatternsAndSeparators(matrix);
// Then, embed the dark dot at the left bottom corner.
embedDarkDotAtLeftBottomCorner(matrix);
// Position adjustment patterns appear if version >= 2.
maybeEmbedPositionAdjustmentPatterns(version, matrix);
// Timing patterns should be embedded after position adj. patterns.
embedTimingPatterns(matrix);
}
// Embed type information. On success, modify the matrix.
void MatrixUtil::embedTypeInfo(const ErrorCorrectionLevel& ecLevel, int maskPattern, ByteMatrix& matrix)
{
BitArray typeInfoBits;
makeTypeInfoBits(ecLevel, maskPattern, typeInfoBits);
for (int i = 0; i < typeInfoBits.getSize(); ++i) {
// Place bits in LSB to MSB order. LSB (least significant bit) is the last value in
// "typeInfoBits".
bool bit = typeInfoBits.get(typeInfoBits.getSize() - 1 - i);
// Type info bits at the left top corner. See 8.9 of JISX0510:2004 (p.46).
int x1 = TYPE_INFO_COORDINATES[i][0];
int y1 = TYPE_INFO_COORDINATES[i][1];
matrix.set(x1, y1, bit);
if (i < 8) {
// Right top corner.
int x2 = matrix.getWidth() - i - 1;
int y2 = 8;
matrix.set(x2, y2, bit);
} else {
// Left bottom corner.
int x2 = 8;
int y2 = matrix.getHeight() - 7 + (i - 8);
matrix.set(x2, y2, bit);
}
}
}
void MatrixUtil::maybeEmbedVersionInfo(const Version& version, ByteMatrix& matrix)
{
if (version.getVersionNumber() < 7) { // Version info is necessary if version >= 7.
return; // Don't need version info.
}
BitArray versionInfoBits;
makeVersionInfoBits(version, versionInfoBits);
int bitIndex = 6 * 3 - 1; // It will decrease from 17 to 0.
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 3; ++j) {
// Place bits in LSB (least significant bit) to MSB order.
boolean bit = versionInfoBits.get(bitIndex);
bitIndex--;
// Left bottom corner.
matrix.set(i, matrix.getHeight() - 11 + j, bit);
// Right bottom corner.
matrix.set(matrix.getHeight() - 11 + j, i, bit);
}
}
}
void MatrixUtil::embedDataBits(const BitArray& dataBits, int maskPattern, ByteMatrix& matrix)
{
int bitIndex = 0;
int direction = -1;
// Start from the right bottom cell.
int x = matrix.getWidth() - 1;
int y = matrix.getHeight() - 1;
while (x > 0) {
// Skip the vertical timing pattern.
if (x == 6) {
x -= 1;
}
while (y >= 0 && y < matrix.getHeight()) {
for (int i = 0; i < 2; ++i) {
int xx = x - i;
// Skip the cell if it's not empty.
if (!isEmpty(matrix.get(xx, y))) {
continue;
}
boolean bit;
if (bitIndex < dataBits.getSize()) {
bit = dataBits.get(bitIndex);
++bitIndex;
} else {
// Padding bit. If there is no bit left, we'll fill the left cells with 0, as described
// in 8.4.9 of JISX0510:2004 (p. 24).
bit = false;
}
// Skip masking if mask_pattern is -1.
if (maskPattern != -1 && MaskUtil::getDataMaskBit(maskPattern, xx, y)) {
bit = !bit;
}
matrix.set(xx, y, bit);
}
y += direction;
}
direction = -direction; // Reverse the direction.
y += direction;
x -= 2; // Move to the left.
}
// All bits should be consumed.
if (bitIndex != dataBits.getSize()) {
throw new zxing::WriterException("Not all bits consumed: " + bitIndex + '/' + dataBits.getSize());
}
}
int MatrixUtil::findMSBSet(int value)
{
int numDigits = 0;
while (value != 0) {
(size_t)value >> 1; // ??value >>>= 1;
++numDigits;
}
return numDigits;
}
int MatrixUtil::calculateBCHCode(int value, int poly)
{
// If poly is "1 1111 0010 0101" (version info poly), msbSetInPoly is 13. We'll subtract 1
// from 13 to make it 12.
int msbSetInPoly = findMSBSet(poly);
value <<= msbSetInPoly - 1;
// Do the division business using exclusive-or operations.
while (findMSBSet(value) >= msbSetInPoly) {
value ^= poly << (findMSBSet(value) - msbSetInPoly);
}
// Now the "value" is the remainder (i.e. the BCH code)
return value;
}
// Make bit vector of type information. On success, store the result in "bits" and return true.
// Encode error correction level and mask pattern. See 8.9 of
// JISX0510:2004 (p.45) for details.
void MatrixUtil::makeTypeInfoBits(const ErrorCorrectionLevel& ecLevel, int maskPattern, BitArray& bits)
{
if (!QRCode::isValidMaskPattern(maskPattern)) {
throw new WriterException("Invalid mask pattern");
}
int typeInfo = (ecLevel.bits() << 3) | maskPattern;
bits.appendBits(typeInfo, 5);
int bchCode = calculateBCHCode(typeInfo, TYPE_INFO_POLY);
bits.appendBits(bchCode, 10);
BitArray maskBits;
maskBits.appendBits(TYPE_INFO_MASK_PATTERN, 15);
bits.xor_(maskBits);
if (bits.getSize() != 15) { // Just in case.
throw new WriterException("should not happen but we got: " + bits.getSize());
}
}
// Make bit vector of version information. On success, store the result in "bits" and return true.
// See 8.10 of JISX0510:2004 (p.45) for details.
void MatrixUtil::makeVersionInfoBits(const Version& version, BitArray& bits)
{
bits.appendBits(version.getVersionNumber(), 6);
int bchCode = calculateBCHCode(version.getVersionNumber(), VERSION_INFO_POLY);
bits.appendBits(bchCode, 12);
if (bits.getSize() != 18) { // Just in case.
throw new WriterException("should not happen but we got: " + bits.getSize());
}
}
void MatrixUtil::embedTimingPatterns(ByteMatrix& matrix)
{
// -8 is for skipping position detection patterns (size 7), and two horizontal/vertical
// separation patterns (size 1). Thus, 8 = 7 + 1.
for (size_t i = 8; i < matrix.getWidth() - 8; ++i) {
int bit = (i + 1) % 2;
// Horizontal line.
if (isEmpty(matrix.get(i, 6))) {
matrix.set(i, 6, (char)bit);
}
// Vertical line.
if (isEmpty(matrix.get(6, i))) {
matrix.set(6, i, (char)bit);
}
}
}
void MatrixUtil::embedDarkDotAtLeftBottomCorner(ByteMatrix& matrix)
{
if (matrix.get(8, matrix.getHeight() - 8) == 0) {
throw new WriterException();
}
matrix.set(8, matrix.getHeight() - 8, (char)1);
}
void MatrixUtil::embedHorizontalSeparationPattern(int xStart,
int yStart,
ByteMatrix& matrix)
{
for (int x = 0; x < 8; ++x) {
if (!isEmpty(matrix.get(xStart + x, yStart))) {
throw new WriterException();
}
matrix.set(xStart + x, yStart, (char)0);
}
}
void MatrixUtil::embedVerticalSeparationPattern(int xStart,
int yStart,
ByteMatrix& matrix)
{
for (int y = 0; y < 7; ++y) {
if (!isEmpty(matrix.get(xStart, yStart + y))) {
throw new WriterException();
}
matrix.set(xStart, yStart + y, (char)0);
}
}
void MatrixUtil::embedPositionAdjustmentPattern(int xStart, int yStart, ByteMatrix& matrix)
{
for (int y = 0; y < 5; ++y) {
for (int x = 0; x < 5; ++x) {
matrix.set(xStart + x, yStart + y, (char)POSITION_ADJUSTMENT_PATTERN[y][x]);
}
}
}
void MatrixUtil::embedPositionDetectionPattern(int xStart, int yStart, ByteMatrix& matrix)
{
for (int y = 0; y < 7; ++y) {
for (int x = 0; x < 7; ++x) {
matrix.set(xStart + x, yStart + y, (char)POSITION_DETECTION_PATTERN[y][x]);
}
}
}
void MatrixUtil::embedPositionDetectionPatternsAndSeparators(ByteMatrix& matrix)
{
// Embed three big squares at corners.
int pdpWidth = 7;//need to change this, old version: POSITION_DETECTION_PATTERN[0].length;
// Left top corner.
embedPositionDetectionPattern(0, 0, matrix);
// Right top corner.
embedPositionDetectionPattern(matrix.getWidth() - pdpWidth, 0, matrix);
// Left bottom corner.
embedPositionDetectionPattern(0, matrix.getWidth() - pdpWidth, matrix);
// Embed horizontal separation patterns around the squares.
int hspWidth = 8;
// Left top corner.
embedHorizontalSeparationPattern(0, hspWidth - 1, matrix);
// Right top corner.
embedHorizontalSeparationPattern(matrix.getWidth() - hspWidth,
hspWidth - 1, matrix);
// Left bottom corner.
embedHorizontalSeparationPattern(0, matrix.getWidth() - hspWidth, matrix);
// Embed vertical separation patterns around the squares.
int vspSize = 7;
// Left top corner.
embedVerticalSeparationPattern(vspSize, 0, matrix);
// Right top corner.
embedVerticalSeparationPattern(matrix.getHeight() - vspSize - 1, 0, matrix);
// Left bottom corner.
embedVerticalSeparationPattern(vspSize, matrix.getHeight() - vspSize,
matrix);
}
void MatrixUtil::maybeEmbedPositionAdjustmentPatterns(const Version& version, ByteMatrix& matrix)
{
if (version.getVersionNumber() < 2) { // The patterns appear if version >= 2
return;
}
int index = version.getVersionNumber() - 1;
const int *coordinates = POSITION_ADJUSTMENT_PATTERN_COORDINATE_TABLE[index];
int numCoordinates = 7; //POSITION_ADJUSTMENT_PATTERN_COORDINATE_TABLE[index].length; //need to change the constant 7
for (int i = 0; i < numCoordinates; ++i) {
for (int j = 0; j < numCoordinates; ++j) {
int y = coordinates[i];
int x = coordinates[j];
if (x == -1 || y == -1) {
continue;
}
// If the cell is unset, we embed the position adjustment pattern here.
if (isEmpty(matrix.get(x, y))) {
// -2 is necessary since the x/y coordinates point to the center of the pattern, not the
// left top corner.
embedPositionAdjustmentPattern(x - 2, y - 2, matrix);
}
}
}
}
}
}

View File

@ -1,482 +1,142 @@
///*
// * Copyright 2008 ZXing authors
// *
// * Licensed under the Apache License, Version 2.0 (the "License");
// * you may not use this file except in compliance with the License.
// * You may obtain a copy of the License at
// *
// * http://www.apache.org/licenses/LICENSE-2.0
// *
// * Unless required by applicable law or agreed to in writing, software
// * distributed under the License is distributed on an "AS IS" BASIS,
// * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// * See the License for the specific language governing permissions and
// * limitations under the License.
// */
#ifndef MATRIXUTIL_H
#define MATRIXUTIL_H
//package com.google.zxing.qrcode.encoder;
//import com.google.zxing.WriterException;
//import com.google.zxing.common.BitArray;
//import com.google.zxing.qrcode.decoder.ErrorCorrectionLevel;
//import com.google.zxing.qrcode.decoder.Version;
///**
// * @author satorux@google.com (Satoru Takabayashi) - creator
// * @author dswitkin@google.com (Daniel Switkin) - ported from C++
// */
//final class MatrixUtil {
#include "ByteMatrix.h"
#include <zxing/common/BitArray.h>
#include <zxing/qrcode/ErrorCorrectionLevel.h>
#include <zxing/qrcode/Version.h>
// private MatrixUtil() {
// // do nothing
// }
namespace zxing {
namespace qrcode {
// private static final int[][] POSITION_DETECTION_PATTERN = {
// {1, 1, 1, 1, 1, 1, 1},
// {1, 0, 0, 0, 0, 0, 1},
// {1, 0, 1, 1, 1, 0, 1},
// {1, 0, 1, 1, 1, 0, 1},
// {1, 0, 1, 1, 1, 0, 1},
// {1, 0, 0, 0, 0, 0, 1},
// {1, 1, 1, 1, 1, 1, 1},
// };
class MatrixUtil {
// private static final int[][] POSITION_ADJUSTMENT_PATTERN = {
// {1, 1, 1, 1, 1},
// {1, 0, 0, 0, 1},
// {1, 0, 1, 0, 1},
// {1, 0, 0, 0, 1},
// {1, 1, 1, 1, 1},
// };
private:
MatrixUtil() {}
// // From Appendix E. Table 1, JIS0510X:2004 (p 71). The table was double-checked by komatsu.
// private static final int[][] POSITION_ADJUSTMENT_PATTERN_COORDINATE_TABLE = {
// {-1, -1, -1, -1, -1, -1, -1}, // Version 1
// { 6, 18, -1, -1, -1, -1, -1}, // Version 2
// { 6, 22, -1, -1, -1, -1, -1}, // Version 3
// { 6, 26, -1, -1, -1, -1, -1}, // Version 4
// { 6, 30, -1, -1, -1, -1, -1}, // Version 5
// { 6, 34, -1, -1, -1, -1, -1}, // Version 6
// { 6, 22, 38, -1, -1, -1, -1}, // Version 7
// { 6, 24, 42, -1, -1, -1, -1}, // Version 8
// { 6, 26, 46, -1, -1, -1, -1}, // Version 9
// { 6, 28, 50, -1, -1, -1, -1}, // Version 10
// { 6, 30, 54, -1, -1, -1, -1}, // Version 11
// { 6, 32, 58, -1, -1, -1, -1}, // Version 12
// { 6, 34, 62, -1, -1, -1, -1}, // Version 13
// { 6, 26, 46, 66, -1, -1, -1}, // Version 14
// { 6, 26, 48, 70, -1, -1, -1}, // Version 15
// { 6, 26, 50, 74, -1, -1, -1}, // Version 16
// { 6, 30, 54, 78, -1, -1, -1}, // Version 17
// { 6, 30, 56, 82, -1, -1, -1}, // Version 18
// { 6, 30, 58, 86, -1, -1, -1}, // Version 19
// { 6, 34, 62, 90, -1, -1, -1}, // Version 20
// { 6, 28, 50, 72, 94, -1, -1}, // Version 21
// { 6, 26, 50, 74, 98, -1, -1}, // Version 22
// { 6, 30, 54, 78, 102, -1, -1}, // Version 23
// { 6, 28, 54, 80, 106, -1, -1}, // Version 24
// { 6, 32, 58, 84, 110, -1, -1}, // Version 25
// { 6, 30, 58, 86, 114, -1, -1}, // Version 26
// { 6, 34, 62, 90, 118, -1, -1}, // Version 27
// { 6, 26, 50, 74, 98, 122, -1}, // Version 28
// { 6, 30, 54, 78, 102, 126, -1}, // Version 29
// { 6, 26, 52, 78, 104, 130, -1}, // Version 30
// { 6, 30, 56, 82, 108, 134, -1}, // Version 31
// { 6, 34, 60, 86, 112, 138, -1}, // Version 32
// { 6, 30, 58, 86, 114, 142, -1}, // Version 33
// { 6, 34, 62, 90, 118, 146, -1}, // Version 34
// { 6, 30, 54, 78, 102, 126, 150}, // Version 35
// { 6, 24, 50, 76, 102, 128, 154}, // Version 36
// { 6, 28, 54, 80, 106, 132, 158}, // Version 37
// { 6, 32, 58, 84, 110, 136, 162}, // Version 38
// { 6, 26, 54, 82, 110, 138, 166}, // Version 39
// { 6, 30, 58, 86, 114, 142, 170}, // Version 40
// };
static const int POSITION_DETECTION_PATTERN[7][7];
static const int POSITION_ADJUSTMENT_PATTERN[5][5];
static const int POSITION_ADJUSTMENT_PATTERN_COORDINATE_TABLE[40][7];
static const int TYPE_INFO_COORDINATES[16][2];
static const int VERSION_INFO_POLY;
static const int TYPE_INFO_POLY;
static const int TYPE_INFO_MASK_PATTERN;
// // Type info cells at the left top corner.
// private static final int[][] TYPE_INFO_COORDINATES = {
// {8, 0},
// {8, 1},
// {8, 2},
// {8, 3},
// {8, 4},
// {8, 5},
// {8, 7},
// {8, 8},
// {7, 8},
// {5, 8},
// {4, 8},
// {3, 8},
// {2, 8},
// {1, 8},
// {0, 8},
// };
// Set all cells to -1. -1 means that the cell is empty (not set yet).
static void clearMatrix(ByteMatrix& matrix) {
matrix.clear((byte) -1);
}
// // From Appendix D in JISX0510:2004 (p. 67)
// private static final int VERSION_INFO_POLY = 0x1f25; // 1 1111 0010 0101
// Build 2D matrix of QR Code from "dataBits" with "ecLevel", "version" and "getMaskPattern". On
// success, store the result in "matrix" and return true.
static void buildMatrix(const BitArray& dataBits,
ErrorCorrectionLevel& ecLevel,
Version& version,
int maskPattern,
ByteMatrix& matrix);
// // From Appendix C in JISX0510:2004 (p.65).
// private static final int TYPE_INFO_POLY = 0x537;
// private static final int TYPE_INFO_MASK_PATTERN = 0x5412;
// Embed basic patterns. On success, modify the matrix and return true.
// The basic patterns are:
// - Position detection patterns
// - Timing patterns
// - Dark dot at the left bottom corner
// - Position adjustment patterns, if need be
static void embedBasicPatterns(const Version& version, ByteMatrix& matrix);
// // Set all cells to -1. -1 means that the cell is empty (not set yet).
// //
// // JAVAPORT: We shouldn't need to do this at all. The code should be rewritten to begin encoding
// // with the ByteMatrix initialized all to zero.
// static void clearMatrix(ByteMatrix matrix) {
// matrix.clear((byte) -1);
// }
// Embed type information. On success, modify the matrix.
static void embedTypeInfo(const ErrorCorrectionLevel& ecLevel, int maskPattern, ByteMatrix& matrix);
// // Build 2D matrix of QR Code from "dataBits" with "ecLevel", "version" and "getMaskPattern". On
// // success, store the result in "matrix" and return true.
// static void buildMatrix(BitArray dataBits,
// ErrorCorrectionLevel ecLevel,
// Version version,
// int maskPattern,
// ByteMatrix matrix) throws WriterException {
// clearMatrix(matrix);
// embedBasicPatterns(version, matrix);
// // Type information appear with any version.
// embedTypeInfo(ecLevel, maskPattern, matrix);
// // Version info appear if version >= 7.
// maybeEmbedVersionInfo(version, matrix);
// // Data should be embedded at end.
// embedDataBits(dataBits, maskPattern, matrix);
// }
// Embed version information if need be. On success, modify the matrix and return true.
// See 8.10 of JISX0510:2004 (p.47) for how to embed version information.
static void maybeEmbedVersionInfo(const Version& version, ByteMatrix& matrix);
// // Embed basic patterns. On success, modify the matrix and return true.
// // The basic patterns are:
// // - Position detection patterns
// // - Timing patterns
// // - Dark dot at the left bottom corner
// // - Position adjustment patterns, if need be
// static void embedBasicPatterns(Version version, ByteMatrix matrix) throws WriterException {
// // Let's get started with embedding big squares at corners.
// embedPositionDetectionPatternsAndSeparators(matrix);
// // Then, embed the dark dot at the left bottom corner.
// embedDarkDotAtLeftBottomCorner(matrix);
// Embed "dataBits" using "getMaskPattern". On success, modify the matrix and return true.
// For debugging purposes, it skips masking process if "getMaskPattern" is -1.
// See 8.7 of JISX0510:2004 (p.38) for how to embed data bits.
static void embedDataBits(const BitArray& dataBits, int maskPattern, ByteMatrix& matrix);
// // Position adjustment patterns appear if version >= 2.
// maybeEmbedPositionAdjustmentPatterns(version, matrix);
// // Timing patterns should be embedded after position adj. patterns.
// embedTimingPatterns(matrix);
// }
// Return the position of the most significant bit set (to one) in the "value". The most
// significant bit is position 32. If there is no bit set, return 0. Examples:
// - findMSBSet(0) => 0
// - findMSBSet(1) => 1
// - findMSBSet(255) => 8
static int findMSBSet(int value);
// // Embed type information. On success, modify the matrix.
// static void embedTypeInfo(ErrorCorrectionLevel ecLevel, int maskPattern, ByteMatrix matrix)
// throws WriterException {
// BitArray typeInfoBits = new BitArray();
// makeTypeInfoBits(ecLevel, maskPattern, typeInfoBits);
// Calculate BCH (Bose-Chaudhuri-Hocquenghem) code for "value" using polynomial "poly". The BCH
// code is used for encoding type information and version information.
// Example: Calculation of version information of 7.
// f(x) is created from 7.
// - 7 = 000111 in 6 bits
// - f(x) = x^2 + x^1 + x^0
// g(x) is given by the standard (p. 67)
// - g(x) = x^12 + x^11 + x^10 + x^9 + x^8 + x^5 + x^2 + 1
// Multiply f(x) by x^(18 - 6)
// - f'(x) = f(x) * x^(18 - 6)
// - f'(x) = x^14 + x^13 + x^12
// Calculate the remainder of f'(x) / g(x)
// x^2
// __________________________________________________
// g(x) )x^14 + x^13 + x^12
// x^14 + x^13 + x^12 + x^11 + x^10 + x^7 + x^4 + x^2
// --------------------------------------------------
// x^11 + x^10 + x^7 + x^4 + x^2
//
// The remainder is x^11 + x^10 + x^7 + x^4 + x^2
// Encode it in binary: 110010010100
// The return value is 0xc94 (1100 1001 0100)
//
// Since all coefficients in the polynomials are 1 or 0, we can do the calculation by bit
// operations. We don't care if cofficients are positive or negative.
static int calculateBCHCode(int value, int poly);
// for (int i = 0; i < typeInfoBits.getSize(); ++i) {
// // Place bits in LSB to MSB order. LSB (least significant bit) is the last value in
// // "typeInfoBits".
// boolean bit = typeInfoBits.get(typeInfoBits.getSize() - 1 - i);
// Make bit vector of type information. On success, store the result in "bits" and return true.
// Encode error correction level and mask pattern. See 8.9 of
// JISX0510:2004 (p.45) for details.
static void makeTypeInfoBits(const ErrorCorrectionLevel& ecLevel, int maskPattern, BitArray& bits);
// // Type info bits at the left top corner. See 8.9 of JISX0510:2004 (p.46).
// int x1 = TYPE_INFO_COORDINATES[i][0];
// int y1 = TYPE_INFO_COORDINATES[i][1];
// matrix.set(x1, y1, bit);
// Make bit vector of version information. On success, store the result in "bits" and return true.
// See 8.10 of JISX0510:2004 (p.45) for details.
static void makeVersionInfoBits(const Version& version, BitArray& bits);
// if (i < 8) {
// // Right top corner.
// int x2 = matrix.getWidth() - i - 1;
// int y2 = 8;
// matrix.set(x2, y2, bit);
// } else {
// // Left bottom corner.
// int x2 = 8;
// int y2 = matrix.getHeight() - 7 + (i - 8);
// matrix.set(x2, y2, bit);
// }
// }
// }
private:
// Check if "value" is empty.
static bool isEmpty(int value) { return value == -1; }
// // Embed version information if need be. On success, modify the matrix and return true.
// // See 8.10 of JISX0510:2004 (p.47) for how to embed version information.
// static void maybeEmbedVersionInfo(Version version, ByteMatrix matrix) throws WriterException {
// if (version.getVersionNumber() < 7) { // Version info is necessary if version >= 7.
// return; // Don't need version info.
// }
// BitArray versionInfoBits = new BitArray();
// makeVersionInfoBits(version, versionInfoBits);
static void embedTimingPatterns(ByteMatrix& matrix);
// int bitIndex = 6 * 3 - 1; // It will decrease from 17 to 0.
// for (int i = 0; i < 6; ++i) {
// for (int j = 0; j < 3; ++j) {
// // Place bits in LSB (least significant bit) to MSB order.
// boolean bit = versionInfoBits.get(bitIndex);
// bitIndex--;
// // Left bottom corner.
// matrix.set(i, matrix.getHeight() - 11 + j, bit);
// // Right bottom corner.
// matrix.set(matrix.getHeight() - 11 + j, i, bit);
// }
// }
// }
// Embed the lonely dark dot at left bottom corner. JISX0510:2004 (p.46)
static void embedDarkDotAtLeftBottomCorner(ByteMatrix& matrix);
// // Embed "dataBits" using "getMaskPattern". On success, modify the matrix and return true.
// // For debugging purposes, it skips masking process if "getMaskPattern" is -1.
// // See 8.7 of JISX0510:2004 (p.38) for how to embed data bits.
// static void embedDataBits(BitArray dataBits, int maskPattern, ByteMatrix matrix)
// throws WriterException {
// int bitIndex = 0;
// int direction = -1;
// // Start from the right bottom cell.
// int x = matrix.getWidth() - 1;
// int y = matrix.getHeight() - 1;
// while (x > 0) {
// // Skip the vertical timing pattern.
// if (x == 6) {
// x -= 1;
// }
// while (y >= 0 && y < matrix.getHeight()) {
// for (int i = 0; i < 2; ++i) {
// int xx = x - i;
// // Skip the cell if it's not empty.
// if (!isEmpty(matrix.get(xx, y))) {
// continue;
// }
// boolean bit;
// if (bitIndex < dataBits.getSize()) {
// bit = dataBits.get(bitIndex);
// ++bitIndex;
// } else {
// // Padding bit. If there is no bit left, we'll fill the left cells with 0, as described
// // in 8.4.9 of JISX0510:2004 (p. 24).
// bit = false;
// }
static void embedHorizontalSeparationPattern(int xStart,
int yStart,
ByteMatrix& matrix);
// // Skip masking if mask_pattern is -1.
// if (maskPattern != -1 && MaskUtil.getDataMaskBit(maskPattern, xx, y)) {
// bit = !bit;
// }
// matrix.set(xx, y, bit);
// }
// y += direction;
// }
// direction = -direction; // Reverse the direction.
// y += direction;
// x -= 2; // Move to the left.
// }
// // All bits should be consumed.
// if (bitIndex != dataBits.getSize()) {
// throw new WriterException("Not all bits consumed: " + bitIndex + '/' + dataBits.getSize());
// }
// }
static void embedVerticalSeparationPattern(int xStart,
int yStart,
ByteMatrix& matrix);
// // Return the position of the most significant bit set (to one) in the "value". The most
// // significant bit is position 32. If there is no bit set, return 0. Examples:
// // - findMSBSet(0) => 0
// // - findMSBSet(1) => 1
// // - findMSBSet(255) => 8
// static int findMSBSet(int value) {
// int numDigits = 0;
// while (value != 0) {
// value >>>= 1;
// ++numDigits;
// }
// return numDigits;
// }
// Note that we cannot unify the function with embedPositionDetectionPattern() despite they are
// almost identical, since we cannot write a function that takes 2D arrays in different sizes in
// C/C++. We should live with the fact.
static void embedPositionAdjustmentPattern(int xStart, int yStart, ByteMatrix& matrix);
// // Calculate BCH (Bose-Chaudhuri-Hocquenghem) code for "value" using polynomial "poly". The BCH
// // code is used for encoding type information and version information.
// // Example: Calculation of version information of 7.
// // f(x) is created from 7.
// // - 7 = 000111 in 6 bits
// // - f(x) = x^2 + x^1 + x^0
// // g(x) is given by the standard (p. 67)
// // - g(x) = x^12 + x^11 + x^10 + x^9 + x^8 + x^5 + x^2 + 1
// // Multiply f(x) by x^(18 - 6)
// // - f'(x) = f(x) * x^(18 - 6)
// // - f'(x) = x^14 + x^13 + x^12
// // Calculate the remainder of f'(x) / g(x)
// // x^2
// // __________________________________________________
// // g(x) )x^14 + x^13 + x^12
// // x^14 + x^13 + x^12 + x^11 + x^10 + x^7 + x^4 + x^2
// // --------------------------------------------------
// // x^11 + x^10 + x^7 + x^4 + x^2
// //
// // The remainder is x^11 + x^10 + x^7 + x^4 + x^2
// // Encode it in binary: 110010010100
// // The return value is 0xc94 (1100 1001 0100)
// //
// // Since all coefficients in the polynomials are 1 or 0, we can do the calculation by bit
// // operations. We don't care if cofficients are positive or negative.
// static int calculateBCHCode(int value, int poly) {
// // If poly is "1 1111 0010 0101" (version info poly), msbSetInPoly is 13. We'll subtract 1
// // from 13 to make it 12.
// int msbSetInPoly = findMSBSet(poly);
// value <<= msbSetInPoly - 1;
// // Do the division business using exclusive-or operations.
// while (findMSBSet(value) >= msbSetInPoly) {
// value ^= poly << (findMSBSet(value) - msbSetInPoly);
// }
// // Now the "value" is the remainder (i.e. the BCH code)
// return value;
// }
static void embedPositionDetectionPattern(int xStart, int yStart, ByteMatrix& matrix);
// // Make bit vector of type information. On success, store the result in "bits" and return true.
// // Encode error correction level and mask pattern. See 8.9 of
// // JISX0510:2004 (p.45) for details.
// static void makeTypeInfoBits(ErrorCorrectionLevel ecLevel, int maskPattern, BitArray bits)
// throws WriterException {
// if (!QRCode.isValidMaskPattern(maskPattern)) {
// throw new WriterException("Invalid mask pattern");
// }
// int typeInfo = (ecLevel.getBits() << 3) | maskPattern;
// bits.appendBits(typeInfo, 5);
// Embed position detection patterns and surrounding vertical/horizontal separators.
static void embedPositionDetectionPatternsAndSeparators(ByteMatrix& matrix);
// int bchCode = calculateBCHCode(typeInfo, TYPE_INFO_POLY);
// bits.appendBits(bchCode, 10);
// Embed position adjustment patterns if need be.
static void maybeEmbedPositionAdjustmentPatterns(const Version& version, ByteMatrix& matrix);
// BitArray maskBits = new BitArray();
// maskBits.appendBits(TYPE_INFO_MASK_PATTERN, 15);
// bits.xor(maskBits);
};
// if (bits.getSize() != 15) { // Just in case.
// throw new WriterException("should not happen but we got: " + bits.getSize());
// }
// }
}
}
// // Make bit vector of version information. On success, store the result in "bits" and return true.
// // See 8.10 of JISX0510:2004 (p.45) for details.
// static void makeVersionInfoBits(Version version, BitArray bits) throws WriterException {
// bits.appendBits(version.getVersionNumber(), 6);
// int bchCode = calculateBCHCode(version.getVersionNumber(), VERSION_INFO_POLY);
// bits.appendBits(bchCode, 12);
// if (bits.getSize() != 18) { // Just in case.
// throw new WriterException("should not happen but we got: " + bits.getSize());
// }
// }
// // Check if "value" is empty.
// private static boolean isEmpty(int value) {
// return value == -1;
// }
// private static void embedTimingPatterns(ByteMatrix matrix) {
// // -8 is for skipping position detection patterns (size 7), and two horizontal/vertical
// // separation patterns (size 1). Thus, 8 = 7 + 1.
// for (int i = 8; i < matrix.getWidth() - 8; ++i) {
// int bit = (i + 1) % 2;
// // Horizontal line.
// if (isEmpty(matrix.get(i, 6))) {
// matrix.set(i, 6, bit);
// }
// // Vertical line.
// if (isEmpty(matrix.get(6, i))) {
// matrix.set(6, i, bit);
// }
// }
// }
// // Embed the lonely dark dot at left bottom corner. JISX0510:2004 (p.46)
// private static void embedDarkDotAtLeftBottomCorner(ByteMatrix matrix) throws WriterException {
// if (matrix.get(8, matrix.getHeight() - 8) == 0) {
// throw new WriterException();
// }
// matrix.set(8, matrix.getHeight() - 8, 1);
// }
// private static void embedHorizontalSeparationPattern(int xStart,
// int yStart,
// ByteMatrix matrix) throws WriterException {
// for (int x = 0; x < 8; ++x) {
// if (!isEmpty(matrix.get(xStart + x, yStart))) {
// throw new WriterException();
// }
// matrix.set(xStart + x, yStart, 0);
// }
// }
// private static void embedVerticalSeparationPattern(int xStart,
// int yStart,
// ByteMatrix matrix) throws WriterException {
// for (int y = 0; y < 7; ++y) {
// if (!isEmpty(matrix.get(xStart, yStart + y))) {
// throw new WriterException();
// }
// matrix.set(xStart, yStart + y, 0);
// }
// }
// // Note that we cannot unify the function with embedPositionDetectionPattern() despite they are
// // almost identical, since we cannot write a function that takes 2D arrays in different sizes in
// // C/C++. We should live with the fact.
// private static void embedPositionAdjustmentPattern(int xStart, int yStart, ByteMatrix matrix) {
// for (int y = 0; y < 5; ++y) {
// for (int x = 0; x < 5; ++x) {
// matrix.set(xStart + x, yStart + y, POSITION_ADJUSTMENT_PATTERN[y][x]);
// }
// }
// }
// private static void embedPositionDetectionPattern(int xStart, int yStart, ByteMatrix matrix) {
// for (int y = 0; y < 7; ++y) {
// for (int x = 0; x < 7; ++x) {
// matrix.set(xStart + x, yStart + y, POSITION_DETECTION_PATTERN[y][x]);
// }
// }
// }
// // Embed position detection patterns and surrounding vertical/horizontal separators.
// private static void embedPositionDetectionPatternsAndSeparators(ByteMatrix matrix) throws WriterException {
// // Embed three big squares at corners.
// int pdpWidth = POSITION_DETECTION_PATTERN[0].length;
// // Left top corner.
// embedPositionDetectionPattern(0, 0, matrix);
// // Right top corner.
// embedPositionDetectionPattern(matrix.getWidth() - pdpWidth, 0, matrix);
// // Left bottom corner.
// embedPositionDetectionPattern(0, matrix.getWidth() - pdpWidth, matrix);
// // Embed horizontal separation patterns around the squares.
// int hspWidth = 8;
// // Left top corner.
// embedHorizontalSeparationPattern(0, hspWidth - 1, matrix);
// // Right top corner.
// embedHorizontalSeparationPattern(matrix.getWidth() - hspWidth,
// hspWidth - 1, matrix);
// // Left bottom corner.
// embedHorizontalSeparationPattern(0, matrix.getWidth() - hspWidth, matrix);
// // Embed vertical separation patterns around the squares.
// int vspSize = 7;
// // Left top corner.
// embedVerticalSeparationPattern(vspSize, 0, matrix);
// // Right top corner.
// embedVerticalSeparationPattern(matrix.getHeight() - vspSize - 1, 0, matrix);
// // Left bottom corner.
// embedVerticalSeparationPattern(vspSize, matrix.getHeight() - vspSize,
// matrix);
// }
// // Embed position adjustment patterns if need be.
// private static void maybeEmbedPositionAdjustmentPatterns(Version version, ByteMatrix matrix) {
// if (version.getVersionNumber() < 2) { // The patterns appear if version >= 2
// return;
// }
// int index = version.getVersionNumber() - 1;
// int[] coordinates = POSITION_ADJUSTMENT_PATTERN_COORDINATE_TABLE[index];
// int numCoordinates = POSITION_ADJUSTMENT_PATTERN_COORDINATE_TABLE[index].length;
// for (int i = 0; i < numCoordinates; ++i) {
// for (int j = 0; j < numCoordinates; ++j) {
// int y = coordinates[i];
// int x = coordinates[j];
// if (x == -1 || y == -1) {
// continue;
// }
// // If the cell is unset, we embed the position adjustment pattern here.
// if (isEmpty(matrix.get(x, y))) {
// // -2 is necessary since the x/y coordinates point to the center of the pattern, not the
// // left top corner.
// embedPositionAdjustmentPattern(x - 2, y - 2, matrix);
// }
// }
// }
// }
//}
#endif //MATRIXUTIL_H