I found that if QR-Code was generated with non standard charSet (and the message language is not English) than decoded QString contains wrong characters. So we must use QTextCodec to make it readable.

Now tagFound signal emits decoded string. If you want to know  what code was detected and what charSet is used, use tagFoundAdvanced(QString tag, QString format, QString charSet) signal or functions foundedFormat() and charSet().
This commit is contained in:
Alexxey593 2015-06-11 10:36:08 +03:00
parent 13720010fc
commit 4df9512790
11 changed files with 446 additions and 346 deletions

View File

@ -114,7 +114,7 @@ ArrayRef<char> CameraImageWrapper::getMatrix() const
ArrayRef<char> tmpRow;
tmpRow = getRow(y, ArrayRef<char>(width));
#if __cplusplus > 199711L
memcpy(m, tmpRow->values()..data(), width);
memcpy(m, tmpRow->values().data(), width);
#else
memcpy(m, &tmpRow->values()[0], width);
#endif

View File

@ -28,9 +28,9 @@ class ImageHandler;
*/
class
#ifndef DISABLE_LIBRARY_FEATURES
QZXINGSHARED_EXPORT
QZXINGSHARED_EXPORT
#endif
QZXing : public QObject{
QZXing : public QObject {
Q_OBJECT
Q_ENUMS(DecoderFormat)
@ -75,6 +75,10 @@ public:
}
#endif
QString decoderFormatToString(int fmt);
QString foundedFormat() const;
QString charSet() const;
public slots:
/**
* The decoding function. Will try to decode the given image based on the enabled decoders.
@ -85,13 +89,13 @@ public slots:
* The smoothTransformation flag determines whether the transformation will be smooth or fast.
* Smooth transformation provides better results but fast transformation is...faster.
*/
QString decodeImage(QImage &image, int maxWidth=-1, int maxHeight=-1, bool smoothTransformation = false);
QString decodeImage(QImage &image, int maxWidth = -1, int maxHeight = -1, bool smoothTransformation = false);
/**
* The decoding function. Will try to decode the given image based on the enabled decoders.
* The input image is read from a local image file.
*/
QString decodeImageFromFile(QString imageFilePath, int maxWidth=-1, int maxHeight=-1, bool smoothTransformation = false);
QString decodeImageFromFile(QString imageFilePath, int maxWidth = -1, int maxHeight = -1, bool smoothTransformation = false);
/**
* The decoding function accessible from QML. (Suggested for Qt 4.x)
@ -102,7 +106,7 @@ public slots:
* The decoding function accessible from QML. Able to set the decoding
* of a portion of the image. (Suggested for Qt 4.x)
*/
QString decodeSubImageQML(QObject* item,
QString decodeSubImageQML(QObject *item,
const double offsetX = 0 , const double offsetY = 0,
const double width = 0, const double height = 0);
@ -123,6 +127,7 @@ public slots:
QString decodeSubImageQML(const QUrl &imageUrl,
const double offsetX = 0, const double offsetY = 0,
const double width = 0, const double height = 0);
/**
* Get the prossecing time in millisecond of the last decode operation.
* Added mainly as a statistic measure.
@ -140,7 +145,7 @@ public slots:
* As argument it is possible to pass conjuction of decoders by using logic OR.
* e.x. setDecoder ( DecoderFormat_QR_CODE | DecoderFormat_EAN_13 | DecoderFormat_CODE_39 )
*/
void setDecoder(const uint& hint);
void setDecoder(const uint &hint);
signals:
void decodingStarted();
@ -149,10 +154,12 @@ signals:
void enabledFormatsChanged();
private:
zxing::MultiFormatReader* decoder;
zxing::MultiFormatReader *decoder;
DecoderFormatType enabledDecoders;
ImageHandler* imageHandler;
ImageHandler *imageHandler;
int processingTime;
QString foundedFmt;
QString charSet_;
/**
* If true, the decoding operation will take place at a different thread.

View File

@ -16,7 +16,7 @@ QImage ImageHandler::extractQImage(QObject *imageObj,
{
QGraphicsObject *item = qobject_cast<QGraphicsObject*>(imageObj);
if (!item ) {
if (!item) {
qDebug() << "Item is NULL";
return QImage();
}

View File

@ -44,6 +44,73 @@ QZXing::QZXing(QZXing::DecoderFormat decodeHints, QObject *parent) : QObject(par
setDecoder(decodeHints);
}
QString QZXing::decoderFormatToString(int fmt)
{
switch (fmt) {
case 1:
return "AZTEC";
case 2:
return "CODABAR";
case 3:
return "CODE_39";
case 4:
return "CODE_93";
case 5:
return "CODE_128";
case 6:
return "DATA_MATRIX";
case 7:
return "EAN_8";
case 8:
return "EAN_13";
case 9:
return "ITF";
case 10:
return "MAXICODE";
case 11:
return "PDF_417";
case 12:
return "QR_CODE";
case 13:
return "RSS_14";
case 14:
return "RSS_EXPANDED";
case 15:
return "UPC_A";
case 16:
return "UPC_E";
case 17:
return "UPC_EAN_EXTENSION";
} // switch
return QString();
}
QString QZXing::foundedFormat() const
{
return foundedFmt;
}
QString QZXing::charSet() const
{
return charSet_;
}
void QZXing::setDecoder(const uint &hint)
{
unsigned int newHints = 0;
@ -113,50 +180,59 @@ QString QZXing::decodeImage(QImage &image, int maxWidth, int maxHeight, bool smo
if(image.isNull())
{
qDebug() << "Image Null";
qDebug() << "Image is Null";
emit decodingFinished(false);
processingTime = -1;
processingTime = t.elapsed();
return "";
}
CameraImageWrapper* ciw;
try{
if(maxWidth > 0 || maxHeight > 0)
CameraImageWrapper *ciw = NULL;
try {
if ((maxWidth > 0) || (maxHeight > 0))
ciw = CameraImageWrapper::Factory(image, maxWidth, maxHeight, smoothTransformation);
else
ciw = new CameraImageWrapper(image);
Ref<LuminanceSource> imageRef(ciw);
GlobalHistogramBinarizer* binz = new GlobalHistogramBinarizer(imageRef);
GlobalHistogramBinarizer *binz = new GlobalHistogramBinarizer(imageRef);
Ref<Binarizer> bz (binz);
BinaryBitmap* bb = new BinaryBitmap(bz);
Ref<Binarizer> bz(binz);
BinaryBitmap *bb = new BinaryBitmap(bz);
Ref<BinaryBitmap> ref(bb);
res = decoder->decode(ref, DecodeHints((int)enabledDecoders));
QString string = QString(res->getText()->getText().c_str());
if (!string.isEmpty() && (string.length() > 0)) {
int fmt = res->getBarcodeFormat().value;
foundedFmt = decoderFormatToString(fmt);
charSet_ = QString::fromStdString(res->getCharSet());
if (!charSet_.isEmpty()) {
QTextCodec *codec = QTextCodec::codecForName(res->getCharSet().c_str());
if (codec)
string = codec->toUnicode(res->getText()->getText().c_str());
}
emit tagFound(string);
emit tagFoundAdvanced(string, foundedFmt, charSet_);
}
processingTime = t.elapsed();
qDebug() << "Deconding succeeded: " << string;
emit tagFound(string);
emit decodingFinished(true);
return string;
}
catch(zxing::Exception& /*e*/)
catch(zxing::Exception &e)
{
qDebug() << "Deconding failed";
emit error(QString(e.what()));
emit decodingFinished(false);
processingTime = -1;
processingTime = t.elapsed();
return "";
}
}
QString QZXing::decodeImageFromFile(QString imageFilePath, int maxWidth, int maxHeight, bool smoothTransformation)
{
//used to have a check if this image exists
//but was removed because if the image file path doesn't point to a valid image
// used to have a check if this image exists
// but was removed because if the image file path doesn't point to a valid image
// then the QImage::isNull will return true and the decoding will fail eitherway.
QImage tmpImage = QImage(imageFilePath);
return decodeImage(tmpImage, maxWidth, maxHeight, smoothTransformation);
@ -167,12 +243,13 @@ QString QZXing::decodeImageQML(QObject *item)
return decodeSubImageQML(item);
}
QString QZXing::decodeSubImageQML(QObject* item,
QString QZXing::decodeSubImageQML(QObject *item,
const double offsetX, const double offsetY,
const double width, const double height)
{
if(item == NULL)
{
processingTime = 0;
emit decodingFinished(false);
return "";
}
@ -186,6 +263,7 @@ QString QZXing::decodeImageQML(const QUrl &imageUrl)
{
return decodeSubImageQML(imageUrl);
}
QString QZXing::decodeSubImageQML(const QUrl &imageUrl,
const double offsetX, const double offsetY,
const double width, const double height)
@ -214,7 +292,3 @@ uint QZXing::getEnabledFormats() const
{
return enabledDecoders;
}

View File

@ -33,8 +33,8 @@ using zxing::BarcodeFormat;
Result::Result(Ref<String> text,
ArrayRef<char> rawBytes,
ArrayRef< Ref<ResultPoint> > resultPoints,
BarcodeFormat format) :
text_(text), rawBytes_(rawBytes), resultPoints_(resultPoints), format_(format) {
BarcodeFormat format, std::string charSet) :
text_(text), rawBytes_(rawBytes), resultPoints_(resultPoints), format_(format), charSet_(charSet) {
}
Result::~Result() {
@ -57,5 +57,10 @@ ArrayRef< Ref<ResultPoint> >& Result::getResultPoints() {
}
zxing::BarcodeFormat Result::getBarcodeFormat() const {
return format_;
return format_;
}
std::string Result::getCharSet() const
{
return charSet_;
}

View File

@ -35,18 +35,21 @@ private:
ArrayRef<char> rawBytes_;
ArrayRef< Ref<ResultPoint> > resultPoints_;
BarcodeFormat format_;
//NOTE: My
std::string charSet_;
public:
Result(Ref<String> text,
ArrayRef<char> rawBytes,
ArrayRef< Ref<ResultPoint> > resultPoints,
BarcodeFormat format);
BarcodeFormat format, std::string charSet = "");
~Result();
Ref<String> getText();
ArrayRef<char> getRawBytes();
ArrayRef< Ref<ResultPoint> > const& getResultPoints() const;
ArrayRef< Ref<ResultPoint> >& getResultPoints();
BarcodeFormat getBarcodeFormat() const;
std::string getCharSet() const;
friend std::ostream& operator<<(std::ostream &out, Result& result);
};

View File

@ -27,20 +27,25 @@ using namespace zxing;
DecoderResult::DecoderResult(ArrayRef<char> rawBytes,
Ref<String> text,
ArrayRef< ArrayRef<char> >& byteSegments,
string const& ecLevel) :
string const& ecLevel, string charSet) :
rawBytes_(rawBytes),
text_(text),
byteSegments_(byteSegments),
ecLevel_(ecLevel) {}
ecLevel_(ecLevel), charSet_(charSet) {}
DecoderResult::DecoderResult(ArrayRef<char> rawBytes,
Ref<String> text)
: rawBytes_(rawBytes), text_(text) {}
: rawBytes_(rawBytes), text_(text),charSet_("") {}
ArrayRef<char> DecoderResult::getRawBytes() {
return rawBytes_;
}
Ref<String> DecoderResult::getText() {
return text_;
return text_;
}
string DecoderResult::charSet()
{
return charSet_;
}

View File

@ -33,17 +33,21 @@ private:
Ref<String> text_;
ArrayRef< ArrayRef<char> > byteSegments_;
std::string ecLevel_;
std::string charSet_;
public:
DecoderResult(ArrayRef<char> rawBytes,
Ref<String> text,
ArrayRef< ArrayRef<char> >& byteSegments,
std::string const& ecLevel);
std::string const& ecLevel,
std::string charSet = "");
DecoderResult(ArrayRef<char> rawBytes, Ref<String> text);
ArrayRef<char> getRawBytes();
Ref<String> getText();
// NOTE: my
std::string charSet();
};
}

View File

@ -31,14 +31,14 @@ namespace zxing {
QRCodeReader::QRCodeReader() :decoder_() {
}
//TODO: see if any of the other files in the qrcode tree need tryHarder
//TODO : see if any of the other files in the qrcode tree need tryHarder
Ref<Result> QRCodeReader::decode(Ref<BinaryBitmap> image, DecodeHints hints) {
Detector detector(image->getBlackMatrix());
Ref<DetectorResult> detectorResult(detector.detect(hints));
ArrayRef< Ref<ResultPoint> > points (detectorResult->getPoints());
Ref<DecoderResult> decoderResult(decoder_.decode(detectorResult->getBits()));
Ref<Result> result(
new Result(decoderResult->getText(), decoderResult->getRawBytes(), points, BarcodeFormat::QR_CODE));
new Result(decoderResult->getText(), decoderResult->getRawBytes(), points, BarcodeFormat::QR_CODE, decoderResult->charSet()));
return result;
}

View File

@ -47,7 +47,7 @@ private:
static void decodeHanziSegment(Ref<BitSource> bits, std::string &result, int count);
static void decodeKanjiSegment(Ref<BitSource> bits, std::string &result, int count);
static void decodeByteSegment(Ref<BitSource> bits, std::string &result, int count);
static void decodeByteSegment(Ref<BitSource> bits_,
static std::string decodeByteSegment(Ref<BitSource> bits_,
std::string& result,
int count,
zxing::common::CharacterSetECI* currentCharacterSetECI,

View File

@ -28,7 +28,7 @@
#include <iconv.h>
#endif
// Required for compatibility. TODO: test on Symbian
// Required for compatibility. TODO : test on Symbian
#ifdef ZXING_ICONV_CONST
#undef ICONV_CONST
#define ICONV_CONST const
@ -46,18 +46,18 @@ using namespace zxing::qrcode;
using namespace zxing::common;
const char DecodedBitStreamParser::ALPHANUMERIC_CHARS[] =
{ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B',
'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', ' ', '$', '%', '*', '+', '-', '.', '/', ':'
};
{ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B',
'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', ' ', '$', '%', '*', '+', '-', '.', '/', ':'
};
namespace {int GB2312_SUBSET = 1;}
void DecodedBitStreamParser::append(std::string &result,
string const& in,
const char *src) {
append(result, (char const*)in.c_str(), in.length(), src);
append(result, (char const*)in.c_str(), in.length(), src);
}
void DecodedBitStreamParser::append(std::string &result,
@ -65,286 +65,288 @@ void DecodedBitStreamParser::append(std::string &result,
size_t nIn,
const char *src) {
#ifndef NO_ICONV
if (nIn == 0) {
return;
}
if (nIn == 0) {
return;
}
iconv_t cd = iconv_open(StringUtils::UTF8, src);
if (cd == (iconv_t)-1) {
result.append((const char *)bufIn, nIn);
return;
}
iconv_t cd = iconv_open(StringUtils::UTF8, src);
if (cd == (iconv_t)-1) {
result.append((const char *)bufIn, nIn);
return;
}
const int maxOut = 4 * nIn + 1;
char* bufOut = new char[maxOut];
const int maxOut = 4 * nIn + 1;
char* bufOut = new char[maxOut];
ICONV_CONST char *fromPtr = (ICONV_CONST char *)bufIn;
size_t nFrom = nIn;
char *toPtr = (char *)bufOut;
size_t nTo = maxOut;
ICONV_CONST char *fromPtr = (ICONV_CONST char *)bufIn;
size_t nFrom = nIn;
char *toPtr = (char *)bufOut;
size_t nTo = maxOut;
while (nFrom > 0) {
while (nFrom > 0) {
#if defined(Q_OS_SYMBIAN)
size_t oneway = iconv(cd,(const char**) &fromPtr, &nFrom, &toPtr, &nTo);
#else
size_t oneway = iconv(cd,(char**) &fromPtr, &nFrom, &toPtr, &nTo);
#endif
if (oneway == (size_t)(-1)) {
iconv_close(cd);
delete[] bufOut;
throw ReaderException("error converting characters");
if (oneway == (size_t)(-1)) {
iconv_close(cd);
delete[] bufOut;
throw ReaderException("error converting characters");
}
}
}
iconv_close(cd);
iconv_close(cd);
int nResult = maxOut - nTo;
bufOut[nResult] = '\0';
result.append((const char *)bufOut);
delete[] bufOut;
int nResult = maxOut - nTo;
bufOut[nResult] = '\0';
result.append((const char *)bufOut);
delete[] bufOut;
#else
result.append((const char *)bufIn, nIn);
Q_UNUSED(src);
result.append((const char *)bufIn, nIn);
#endif
}
void DecodedBitStreamParser::decodeHanziSegment(Ref<BitSource> bits_,
string& result,
int count) {
BitSource& bits (*bits_);
// Don't crash trying to read more bits than we have available.
if (count * 13 > bits.available()) {
throw FormatException();
}
// Each character will require 2 bytes. Read the characters as 2-byte pairs
// and decode as GB2312 afterwards
size_t nBytes = 2 * count;
char* buffer = new char[nBytes];
int offset = 0;
while (count > 0) {
// Each 13 bits encodes a 2-byte character
int twoBytes = bits.readBits(13);
int assembledTwoBytes = ((twoBytes / 0x060) << 8) | (twoBytes % 0x060);
if (assembledTwoBytes < 0x003BF) {
// In the 0xA1A1 to 0xAAFE range
assembledTwoBytes += 0x0A1A1;
} else {
// In the 0xB0A1 to 0xFAFE range
assembledTwoBytes += 0x0A6A1;
BitSource& bits (*bits_);
// Don't crash trying to read more bits than we have available.
if (count * 13 > bits.available()) {
throw FormatException();
}
// Each character will require 2 bytes. Read the characters as 2-byte pairs
// and decode as GB2312 afterwards
size_t nBytes = 2 * count;
char* buffer = new char[nBytes];
int offset = 0;
while (count > 0) {
// Each 13 bits encodes a 2-byte character
int twoBytes = bits.readBits(13);
int assembledTwoBytes = ((twoBytes / 0x060) << 8) | (twoBytes % 0x060);
if (assembledTwoBytes < 0x003BF) {
// In the 0xA1A1 to 0xAAFE range
assembledTwoBytes += 0x0A1A1;
} else {
// In the 0xB0A1 to 0xFAFE range
assembledTwoBytes += 0x0A6A1;
}
buffer[offset] = (char) ((assembledTwoBytes >> 8) & 0xFF);
buffer[offset + 1] = (char) (assembledTwoBytes & 0xFF);
offset += 2;
count--;
}
try {
append(result, buffer, nBytes, StringUtils::GB2312);
} catch (ReaderException const& ignored) {
(void)ignored;
delete [] buffer;
throw FormatException();
}
buffer[offset] = (char) ((assembledTwoBytes >> 8) & 0xFF);
buffer[offset + 1] = (char) (assembledTwoBytes & 0xFF);
offset += 2;
count--;
}
try {
append(result, buffer, nBytes, StringUtils::GB2312);
} catch (ReaderException const& ignored) {
(void)ignored;
delete [] buffer;
throw FormatException();
}
delete [] buffer;
}
void DecodedBitStreamParser::decodeKanjiSegment(Ref<BitSource> bits, std::string &result, int count) {
// Each character will require 2 bytes. Read the characters as 2-byte pairs
// and decode as Shift_JIS afterwards
size_t nBytes = 2 * count;
char* buffer = new char[nBytes];
int offset = 0;
while (count > 0) {
// Each 13 bits encodes a 2-byte character
// Each character will require 2 bytes. Read the characters as 2-byte pairs
// and decode as Shift_JIS afterwards
size_t nBytes = 2 * count;
char* buffer = new char[nBytes];
int offset = 0;
while (count > 0) {
// Each 13 bits encodes a 2-byte character
int twoBytes = bits->readBits(13);
int assembledTwoBytes = ((twoBytes / 0x0C0) << 8) | (twoBytes % 0x0C0);
if (assembledTwoBytes < 0x01F00) {
// In the 0x8140 to 0x9FFC range
assembledTwoBytes += 0x08140;
} else {
// In the 0xE040 to 0xEBBF range
assembledTwoBytes += 0x0C140;
int twoBytes = bits->readBits(13);
int assembledTwoBytes = ((twoBytes / 0x0C0) << 8) | (twoBytes % 0x0C0);
if (assembledTwoBytes < 0x01F00) {
// In the 0x8140 to 0x9FFC range
assembledTwoBytes += 0x08140;
} else {
// In the 0xE040 to 0xEBBF range
assembledTwoBytes += 0x0C140;
}
buffer[offset] = (char)(assembledTwoBytes >> 8);
buffer[offset + 1] = (char)assembledTwoBytes;
offset += 2;
count--;
}
buffer[offset] = (char)(assembledTwoBytes >> 8);
buffer[offset + 1] = (char)assembledTwoBytes;
offset += 2;
count--;
}
try {
append(result, buffer, nBytes, StringUtils::SHIFT_JIS);
} catch (ReaderException const& ignored) {
(void)ignored;
delete [] buffer;
throw FormatException();
}
delete[] buffer;
try {
append(result, buffer, nBytes, StringUtils::SHIFT_JIS);
} catch (ReaderException const& ignored) {
(void)ignored;
delete [] buffer;
throw FormatException();
}
delete[] buffer;
}
void DecodedBitStreamParser::decodeByteSegment(Ref<BitSource> bits_,
string& result,
int count,
CharacterSetECI* currentCharacterSetECI,
ArrayRef< ArrayRef<char> >& byteSegments,
Hashtable const& hints) {
int nBytes = count;
BitSource& bits (*bits_);
// Don't crash trying to read more bits than we have available.
if (count << 3 > bits.available()) {
throw FormatException();
}
std::string DecodedBitStreamParser::decodeByteSegment(Ref<BitSource> bits_,
string& result,
int count,
CharacterSetECI* currentCharacterSetECI,
ArrayRef< ArrayRef<char> >& byteSegments,
Hashtable const& hints) {
int nBytes = count;
BitSource& bits (*bits_);
// Don't crash trying to read more bits than we have available.
if (count << 3 > bits.available()) {
throw FormatException();
}
ArrayRef<char> bytes_ (count);
char* readBytes = &(*bytes_)[0];
for (int i = 0; i < count; i++) {
readBytes[i] = (char) bits.readBits(8);
}
string encoding;
if (currentCharacterSetECI == 0) {
// The spec isn't clear on this mode; see
// section 6.4.5: t does not say which encoding to assuming
// upon decoding. I have seen ISO-8859-1 used as well as
// Shift_JIS -- without anything like an ECI designator to
// give a hint.
encoding = StringUtils::guessEncoding(readBytes, count, hints);
} else {
encoding = currentCharacterSetECI->name();
}
try {
append(result, readBytes, nBytes, encoding.c_str());
} catch (ReaderException const& ignored) {
(void)ignored;
throw FormatException();
}
byteSegments->values().push_back(bytes_);
ArrayRef<char> bytes_ (count);
char* readBytes = &(*bytes_)[0];
for (int i = 0; i < count; i++) {
readBytes[i] = (char) bits.readBits(8);
}
string encoding;
if (currentCharacterSetECI == 0) {
// The spec isn't clear on this mode; see
// section 6.4.5: t does not say which encoding to assuming
// upon decoding. I have seen ISO-8859-1 used as well as
// Shift_JIS -- without anything like an ECI designator to
// give a hint.
encoding = StringUtils::guessEncoding(readBytes, count, hints);
} else {
encoding = currentCharacterSetECI->name();
}
try {
append(result, readBytes, nBytes, encoding.c_str());
} catch (ReaderException const& ignored) {
(void)ignored;
throw FormatException();
}
byteSegments->values().push_back(bytes_);
return encoding;
}
void DecodedBitStreamParser::decodeNumericSegment(Ref<BitSource> bits, std::string &result, int count) {
int nBytes = count;
char* bytes = new char[nBytes];
int i = 0;
// Read three digits at a time
while (count >= 3) {
// Each 10 bits encodes three digits
if (bits->available() < 10) {
throw ReaderException("format exception");
int nBytes = count;
char* bytes = new char[nBytes];
int i = 0;
// Read three digits at a time
while (count >= 3) {
// Each 10 bits encodes three digits
if (bits->available() < 10) {
throw ReaderException("format exception");
}
int threeDigitsBits = bits->readBits(10);
if (threeDigitsBits >= 1000) {
ostringstream s;
s << "Illegal value for 3-digit unit: " << threeDigitsBits;
delete[] bytes;
throw ReaderException(s.str().c_str());
}
bytes[i++] = ALPHANUMERIC_CHARS[threeDigitsBits / 100];
bytes[i++] = ALPHANUMERIC_CHARS[(threeDigitsBits / 10) % 10];
bytes[i++] = ALPHANUMERIC_CHARS[threeDigitsBits % 10];
count -= 3;
}
int threeDigitsBits = bits->readBits(10);
if (threeDigitsBits >= 1000) {
ostringstream s;
s << "Illegal value for 3-digit unit: " << threeDigitsBits;
delete[] bytes;
throw ReaderException(s.str().c_str());
if (count == 2) {
if (bits->available() < 7) {
throw ReaderException("format exception");
}
// Two digits left over to read, encoded in 7 bits
int twoDigitsBits = bits->readBits(7);
if (twoDigitsBits >= 100) {
ostringstream s;
s << "Illegal value for 2-digit unit: " << twoDigitsBits;
delete[] bytes;
throw ReaderException(s.str().c_str());
}
bytes[i++] = ALPHANUMERIC_CHARS[twoDigitsBits / 10];
bytes[i++] = ALPHANUMERIC_CHARS[twoDigitsBits % 10];
} else if (count == 1) {
if (bits->available() < 4) {
throw ReaderException("format exception");
}
// One digit left over to read
int digitBits = bits->readBits(4);
if (digitBits >= 10) {
ostringstream s;
s << "Illegal value for digit unit: " << digitBits;
delete[] bytes;
throw ReaderException(s.str().c_str());
}
bytes[i++] = ALPHANUMERIC_CHARS[digitBits];
}
bytes[i++] = ALPHANUMERIC_CHARS[threeDigitsBits / 100];
bytes[i++] = ALPHANUMERIC_CHARS[(threeDigitsBits / 10) % 10];
bytes[i++] = ALPHANUMERIC_CHARS[threeDigitsBits % 10];
count -= 3;
}
if (count == 2) {
if (bits->available() < 7) {
throw ReaderException("format exception");
}
// Two digits left over to read, encoded in 7 bits
int twoDigitsBits = bits->readBits(7);
if (twoDigitsBits >= 100) {
ostringstream s;
s << "Illegal value for 2-digit unit: " << twoDigitsBits;
delete[] bytes;
throw ReaderException(s.str().c_str());
}
bytes[i++] = ALPHANUMERIC_CHARS[twoDigitsBits / 10];
bytes[i++] = ALPHANUMERIC_CHARS[twoDigitsBits % 10];
} else if (count == 1) {
if (bits->available() < 4) {
throw ReaderException("format exception");
}
// One digit left over to read
int digitBits = bits->readBits(4);
if (digitBits >= 10) {
ostringstream s;
s << "Illegal value for digit unit: " << digitBits;
delete[] bytes;
throw ReaderException(s.str().c_str());
}
bytes[i++] = ALPHANUMERIC_CHARS[digitBits];
}
append(result, bytes, nBytes, StringUtils::ASCII);
delete[] bytes;
append(result, bytes, nBytes, StringUtils::ASCII);
delete[] bytes;
}
char DecodedBitStreamParser::toAlphaNumericChar(size_t value) {
if (value >= sizeof(DecodedBitStreamParser::ALPHANUMERIC_CHARS)) {
throw FormatException();
}
return ALPHANUMERIC_CHARS[value];
if (value >= sizeof(DecodedBitStreamParser::ALPHANUMERIC_CHARS)) {
throw FormatException();
}
return ALPHANUMERIC_CHARS[value];
}
void DecodedBitStreamParser::decodeAlphanumericSegment(Ref<BitSource> bits_,
string& result,
int count,
bool fc1InEffect) {
BitSource& bits (*bits_);
ostringstream bytes;
// Read two characters at a time
while (count > 1) {
if (bits.available() < 11) {
throw FormatException();
}
int nextTwoCharsBits = bits.readBits(11);
bytes << toAlphaNumericChar(nextTwoCharsBits / 45);
bytes << toAlphaNumericChar(nextTwoCharsBits % 45);
count -= 2;
}
if (count == 1) {
// special case: one character left
if (bits.available() < 6) {
throw FormatException();
}
bytes << toAlphaNumericChar(bits.readBits(6));
}
// See section 6.4.8.1, 6.4.8.2
string s = bytes.str();
if (fc1InEffect) {
// We need to massage the result a bit if in an FNC1 mode:
ostringstream r;
for (size_t i = 0; i < s.length(); i++) {
if (s[i] != '%') {
r << s[i];
} else {
if (i < s.length() - 1 && s[i + 1] == '%') {
// %% is rendered as %
r << s[i++];
} else {
// In alpha mode, % should be converted to FNC1 separator 0x1D
r << (char)0x1D;
BitSource& bits (*bits_);
ostringstream bytes;
// Read two characters at a time
while (count > 1) {
if (bits.available() < 11) {
throw FormatException();
}
}
int nextTwoCharsBits = bits.readBits(11);
bytes << toAlphaNumericChar(nextTwoCharsBits / 45);
bytes << toAlphaNumericChar(nextTwoCharsBits % 45);
count -= 2;
}
s = r.str();
}
append(result, s, StringUtils::ASCII);
if (count == 1) {
// special case: one character left
if (bits.available() < 6) {
throw FormatException();
}
bytes << toAlphaNumericChar(bits.readBits(6));
}
// See section 6.4.8.1, 6.4.8.2
string s = bytes.str();
if (fc1InEffect) {
// We need to massage the result a bit if in an FNC1 mode:
ostringstream r;
for (size_t i = 0; i < s.length(); i++) {
if (s[i] != '%') {
r << s[i];
} else {
if (i < s.length() - 1 && s[i + 1] == '%') {
// %% is rendered as %
r << s[i++];
} else {
// In alpha mode, % should be converted to FNC1 separator 0x1D
r << (char)0x1D;
}
}
}
s = r.str();
}
append(result, s, StringUtils::ASCII);
}
namespace {
int parseECIValue(BitSource& bits) {
int parseECIValue(BitSource& bits) {
int firstByte = bits.readBits(8);
if ((firstByte & 0x80) == 0) {
// just one byte
return firstByte & 0x7F;
// just one byte
return firstByte & 0x7F;
}
if ((firstByte & 0xC0) == 0x80) {
// two bytes
int secondByte = bits.readBits(8);
return ((firstByte & 0x3F) << 8) | secondByte;
// two bytes
int secondByte = bits.readBits(8);
return ((firstByte & 0x3F) << 8) | secondByte;
}
if ((firstByte & 0xE0) == 0xC0) {
// three bytes
int secondThirdBytes = bits.readBits(16);
return ((firstByte & 0x1F) << 16) | secondThirdBytes;
// three bytes
int secondThirdBytes = bits.readBits(16);
return ((firstByte & 0x1F) << 16) | secondThirdBytes;
}
throw FormatException();
}
}
}
Ref<DecoderResult>
@ -352,80 +354,80 @@ DecodedBitStreamParser::decode(ArrayRef<char> bytes,
Version* version,
ErrorCorrectionLevel const& ecLevel,
Hashtable const& hints) {
Ref<BitSource> bits_ (new BitSource(bytes));
BitSource& bits (*bits_);
string result;
result.reserve(50);
ArrayRef< ArrayRef<char> > byteSegments (0);
try {
Ref<BitSource> bits_ (new BitSource(bytes));
BitSource& bits (*bits_);
string result;
result.reserve(50);
ArrayRef< ArrayRef<char> > byteSegments (0);
CharacterSetECI* currentCharacterSetECI = 0;
bool fc1InEffect = false;
Mode* mode = 0;
do {
// While still another segment to read...
if (bits.available() < 4) {
// OK, assume we're done. Really, a TERMINATOR mode should have been recorded here
mode = &Mode::TERMINATOR;
} else {
try {
mode = &Mode::forBits(bits.readBits(4)); // mode is encoded by 4 bits
} catch (IllegalArgumentException const& iae) {
throw iae;
// throw FormatException.getFormatInstance();
}
}
if (mode != &Mode::TERMINATOR) {
if ((mode == &Mode::FNC1_FIRST_POSITION) || (mode == &Mode::FNC1_SECOND_POSITION)) {
// We do little with FNC1 except alter the parsed result a bit according to the spec
fc1InEffect = true;
} else if (mode == &Mode::STRUCTURED_APPEND) {
if (bits.available() < 16) {
throw FormatException();
}
// not really supported; all we do is ignore it
// Read next 8 bits (symbol sequence #) and 8 bits (parity data), then continue
bits.readBits(16);
} else if (mode == &Mode::ECI) {
// Count doesn't apply to ECI
int value = parseECIValue(bits);
currentCharacterSetECI = CharacterSetECI::getCharacterSetECIByValue(value);
if (currentCharacterSetECI == 0) {
throw FormatException();
}
} else {
// First handle Hanzi mode which does not start with character count
if (mode == &Mode::HANZI) {
//chinese mode contains a sub set indicator right after mode indicator
int subset = bits.readBits(4);
int countHanzi = bits.readBits(mode->getCharacterCountBits(version));
if (subset == GB2312_SUBSET) {
decodeHanziSegment(bits_, result, countHanzi);
}
} else {
// "Normal" QR code modes:
// How many characters will follow, encoded in this mode?
int count = bits.readBits(mode->getCharacterCountBits(version));
if (mode == &Mode::NUMERIC) {
decodeNumericSegment(bits_, result, count);
} else if (mode == &Mode::ALPHANUMERIC) {
decodeAlphanumericSegment(bits_, result, count, fc1InEffect);
} else if (mode == &Mode::BYTE) {
decodeByteSegment(bits_, result, count, currentCharacterSetECI, byteSegments, hints);
} else if (mode == &Mode::KANJI) {
decodeKanjiSegment(bits_, result, count);
string charSet = "";
try {
bool fc1InEffect = false;
Mode* mode = 0;
do {
// While still another segment to read...
if (bits.available() < 4) {
// OK, assume we're done. Really, a TERMINATOR mode should have been recorded here
mode = &Mode::TERMINATOR;
} else {
throw FormatException();
try {
mode = &Mode::forBits(bits.readBits(4)); // mode is encoded by 4 bits
} catch (IllegalArgumentException const& iae) {
throw iae;
// throw FormatException.getFormatInstance();
}
}
}
}
}
} while (mode != &Mode::TERMINATOR);
} catch (IllegalArgumentException const& iae) {
(void)iae;
// from readBits() calls
throw FormatException();
}
return Ref<DecoderResult>(new DecoderResult(bytes, Ref<String>(new String(result)), byteSegments, (string)ecLevel));
if (mode != &Mode::TERMINATOR) {
if ((mode == &Mode::FNC1_FIRST_POSITION) || (mode == &Mode::FNC1_SECOND_POSITION)) {
// We do little with FNC1 except alter the parsed result a bit according to the spec
fc1InEffect = true;
} else if (mode == &Mode::STRUCTURED_APPEND) {
if (bits.available() < 16) {
throw FormatException();
}
// not really supported; all we do is ignore it
// Read next 8 bits (symbol sequence #) and 8 bits (parity data), then continue
bits.readBits(16);
} else if (mode == &Mode::ECI) {
// Count doesn't apply to ECI
int value = parseECIValue(bits);
currentCharacterSetECI = CharacterSetECI::getCharacterSetECIByValue(value);
if (currentCharacterSetECI == 0) {
throw FormatException();
}
} else {
// First handle Hanzi mode which does not start with character count
if (mode == &Mode::HANZI) {
//chinese mode contains a sub set indicator right after mode indicator
int subset = bits.readBits(4);
int countHanzi = bits.readBits(mode->getCharacterCountBits(version));
if (subset == GB2312_SUBSET) {
decodeHanziSegment(bits_, result, countHanzi);
}
} else {
// "Normal" QR code modes:
// How many characters will follow, encoded in this mode?
int count = bits.readBits(mode->getCharacterCountBits(version));
if (mode == &Mode::NUMERIC) {
decodeNumericSegment(bits_, result, count);
} else if (mode == &Mode::ALPHANUMERIC) {
decodeAlphanumericSegment(bits_, result, count, fc1InEffect);
} else if (mode == &Mode::BYTE) {
charSet = decodeByteSegment(bits_, result, count, currentCharacterSetECI, byteSegments, hints);
} else if (mode == &Mode::KANJI) {
decodeKanjiSegment(bits_, result, count);
} else {
throw FormatException();
}
}
}
}
} while (mode != &Mode::TERMINATOR);
} catch (IllegalArgumentException const& iae) {
(void)iae;
// from readBits() calls
throw FormatException();
}
return Ref<DecoderResult>(new DecoderResult(bytes, Ref<String>(new String(result)), byteSegments, (string)ecLevel, charSet));
}