qzxing/source/zxing/oned/ITFReader.cpp

338 lines
10 KiB
C++
Raw Normal View History

// -*- mode:c++; tab-width:2; indent-tabs-mode:nil; c-basic-offset:2 -*-
/*
* Copyright 2010 ZXing authors All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <zxing/ZXing.h>
#include <zxing/oned/ITFReader.h>
#include <zxing/oned/OneDResultPoint.h>
#include <zxing/common/Array.h>
#include <zxing/ReaderException.h>
#include <zxing/FormatException.h>
#include <zxing/NotFoundException.h>
#include <math.h>
using std::vector;
using zxing::Ref;
using zxing::ArrayRef;
using zxing::Array;
using zxing::Result;
using zxing::FormatException;
using zxing::NotFoundException;
using zxing::oned::ITFReader;
// VC++
using zxing::BitArray;
#define VECTOR_INIT(v) v, v + sizeof(v)/sizeof(v[0])
namespace {
const int W = 3; // Pixel width of a wide line
const int N = 1; // Pixed width of a narrow line
const int DEFAULT_ALLOWED_LENGTHS_[] =
{ 48, 44, 24, 20, 18, 16, 14, 12, 10, 8, 6 };
const ArrayRef<int> DEFAULT_ALLOWED_LENGTHS (new Array<int>(VECTOR_INIT(DEFAULT_ALLOWED_LENGTHS_)));
/**
* Start/end guard pattern.
*
* Note: The end pattern is reversed because the row is reversed before
* searching for the END_PATTERN
*/
const int START_PATTERN_[] = {N, N, N, N};
const vector<int> START_PATTERN (VECTOR_INIT(START_PATTERN_));
const int END_PATTERN_REVERSED_[] = {N, N, W};
const vector<int> END_PATTERN_REVERSED (VECTOR_INIT(END_PATTERN_REVERSED_));
/**
* Patterns of Wide / Narrow lines to indicate each digit
*/
const int PATTERNS[][5] = {
{N, N, W, W, N}, // 0
{W, N, N, N, W}, // 1
{N, W, N, N, W}, // 2
{W, W, N, N, N}, // 3
{N, N, W, N, W}, // 4
{W, N, W, N, N}, // 5
{N, W, W, N, N}, // 6
{N, N, N, W, W}, // 7
{W, N, N, W, N}, // 8
{N, W, N, W, N} // 9
};
}
ITFReader::ITFReader() : narrowLineWidth(-1) {
}
Ref<Result> ITFReader::decodeRow(int rowNumber, Ref<BitArray> row) {
// Find out where the Middle section (payload) starts & ends
Range startRange = decodeStart(row);
Range endRange = decodeEnd(row);
std::string result;
decodeMiddle(row, startRange[1], endRange[0], result);
Ref<String> resultString(new String(result));
ArrayRef<int> allowedLengths;
// Java hints stuff missing
if (!allowedLengths) {
allowedLengths = DEFAULT_ALLOWED_LENGTHS;
}
// To avoid false positives with 2D barcodes (and other patterns), make
// an assumption that the decoded string must be 6, 10 or 14 digits.
int length = resultString->size();
bool lengthOK = false;
for (int i = 0, e = allowedLengths->size(); i < e; i++) {
if (length == allowedLengths[i]) {
lengthOK = true;
break;
}
}
if (!lengthOK) {
throw FormatException();
}
ArrayRef< Ref<ResultPoint> > resultPoints(2);
resultPoints[0] =
Ref<OneDResultPoint>(new OneDResultPoint(float(startRange[1]), float(rowNumber)));
resultPoints[1] =
Ref<OneDResultPoint>(new OneDResultPoint(float(endRange[0]), float(rowNumber)));
return Ref<Result>(new Result(resultString, ArrayRef<char>(), resultPoints, BarcodeFormat::ITF));
}
/**
* @param row row of black/white values to search
* @param payloadStart offset of start pattern
* @param resultString {@link StringBuffer} to append decoded chars to
* @throws ReaderException if decoding could not complete successfully
*/
void ITFReader::decodeMiddle(Ref<BitArray> row,
int payloadStart,
int payloadEnd,
std::string& resultString) {
// Digits are interleaved in pairs - 5 black lines for one digit, and the
// 5
// interleaved white lines for the second digit.
// Therefore, need to scan 10 lines and then
// split these into two arrays
vector<int> counterDigitPair(10, 0);
vector<int> counterBlack(5, 0);
vector<int> counterWhite(5, 0);
while (payloadStart < payloadEnd) {
// Get 10 runs of black/white.
recordPattern(row, payloadStart, counterDigitPair);
// Split them into each array
for (int k = 0; k < 5; k++) {
int twoK = k << 1;
counterBlack[k] = counterDigitPair[twoK];
counterWhite[k] = counterDigitPair[twoK + 1];
}
int bestMatch = decodeDigit(counterBlack);
resultString.append(1, (char) ('0' + bestMatch));
bestMatch = decodeDigit(counterWhite);
resultString.append(1, (char) ('0' + bestMatch));
for (int i = 0, e = counterDigitPair.size(); i < e; i++) {
payloadStart += counterDigitPair[i];
}
}
}
/**
* Identify where the start of the middle / payload section starts.
*
* @param row row of black/white values to search
* @return Array, containing index of start of 'start block' and end of
* 'start block'
* @throws ReaderException
*/
ITFReader::Range ITFReader::decodeStart(Ref<BitArray> row) {
int endStart = skipWhiteSpace(row);
Range startPattern = findGuardPattern(row, endStart, START_PATTERN);
// Determine the width of a narrow line in pixels. We can do this by
// getting the width of the start pattern and dividing by 4 because its
// made up of 4 narrow lines.
narrowLineWidth = (startPattern[1] - startPattern[0]) >> 2;
validateQuietZone(row, startPattern[0]);
return startPattern;
}
/**
* Identify where the end of the middle / payload section ends.
*
* @param row row of black/white values to search
* @return Array, containing index of start of 'end block' and end of 'end
* block'
* @throws ReaderException
*/
ITFReader::Range ITFReader::decodeEnd(Ref<BitArray> row) {
// For convenience, reverse the row and then
// search from 'the start' for the end block
BitArray::Reverse r (row);
int endStart = skipWhiteSpace(row);
Range endPattern = findGuardPattern(row, endStart, END_PATTERN_REVERSED);
// The start & end patterns must be pre/post fixed by a quiet zone. This
// zone must be at least 10 times the width of a narrow line.
// ref: http://www.barcode-1.net/i25code.html
validateQuietZone(row, endPattern[0]);
// Now recalculate the indices of where the 'endblock' starts & stops to
// accommodate
// the reversed nature of the search
int temp = endPattern[0];
endPattern[0] = row->getSize() - endPattern[1];
endPattern[1] = row->getSize() - temp;
return endPattern;
}
/**
* The start & end patterns must be pre/post fixed by a quiet zone. This
* zone must be at least 10 times the width of a narrow line. Scan back until
* we either get to the start of the barcode or match the necessary number of
* quiet zone pixels.
*
* Note: Its assumed the row is reversed when using this method to find
* quiet zone after the end pattern.
*
* ref: http://www.barcode-1.net/i25code.html
*
* @param row bit array representing the scanned barcode.
* @param startPattern index into row of the start or end pattern.
* @throws ReaderException if the quiet zone cannot be found, a ReaderException is thrown.
*/
void ITFReader::validateQuietZone(Ref<BitArray> row, int startPattern) {
int quietCount = this->narrowLineWidth * 10; // expect to find this many pixels of quiet zone
for (int i = startPattern - 1; quietCount > 0 && i >= 0; i--) {
if (row->get(i)) {
break;
}
quietCount--;
}
if (quietCount != 0) {
// Unable to find the necessary number of quiet zone pixels.
throw NotFoundException();
}
}
/**
* Skip all whitespace until we get to the first black line.
*
* @param row row of black/white values to search
* @return index of the first black line.
* @throws ReaderException Throws exception if no black lines are found in the row
*/
int ITFReader::skipWhiteSpace(Ref<BitArray> row) {
int width = row->getSize();
int endStart = row->getNextSet(0);
if (endStart == width) {
throw NotFoundException();
}
return endStart;
}
/**
* @param row row of black/white values to search
* @param rowOffset position to start search
* @param pattern pattern of counts of number of black and white pixels that are
* being searched for as a pattern
* @return start/end horizontal offset of guard pattern, as an array of two
* ints
* @throws ReaderException if pattern is not found
*/
ITFReader::Range ITFReader::findGuardPattern(Ref<BitArray> row,
int rowOffset,
vector<int> const& pattern) {
// TODO: This is very similar to implementation in UPCEANReader. Consider if they can be
// merged to a single method.
int patternLength = pattern.size();
vector<int> counters(patternLength);
int width = row->getSize();
bool isWhite = false;
int counterPosition = 0;
int patternStart = rowOffset;
for (int x = rowOffset; x < width; x++) {
if (row->get(x) ^ isWhite) {
counters[counterPosition]++;
} else {
if (counterPosition == patternLength - 1) {
if (patternMatchVariance(counters, &pattern[0], MAX_INDIVIDUAL_VARIANCE) < MAX_AVG_VARIANCE) {
return Range(patternStart, x);
}
patternStart += counters[0] + counters[1];
for (int y = 2; y < patternLength; y++) {
counters[y - 2] = counters[y];
}
counters[patternLength - 2] = 0;
counters[patternLength - 1] = 0;
counterPosition--;
} else {
counterPosition++;
}
counters[counterPosition] = 1;
isWhite = !isWhite;
}
}
throw NotFoundException();
}
/**
* Attempts to decode a sequence of ITF black/white lines into single
* digit.
*
* @param counters the counts of runs of observed black/white/black/... values
* @return The decoded digit
* @throws ReaderException if digit cannot be decoded
*/
int ITFReader::decodeDigit(vector<int>& counters){
int bestVariance = MAX_AVG_VARIANCE; // worst variance we'll accept
int bestMatch = -1;
int max = sizeof(PATTERNS)/sizeof(PATTERNS[0]);
for (int i = 0; i < max; i++) {
int const* pattern = PATTERNS[i];
int variance = patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE);
if (variance < bestVariance) {
bestVariance = variance;
bestMatch = i;
}
}
if (bestMatch >= 0) {
return bestMatch;
} else {
throw NotFoundException();
}
}
ITFReader::~ITFReader(){}