mirror of https://github.com/status-im/qzxing.git
210 lines
6.3 KiB
C++
210 lines
6.3 KiB
C++
|
// -*- mode:c++; tab-width:2; indent-tabs-mode:nil; c-basic-offset:2 -*-
|
||
|
/*
|
||
|
* GlobalHistogramBinarizer.cpp
|
||
|
* zxing
|
||
|
*
|
||
|
* Copyright 2010 ZXing authors. All rights reserved.
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#include <zxing/common/GlobalHistogramBinarizer.h>
|
||
|
#include <zxing/common/IllegalArgumentException.h>
|
||
|
#include <zxing/common/Array.h>
|
||
|
|
||
|
namespace zxing {
|
||
|
using namespace std;
|
||
|
|
||
|
const int LUMINANCE_BITS = 5;
|
||
|
const int LUMINANCE_SHIFT = 8 - LUMINANCE_BITS;
|
||
|
const int LUMINANCE_BUCKETS = 1 << LUMINANCE_BITS;
|
||
|
|
||
|
GlobalHistogramBinarizer::GlobalHistogramBinarizer(Ref<LuminanceSource> source) :
|
||
|
Binarizer(source), cached_matrix_(NULL), cached_row_(NULL), cached_row_num_(-1) {
|
||
|
|
||
|
}
|
||
|
|
||
|
GlobalHistogramBinarizer::~GlobalHistogramBinarizer() {
|
||
|
}
|
||
|
|
||
|
|
||
|
Ref<BitArray> GlobalHistogramBinarizer::getBlackRow(int y, Ref<BitArray> row) {
|
||
|
if (y == cached_row_num_) {
|
||
|
if (cached_row_ != NULL) {
|
||
|
return cached_row_;
|
||
|
} else {
|
||
|
throw IllegalArgumentException("Too little dynamic range in luminance");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
vector<int> histogram(LUMINANCE_BUCKETS, 0);
|
||
|
LuminanceSource& source = *getLuminanceSource();
|
||
|
int width = source.getWidth();
|
||
|
if (row == NULL || static_cast<int>(row->getSize()) < width) {
|
||
|
row = new BitArray(width);
|
||
|
} else {
|
||
|
row->clear();
|
||
|
}
|
||
|
|
||
|
//TODO(flyashi): cache this instead of allocating and deleting per row
|
||
|
unsigned char* row_pixels = NULL;
|
||
|
try {
|
||
|
row_pixels = new unsigned char[width];
|
||
|
row_pixels = source.getRow(y, row_pixels);
|
||
|
for (int x = 0; x < width; x++) {
|
||
|
histogram[row_pixels[x] >> LUMINANCE_SHIFT]++;
|
||
|
}
|
||
|
int blackPoint = estimate(histogram) << LUMINANCE_SHIFT;
|
||
|
|
||
|
BitArray& array = *row;
|
||
|
int left = row_pixels[0];
|
||
|
int center = row_pixels[1];
|
||
|
for (int x = 1; x < width - 1; x++) {
|
||
|
int right = row_pixels[x + 1];
|
||
|
// A simple -1 4 -1 box filter with a weight of 2.
|
||
|
int luminance = ((center << 2) - left - right) >> 1;
|
||
|
if (luminance < blackPoint) {
|
||
|
array.set(x);
|
||
|
}
|
||
|
left = center;
|
||
|
center = right;
|
||
|
}
|
||
|
|
||
|
cached_row_ = row;
|
||
|
cached_row_num_ = y;
|
||
|
delete [] row_pixels;
|
||
|
return row;
|
||
|
} catch (IllegalArgumentException const& iae) {
|
||
|
// Cache the fact that this row failed.
|
||
|
cached_row_ = NULL;
|
||
|
cached_row_num_ = y;
|
||
|
delete [] row_pixels;
|
||
|
throw iae;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Ref<BitMatrix> GlobalHistogramBinarizer::getBlackMatrix() {
|
||
|
if (cached_matrix_ != NULL) {
|
||
|
return cached_matrix_;
|
||
|
}
|
||
|
|
||
|
// Faster than working with the reference
|
||
|
LuminanceSource& source = *getLuminanceSource();
|
||
|
int width = source.getWidth();
|
||
|
int height = source.getHeight();
|
||
|
vector<int> histogram(LUMINANCE_BUCKETS, 0);
|
||
|
|
||
|
// Quickly calculates the histogram by sampling four rows from the image.
|
||
|
// This proved to be more robust on the blackbox tests than sampling a
|
||
|
// diagonal as we used to do.
|
||
|
ArrayRef<unsigned char> ref (width);
|
||
|
unsigned char* row = &ref[0];
|
||
|
for (int y = 1; y < 5; y++) {
|
||
|
int rownum = height * y / 5;
|
||
|
int right = (width << 2) / 5;
|
||
|
row = source.getRow(rownum, row);
|
||
|
for (int x = width / 5; x < right; x++) {
|
||
|
histogram[row[x] >> LUMINANCE_SHIFT]++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int blackPoint = estimate(histogram) << LUMINANCE_SHIFT;
|
||
|
|
||
|
Ref<BitMatrix> matrix_ref(new BitMatrix(width, height));
|
||
|
BitMatrix& matrix = *matrix_ref;
|
||
|
for (int y = 0; y < height; y++) {
|
||
|
row = source.getRow(y, row);
|
||
|
for (int x = 0; x < width; x++) {
|
||
|
if (row[x] <= blackPoint)
|
||
|
matrix.set(x, y);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cached_matrix_ = matrix_ref;
|
||
|
// delete [] row;
|
||
|
return matrix_ref;
|
||
|
}
|
||
|
|
||
|
int GlobalHistogramBinarizer::estimate(vector<int> &histogram) {
|
||
|
int numBuckets = histogram.size();
|
||
|
int maxBucketCount = 0;
|
||
|
|
||
|
// Find tallest peak in histogram
|
||
|
int firstPeak = 0;
|
||
|
int firstPeakSize = 0;
|
||
|
for (int i = 0; i < numBuckets; i++) {
|
||
|
if (histogram[i] > firstPeakSize) {
|
||
|
firstPeak = i;
|
||
|
firstPeakSize = histogram[i];
|
||
|
}
|
||
|
if (histogram[i] > maxBucketCount) {
|
||
|
maxBucketCount = histogram[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Find second-tallest peak -- well, another peak that is tall and not
|
||
|
// so close to the first one
|
||
|
int secondPeak = 0;
|
||
|
int secondPeakScore = 0;
|
||
|
for (int i = 0; i < numBuckets; i++) {
|
||
|
int distanceToBiggest = i - firstPeak;
|
||
|
// Encourage more distant second peaks by multiplying by square of distance
|
||
|
int score = histogram[i] * distanceToBiggest * distanceToBiggest;
|
||
|
if (score > secondPeakScore) {
|
||
|
secondPeak = i;
|
||
|
secondPeakScore = score;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Put firstPeak first
|
||
|
if (firstPeak > secondPeak) {
|
||
|
int temp = firstPeak;
|
||
|
firstPeak = secondPeak;
|
||
|
secondPeak = temp;
|
||
|
}
|
||
|
|
||
|
// Kind of arbitrary; if the two peaks are very close, then we figure there is
|
||
|
// so little dynamic range in the image, that discriminating black and white
|
||
|
// is too error-prone.
|
||
|
// Decoding the image/line is either pointless, or may in some cases lead to
|
||
|
// a false positive for 1D formats, which are relatively lenient.
|
||
|
// We arbitrarily say "close" is
|
||
|
// "<= 1/16 of the total histogram buckets apart"
|
||
|
if (secondPeak - firstPeak <= numBuckets >> 4) {
|
||
|
throw IllegalArgumentException("Too little dynamic range in luminance");
|
||
|
}
|
||
|
|
||
|
// Find a valley between them that is low and closer to the white peak
|
||
|
int bestValley = secondPeak - 1;
|
||
|
int bestValleyScore = -1;
|
||
|
for (int i = secondPeak - 1; i > firstPeak; i--) {
|
||
|
int fromFirst = i - firstPeak;
|
||
|
// Favor a "valley" that is not too close to either peak -- especially not
|
||
|
// the black peak -- and that has a low value of course
|
||
|
int score = fromFirst * fromFirst * (secondPeak - i) *
|
||
|
(maxBucketCount - histogram[i]);
|
||
|
if (score > bestValleyScore) {
|
||
|
bestValley = i;
|
||
|
bestValleyScore = score;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return bestValley;
|
||
|
}
|
||
|
|
||
|
Ref<Binarizer> GlobalHistogramBinarizer::createBinarizer(Ref<LuminanceSource> source) {
|
||
|
return Ref<Binarizer> (new GlobalHistogramBinarizer(source));
|
||
|
}
|
||
|
|
||
|
} // namespace zxing
|