qzxing/source/zxing/oned/OneDReader.cpp

208 lines
7.8 KiB
C++
Raw Normal View History

// -*- mode:c++; tab-width:2; indent-tabs-mode:nil; c-basic-offset:2 -*-
/*
* OneDReader.cpp
* ZXing
*
* Copyright 2010 ZXing authors All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "OneDReader.h"
#include <zxing/ReaderException.h>
#include <zxing/oned/OneDResultPoint.h>
#include <math.h>
#include <limits.h>
namespace zxing {
namespace oned {
using namespace std;
OneDReader::OneDReader() {
}
Ref<Result> OneDReader::decode(Ref<BinaryBitmap> image, DecodeHints hints) {
Ref<Result> result = doDecode(image, hints);
if (result.empty() && hints.getTryHarder() && image->isRotateSupported()) {
Ref<BinaryBitmap> rotatedImage(image->rotateCounterClockwise());
result = doDecode(rotatedImage, hints);
if (!result.empty()) {
/*
// Record that we found it rotated 90 degrees CCW / 270 degrees CW
Hashtable metadata = result.getResultMetadata();
int orientation = 270;
if (metadata != null && metadata.containsKey(ResultMetadataType.ORIENTATION)) {
// But if we found it reversed in doDecode(), add in that result here:
orientation = (orientation +
((Integer) metadata.get(ResultMetadataType.ORIENTATION)).intValue()) % 360;
}
result.putMetadata(ResultMetadataType.ORIENTATION, new Integer(orientation));
*/
// Update result points
std::vector<Ref<ResultPoint> >& points (result->getResultPoints());
int height = rotatedImage->getHeight();
for (size_t i = 0; i < points.size(); i++) {
points[i].reset(new OneDResultPoint(height - points[i]->getY() - 1, points[i]->getX()));
}
}
}
if (result.empty()) {
throw ReaderException("");
}
return result;
}
Ref<Result> OneDReader::doDecode(Ref<BinaryBitmap> image, DecodeHints hints) {
int width = image->getWidth();
int height = image->getHeight();
Ref<BitArray> row(new BitArray(width));
int middle = height >> 1;
bool tryHarder = hints.getTryHarder();
int rowStep = (int)fmax(1, height >> (tryHarder ? 8 : 5));
int maxLines;
if (tryHarder) {
maxLines = height; // Look at the whole image, not just the center
} else {
maxLines = 15; // 15 rows spaced 1/32 apart is roughly the middle half of the image
}
for (int x = 0; x < maxLines; x++) {
// Scanning from the middle out. Determine which row we're looking at next:
int rowStepsAboveOrBelow = (x + 1) >> 1;
bool isAbove = (x & 0x01) == 0; // i.e. is x even?
int rowNumber = middle + rowStep * (isAbove ? rowStepsAboveOrBelow : -rowStepsAboveOrBelow);
if (rowNumber < 0 || rowNumber >= height) {
// Oops, if we run off the top or bottom, stop
break;
}
// Estimate black point for this row and load it:
try {
row = image->getBlackRow(rowNumber, row);
} catch (ReaderException const& re) {
continue;
} catch (IllegalArgumentException const& re) {
continue;
}
// While we have the image data in a BitArray, it's fairly cheap to reverse it in place to
// handle decoding upside down barcodes.
for (int attempt = 0; attempt < 2; attempt++) {
if (attempt == 1) {
row->reverse(); // reverse the row and continue
}
// Look for a barcode
Ref<Result> result = decodeRow(rowNumber, row);
// We found our barcode
if (!result.empty()) {
if (attempt == 1) {
// But it was upside down, so note that
// result.putMetadata(ResultMetadataType.ORIENTATION, new Integer(180));
// And remember to flip the result points horizontally.
std::vector<Ref<ResultPoint> > points(result->getResultPoints());
// if there's exactly two points (which there should be), flip the x coordinate
// if there's not exactly 2, I don't know what do do with it
if (points.size() == 2) {
Ref<ResultPoint> pointZero(new OneDResultPoint(width - points[0]->getX() - 1,
points[0]->getY()));
points[0] = pointZero;
Ref<ResultPoint> pointOne(new OneDResultPoint(width - points[1]->getX() - 1,
points[1]->getY()));
points[1] = pointOne;
result.reset(new Result(result->getText(), result->getRawBytes(), points,
result->getBarcodeFormat()));
}
}
return result;
}
}
}
return Ref<Result>();
}
unsigned int OneDReader::patternMatchVariance(int counters[], int countersSize,
const int pattern[], int maxIndividualVariance) {
int numCounters = countersSize;
unsigned int total = 0;
unsigned int patternLength = 0;
for (int i = 0; i < numCounters; i++) {
total += counters[i];
patternLength += pattern[i];
}
if (total < patternLength) {
// If we don't even have one pixel per unit of bar width, assume this is too small
// to reliably match, so fail:
return INT_MAX;
}
// We're going to fake floating-point math in integers. We just need to use more bits.
// Scale up patternLength so that intermediate values below like scaledCounter will have
// more "significant digits"
unsigned int unitBarWidth = (total << INTEGER_MATH_SHIFT) / patternLength;
maxIndividualVariance = (maxIndividualVariance * unitBarWidth) >> INTEGER_MATH_SHIFT;
unsigned int totalVariance = 0;
for (int x = 0; x < numCounters; x++) {
int counter = counters[x] << INTEGER_MATH_SHIFT;
int scaledPattern = pattern[x] * unitBarWidth;
int variance = counter > scaledPattern ? counter - scaledPattern : scaledPattern - counter;
if (variance > maxIndividualVariance) {
return INT_MAX;
}
totalVariance += variance;
}
return totalVariance / total;
}
bool OneDReader::recordPattern(Ref<BitArray> row, int start, int counters[], int countersCount) {
int numCounters = countersCount;//sizeof(counters) / sizeof(int);
for (int i = 0; i < numCounters; i++) {
counters[i] = 0;
}
int end = row->getSize();
if (start >= end) {
return false;
}
bool isWhite = !row->get(start);
int counterPosition = 0;
int i = start;
while (i < end) {
bool pixel = row->get(i);
if (pixel ^ isWhite) { // that is, exactly one is true
counters[counterPosition]++;
} else {
counterPosition++;
if (counterPosition == numCounters) {
break;
} else {
counters[counterPosition] = 1;
isWhite ^= true; // isWhite = !isWhite;
}
}
i++;
}
// If we read fully the last section of pixels and filled up our counters -- or filled
// the last counter but ran off the side of the image, OK. Otherwise, a problem.
if (!(counterPosition == numCounters || (counterPosition == numCounters - 1 && i == end))) {
return false;
}
return true;
}
OneDReader::~OneDReader() {
}
}
}