qzxing/source/zxing/qrcode/decoder/QRDecodedBitStreamParser.cpp

409 lines
14 KiB
C++
Raw Normal View History

// -*- mode:c++; tab-width:2; indent-tabs-mode:nil; c-basic-offset:2 -*-
/*
* DecodedBitStreamParser.cpp
* zxing
*
* Created by Christian Brunschen on 20/05/2008.
* Copyright 2008 ZXing authors All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <zxing/qrcode/decoder/DecodedBitStreamParser.h>
#include <zxing/common/CharacterSetECI.h>
#include <zxing/FormatException.h>
#include <zxing/common/StringUtils.h>
#include <iostream>
#ifndef NO_ICONV
#include <iconv.h>
#endif
// Required for compatibility. TODO: test on Symbian
#ifdef ZXING_ICONV_CONST
#undef ICONV_CONST
#define ICONV_CONST const
#endif
#ifndef ICONV_CONST
#define ICONV_CONST /**/
#endif
using namespace std;
using namespace zxing;
using namespace zxing::qrcode;
using namespace zxing::common;
const char DecodedBitStreamParser::ALPHANUMERIC_CHARS[] =
{ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B',
'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', ' ', '$', '%', '*', '+', '-', '.', '/', ':'
};
namespace {int GB2312_SUBSET = 1;}
void DecodedBitStreamParser::append(std::string &result,
string const& in,
const char *src) {
append(result, (unsigned char const*)in.c_str(), in.length(), src);
}
void DecodedBitStreamParser::append(std::string &result,
const unsigned char *bufIn,
size_t nIn,
const char *src) {
#ifndef NO_ICONV
if (nIn == 0) {
return;
}
iconv_t cd = iconv_open(StringUtils::UTF8, src);
if (cd == (iconv_t)-1) {
result.append((const char *)bufIn, nIn);
return;
}
const int maxOut = 4 * nIn + 1;
unsigned char* bufOut = new unsigned char[maxOut];
/*ICONV_CONST*/ char *fromPtr = (/*ICONV_CONST*/ char *)bufIn;
size_t nFrom = nIn;
char *toPtr = (char *)bufOut;
size_t nTo = maxOut;
while (nFrom > 0) {
size_t oneway = iconv(cd, (const char**)&fromPtr, &nFrom, &toPtr, &nTo);
if (oneway == (size_t)(-1)) {
iconv_close(cd);
delete[] bufOut;
throw ReaderException("error converting characters");
}
}
iconv_close(cd);
int nResult = maxOut - nTo;
bufOut[nResult] = '\0';
result.append((const char *)bufOut);
delete[] bufOut;
#else
result.append((const char *)bufIn, nIn);
#endif
}
void DecodedBitStreamParser::decodeHanziSegment(Ref<BitSource> bits_,
string& result,
int count) {
BitSource& bits (*bits_);
// Don't crash trying to read more bits than we have available.
if (count * 13 > bits.available()) {
throw FormatException();
}
// Each character will require 2 bytes. Read the characters as 2-byte pairs
// and decode as GB2312 afterwards
size_t nBytes = 2 * count;
unsigned char* buffer = new unsigned char[nBytes];
int offset = 0;
while (count > 0) {
// Each 13 bits encodes a 2-byte character
int twoBytes = bits.readBits(13);
int assembledTwoBytes = ((twoBytes / 0x060) << 8) | (twoBytes % 0x060);
if (assembledTwoBytes < 0x003BF) {
// In the 0xA1A1 to 0xAAFE range
assembledTwoBytes += 0x0A1A1;
} else {
// In the 0xB0A1 to 0xFAFE range
assembledTwoBytes += 0x0A6A1;
}
buffer[offset] = (unsigned char) ((assembledTwoBytes >> 8) & 0xFF);
buffer[offset + 1] = (unsigned char) (assembledTwoBytes & 0xFF);
offset += 2;
count--;
}
try {
append(result, buffer, nBytes, StringUtils::GB2312);
} catch (ReaderException const& re) {
delete [] buffer;
throw FormatException();
}
delete [] buffer;
}
void DecodedBitStreamParser::decodeKanjiSegment(Ref<BitSource> bits, std::string &result, int count) {
// Each character will require 2 bytes. Read the characters as 2-byte pairs
// and decode as Shift_JIS afterwards
size_t nBytes = 2 * count;
unsigned char* buffer = new unsigned char[nBytes];
int offset = 0;
while (count > 0) {
// Each 13 bits encodes a 2-byte character
int twoBytes = bits->readBits(13);
int assembledTwoBytes = ((twoBytes / 0x0C0) << 8) | (twoBytes % 0x0C0);
if (assembledTwoBytes < 0x01F00) {
// In the 0x8140 to 0x9FFC range
assembledTwoBytes += 0x08140;
} else {
// In the 0xE040 to 0xEBBF range
assembledTwoBytes += 0x0C140;
}
buffer[offset] = (unsigned char)(assembledTwoBytes >> 8);
buffer[offset + 1] = (unsigned char)assembledTwoBytes;
offset += 2;
count--;
}
append(result, buffer, nBytes, StringUtils::SHIFT_JIS);
delete[] buffer;
}
void DecodedBitStreamParser::decodeByteSegment(Ref<BitSource> bits_,
string& result,
int count,
CharacterSetECI* currentCharacterSetECI,
ArrayRef< ArrayRef<unsigned char> >& byteSegments,
Hashtable const& hints) {
int nBytes = count;
BitSource& bits (*bits_);
// Don't crash trying to read more bits than we have available.
if (count << 3 > bits.available()) {
throw FormatException();
}
ArrayRef<unsigned char> bytes_ (count);
unsigned char* readBytes = &(*bytes_)[0];
for (int i = 0; i < count; i++) {
readBytes[i] = (unsigned char) bits.readBits(8);
}
string encoding;
if (currentCharacterSetECI == 0) {
// The spec isn't clear on this mode; see
// section 6.4.5: t does not say which encoding to assuming
// upon decoding. I have seen ISO-8859-1 used as well as
// Shift_JIS -- without anything like an ECI designator to
// give a hint.
encoding = StringUtils::guessEncoding(readBytes, count, hints);
} else {
encoding = currentCharacterSetECI->name();
}
try {
append(result, readBytes, nBytes, encoding.c_str());
} catch (ReaderException const& re) {
throw FormatException();
}
byteSegments->values().push_back(bytes_);
}
void DecodedBitStreamParser::decodeNumericSegment(Ref<BitSource> bits, std::string &result, int count) {
int nBytes = count;
unsigned char* bytes = new unsigned char[nBytes];
int i = 0;
// Read three digits at a time
while (count >= 3) {
// Each 10 bits encodes three digits
if (bits->available() < 10) {
throw ReaderException("format exception");
}
int threeDigitsBits = bits->readBits(10);
if (threeDigitsBits >= 1000) {
ostringstream s;
s << "Illegal value for 3-digit unit: " << threeDigitsBits;
delete[] bytes;
throw ReaderException(s.str().c_str());
}
bytes[i++] = ALPHANUMERIC_CHARS[threeDigitsBits / 100];
bytes[i++] = ALPHANUMERIC_CHARS[(threeDigitsBits / 10) % 10];
bytes[i++] = ALPHANUMERIC_CHARS[threeDigitsBits % 10];
count -= 3;
}
if (count == 2) {
if (bits->available() < 7) {
throw ReaderException("format exception");
}
// Two digits left over to read, encoded in 7 bits
int twoDigitsBits = bits->readBits(7);
if (twoDigitsBits >= 100) {
ostringstream s;
s << "Illegal value for 2-digit unit: " << twoDigitsBits;
delete[] bytes;
throw ReaderException(s.str().c_str());
}
bytes[i++] = ALPHANUMERIC_CHARS[twoDigitsBits / 10];
bytes[i++] = ALPHANUMERIC_CHARS[twoDigitsBits % 10];
} else if (count == 1) {
if (bits->available() < 4) {
throw ReaderException("format exception");
}
// One digit left over to read
int digitBits = bits->readBits(4);
if (digitBits >= 10) {
ostringstream s;
s << "Illegal value for digit unit: " << digitBits;
delete[] bytes;
throw ReaderException(s.str().c_str());
}
bytes[i++] = ALPHANUMERIC_CHARS[digitBits];
}
append(result, bytes, nBytes, StringUtils::ASCII);
delete[] bytes;
}
char DecodedBitStreamParser::toAlphaNumericChar(size_t value) {
if (value >= sizeof(DecodedBitStreamParser::ALPHANUMERIC_CHARS)) {
throw FormatException();
}
return ALPHANUMERIC_CHARS[value];
}
void DecodedBitStreamParser::decodeAlphanumericSegment(Ref<BitSource> bits_,
string& result,
int count,
bool fc1InEffect) {
BitSource& bits (*bits_);
ostringstream bytes;
// Read two characters at a time
while (count > 1) {
if (bits.available() < 11) {
throw FormatException();
}
int nextTwoCharsBits = bits.readBits(11);
bytes << toAlphaNumericChar(nextTwoCharsBits / 45);
bytes << toAlphaNumericChar(nextTwoCharsBits % 45);
count -= 2;
}
if (count == 1) {
// special case: one character left
if (bits.available() < 6) {
throw FormatException();
}
bytes << toAlphaNumericChar(bits.readBits(6));
}
// See section 6.4.8.1, 6.4.8.2
string s = bytes.str();
if (fc1InEffect) {
// We need to massage the result a bit if in an FNC1 mode:
ostringstream r;
for (size_t i = 0; i < s.length(); i++) {
if (s[i] != '%') {
r << s[i];
} else {
if (i < s.length() - 1 && s[i + 1] == '%') {
// %% is rendered as %
r << s[i++];
} else {
// In alpha mode, % should be converted to FNC1 separator 0x1D
r << (char)0x1D;
}
}
}
s = r.str();
}
append(result, s, StringUtils::ASCII);
}
namespace {
int parseECIValue(BitSource bits) {
int firstByte = bits.readBits(8);
if ((firstByte & 0x80) == 0) {
// just one byte
return firstByte & 0x7F;
}
if ((firstByte & 0xC0) == 0x80) {
// two bytes
int secondByte = bits.readBits(8);
return ((firstByte & 0x3F) << 8) | secondByte;
}
if ((firstByte & 0xE0) == 0xC0) {
// three bytes
int secondThirdBytes = bits.readBits(16);
return ((firstByte & 0x1F) << 16) | secondThirdBytes;
}
throw FormatException();
}
}
Ref<DecoderResult>
DecodedBitStreamParser::decode(ArrayRef<unsigned char> bytes,
Version* version,
ErrorCorrectionLevel const& ecLevel,
Hashtable const& hints) {
Ref<BitSource> bits_ (new BitSource(bytes));
BitSource& bits (*bits_);
string result;
CharacterSetECI* currentCharacterSetECI = 0;
bool fc1InEffect = false;
ArrayRef< ArrayRef<unsigned char> > byteSegments (size_t(0));
Mode* mode = 0;
do {
// While still another segment to read...
if (bits.available() < 4) {
// OK, assume we're done. Really, a TERMINATOR mode should have been recorded here
mode = &Mode::TERMINATOR;
} else {
try {
mode = &Mode::forBits(bits.readBits(4)); // mode is encoded by 4 bits
} catch (IllegalArgumentException const& iae) {
throw iae;
// throw FormatException.getFormatInstance();
}
}
if (mode != &Mode::TERMINATOR) {
if ((mode == &Mode::FNC1_FIRST_POSITION) || (mode == &Mode::FNC1_SECOND_POSITION)) {
// We do little with FNC1 except alter the parsed result a bit according to the spec
fc1InEffect = true;
} else if (mode == &Mode::STRUCTURED_APPEND) {
// not really supported; all we do is ignore it
// Read next 8 bits (symbol sequence #) and 8 bits (parity data), then continue
bits.readBits(16);
} else if (mode == &Mode::ECI) {
// Count doesn't apply to ECI
int value = parseECIValue(bits);
currentCharacterSetECI = CharacterSetECI::getCharacterSetECIByValue(value);
if (currentCharacterSetECI == 0) {
throw FormatException();
}
} else {
// First handle Hanzi mode which does not start with character count
if (mode == &Mode::HANZI) {
//chinese mode contains a sub set indicator right after mode indicator
int subset = bits.readBits(4);
int countHanzi = bits.readBits(mode->getCharacterCountBits(version));
if (subset == GB2312_SUBSET) {
decodeHanziSegment(bits_, result, countHanzi);
}
} else {
// "Normal" QR code modes:
// How many characters will follow, encoded in this mode?
int count = bits.readBits(mode->getCharacterCountBits(version));
if (mode == &Mode::NUMERIC) {
decodeNumericSegment(bits_, result, count);
} else if (mode == &Mode::ALPHANUMERIC) {
decodeAlphanumericSegment(bits_, result, count, fc1InEffect);
} else if (mode == &Mode::BYTE) {
decodeByteSegment(bits_, result, count, currentCharacterSetECI, byteSegments, hints);
} else if (mode == &Mode::KANJI) {
decodeKanjiSegment(bits_, result, count);
} else {
throw FormatException();
}
}
}
}
} while (mode != &Mode::TERMINATOR);
return Ref<DecoderResult>(new DecoderResult(bytes, Ref<String>(new String(result)), byteSegments, (string)ecLevel));
}