mirror of
https://github.com/status-im/op-geth.git
synced 2025-01-09 14:15:53 +00:00
e0ceeab0d1
- Use defined constants instead of hard-coding their integer value. - Allocate secp256k1 structs on the C stack instead of converting []byte - Remove dead code
316 lines
8.6 KiB
C
316 lines
8.6 KiB
C
/**********************************************************************
|
|
* Copyright (c) 2013, 2014 Pieter Wuille *
|
|
* Distributed under the MIT software license, see the accompanying *
|
|
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
|
**********************************************************************/
|
|
|
|
#ifndef _SECP256K1_FIELD_IMPL_H_
|
|
#define _SECP256K1_FIELD_IMPL_H_
|
|
|
|
#if defined HAVE_CONFIG_H
|
|
#include "libsecp256k1-config.h"
|
|
#endif
|
|
|
|
#include "util.h"
|
|
|
|
#if defined(USE_FIELD_10X26)
|
|
#include "field_10x26_impl.h"
|
|
#elif defined(USE_FIELD_5X52)
|
|
#include "field_5x52_impl.h"
|
|
#else
|
|
#error "Please select field implementation"
|
|
#endif
|
|
|
|
SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
|
|
secp256k1_fe na;
|
|
secp256k1_fe_negate(&na, a, 1);
|
|
secp256k1_fe_add(&na, b);
|
|
return secp256k1_fe_normalizes_to_zero(&na);
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
|
secp256k1_fe na;
|
|
secp256k1_fe_negate(&na, a, 1);
|
|
secp256k1_fe_add(&na, b);
|
|
return secp256k1_fe_normalizes_to_zero_var(&na);
|
|
}
|
|
|
|
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
|
|
/** Given that p is congruent to 3 mod 4, we can compute the square root of
|
|
* a mod p as the (p+1)/4'th power of a.
|
|
*
|
|
* As (p+1)/4 is an even number, it will have the same result for a and for
|
|
* (-a). Only one of these two numbers actually has a square root however,
|
|
* so we test at the end by squaring and comparing to the input.
|
|
* Also because (p+1)/4 is an even number, the computed square root is
|
|
* itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
|
|
*/
|
|
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
|
|
int j;
|
|
|
|
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
|
|
* { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
|
|
* 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
|
|
*/
|
|
|
|
secp256k1_fe_sqr(&x2, a);
|
|
secp256k1_fe_mul(&x2, &x2, a);
|
|
|
|
secp256k1_fe_sqr(&x3, &x2);
|
|
secp256k1_fe_mul(&x3, &x3, a);
|
|
|
|
x6 = x3;
|
|
for (j=0; j<3; j++) {
|
|
secp256k1_fe_sqr(&x6, &x6);
|
|
}
|
|
secp256k1_fe_mul(&x6, &x6, &x3);
|
|
|
|
x9 = x6;
|
|
for (j=0; j<3; j++) {
|
|
secp256k1_fe_sqr(&x9, &x9);
|
|
}
|
|
secp256k1_fe_mul(&x9, &x9, &x3);
|
|
|
|
x11 = x9;
|
|
for (j=0; j<2; j++) {
|
|
secp256k1_fe_sqr(&x11, &x11);
|
|
}
|
|
secp256k1_fe_mul(&x11, &x11, &x2);
|
|
|
|
x22 = x11;
|
|
for (j=0; j<11; j++) {
|
|
secp256k1_fe_sqr(&x22, &x22);
|
|
}
|
|
secp256k1_fe_mul(&x22, &x22, &x11);
|
|
|
|
x44 = x22;
|
|
for (j=0; j<22; j++) {
|
|
secp256k1_fe_sqr(&x44, &x44);
|
|
}
|
|
secp256k1_fe_mul(&x44, &x44, &x22);
|
|
|
|
x88 = x44;
|
|
for (j=0; j<44; j++) {
|
|
secp256k1_fe_sqr(&x88, &x88);
|
|
}
|
|
secp256k1_fe_mul(&x88, &x88, &x44);
|
|
|
|
x176 = x88;
|
|
for (j=0; j<88; j++) {
|
|
secp256k1_fe_sqr(&x176, &x176);
|
|
}
|
|
secp256k1_fe_mul(&x176, &x176, &x88);
|
|
|
|
x220 = x176;
|
|
for (j=0; j<44; j++) {
|
|
secp256k1_fe_sqr(&x220, &x220);
|
|
}
|
|
secp256k1_fe_mul(&x220, &x220, &x44);
|
|
|
|
x223 = x220;
|
|
for (j=0; j<3; j++) {
|
|
secp256k1_fe_sqr(&x223, &x223);
|
|
}
|
|
secp256k1_fe_mul(&x223, &x223, &x3);
|
|
|
|
/* The final result is then assembled using a sliding window over the blocks. */
|
|
|
|
t1 = x223;
|
|
for (j=0; j<23; j++) {
|
|
secp256k1_fe_sqr(&t1, &t1);
|
|
}
|
|
secp256k1_fe_mul(&t1, &t1, &x22);
|
|
for (j=0; j<6; j++) {
|
|
secp256k1_fe_sqr(&t1, &t1);
|
|
}
|
|
secp256k1_fe_mul(&t1, &t1, &x2);
|
|
secp256k1_fe_sqr(&t1, &t1);
|
|
secp256k1_fe_sqr(r, &t1);
|
|
|
|
/* Check that a square root was actually calculated */
|
|
|
|
secp256k1_fe_sqr(&t1, r);
|
|
return secp256k1_fe_equal(&t1, a);
|
|
}
|
|
|
|
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
|
|
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
|
|
int j;
|
|
|
|
/** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
|
|
* { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
|
|
* [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
|
|
*/
|
|
|
|
secp256k1_fe_sqr(&x2, a);
|
|
secp256k1_fe_mul(&x2, &x2, a);
|
|
|
|
secp256k1_fe_sqr(&x3, &x2);
|
|
secp256k1_fe_mul(&x3, &x3, a);
|
|
|
|
x6 = x3;
|
|
for (j=0; j<3; j++) {
|
|
secp256k1_fe_sqr(&x6, &x6);
|
|
}
|
|
secp256k1_fe_mul(&x6, &x6, &x3);
|
|
|
|
x9 = x6;
|
|
for (j=0; j<3; j++) {
|
|
secp256k1_fe_sqr(&x9, &x9);
|
|
}
|
|
secp256k1_fe_mul(&x9, &x9, &x3);
|
|
|
|
x11 = x9;
|
|
for (j=0; j<2; j++) {
|
|
secp256k1_fe_sqr(&x11, &x11);
|
|
}
|
|
secp256k1_fe_mul(&x11, &x11, &x2);
|
|
|
|
x22 = x11;
|
|
for (j=0; j<11; j++) {
|
|
secp256k1_fe_sqr(&x22, &x22);
|
|
}
|
|
secp256k1_fe_mul(&x22, &x22, &x11);
|
|
|
|
x44 = x22;
|
|
for (j=0; j<22; j++) {
|
|
secp256k1_fe_sqr(&x44, &x44);
|
|
}
|
|
secp256k1_fe_mul(&x44, &x44, &x22);
|
|
|
|
x88 = x44;
|
|
for (j=0; j<44; j++) {
|
|
secp256k1_fe_sqr(&x88, &x88);
|
|
}
|
|
secp256k1_fe_mul(&x88, &x88, &x44);
|
|
|
|
x176 = x88;
|
|
for (j=0; j<88; j++) {
|
|
secp256k1_fe_sqr(&x176, &x176);
|
|
}
|
|
secp256k1_fe_mul(&x176, &x176, &x88);
|
|
|
|
x220 = x176;
|
|
for (j=0; j<44; j++) {
|
|
secp256k1_fe_sqr(&x220, &x220);
|
|
}
|
|
secp256k1_fe_mul(&x220, &x220, &x44);
|
|
|
|
x223 = x220;
|
|
for (j=0; j<3; j++) {
|
|
secp256k1_fe_sqr(&x223, &x223);
|
|
}
|
|
secp256k1_fe_mul(&x223, &x223, &x3);
|
|
|
|
/* The final result is then assembled using a sliding window over the blocks. */
|
|
|
|
t1 = x223;
|
|
for (j=0; j<23; j++) {
|
|
secp256k1_fe_sqr(&t1, &t1);
|
|
}
|
|
secp256k1_fe_mul(&t1, &t1, &x22);
|
|
for (j=0; j<5; j++) {
|
|
secp256k1_fe_sqr(&t1, &t1);
|
|
}
|
|
secp256k1_fe_mul(&t1, &t1, a);
|
|
for (j=0; j<3; j++) {
|
|
secp256k1_fe_sqr(&t1, &t1);
|
|
}
|
|
secp256k1_fe_mul(&t1, &t1, &x2);
|
|
for (j=0; j<2; j++) {
|
|
secp256k1_fe_sqr(&t1, &t1);
|
|
}
|
|
secp256k1_fe_mul(r, a, &t1);
|
|
}
|
|
|
|
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
|
|
#if defined(USE_FIELD_INV_BUILTIN)
|
|
secp256k1_fe_inv(r, a);
|
|
#elif defined(USE_FIELD_INV_NUM)
|
|
secp256k1_num n, m;
|
|
static const secp256k1_fe negone = SECP256K1_FE_CONST(
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL
|
|
);
|
|
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
|
|
static const unsigned char prime[32] = {
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
|
|
};
|
|
unsigned char b[32];
|
|
int res;
|
|
secp256k1_fe c = *a;
|
|
secp256k1_fe_normalize_var(&c);
|
|
secp256k1_fe_get_b32(b, &c);
|
|
secp256k1_num_set_bin(&n, b, 32);
|
|
secp256k1_num_set_bin(&m, prime, 32);
|
|
secp256k1_num_mod_inverse(&n, &n, &m);
|
|
secp256k1_num_get_bin(b, 32, &n);
|
|
res = secp256k1_fe_set_b32(r, b);
|
|
(void)res;
|
|
VERIFY_CHECK(res);
|
|
/* Verify the result is the (unique) valid inverse using non-GMP code. */
|
|
secp256k1_fe_mul(&c, &c, r);
|
|
secp256k1_fe_add(&c, &negone);
|
|
CHECK(secp256k1_fe_normalizes_to_zero_var(&c));
|
|
#else
|
|
#error "Please select field inverse implementation"
|
|
#endif
|
|
}
|
|
|
|
static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len) {
|
|
secp256k1_fe u;
|
|
size_t i;
|
|
if (len < 1) {
|
|
return;
|
|
}
|
|
|
|
VERIFY_CHECK((r + len <= a) || (a + len <= r));
|
|
|
|
r[0] = a[0];
|
|
|
|
i = 0;
|
|
while (++i < len) {
|
|
secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
|
|
}
|
|
|
|
secp256k1_fe_inv_var(&u, &r[--i]);
|
|
|
|
while (i > 0) {
|
|
size_t j = i--;
|
|
secp256k1_fe_mul(&r[j], &r[i], &u);
|
|
secp256k1_fe_mul(&u, &u, &a[j]);
|
|
}
|
|
|
|
r[0] = u;
|
|
}
|
|
|
|
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) {
|
|
#ifndef USE_NUM_NONE
|
|
unsigned char b[32];
|
|
secp256k1_num n;
|
|
secp256k1_num m;
|
|
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
|
|
static const unsigned char prime[32] = {
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
|
|
};
|
|
|
|
secp256k1_fe c = *a;
|
|
secp256k1_fe_normalize_var(&c);
|
|
secp256k1_fe_get_b32(b, &c);
|
|
secp256k1_num_set_bin(&n, b, 32);
|
|
secp256k1_num_set_bin(&m, prime, 32);
|
|
return secp256k1_num_jacobi(&n, &m) >= 0;
|
|
#else
|
|
secp256k1_fe r;
|
|
return secp256k1_fe_sqrt(&r, a);
|
|
#endif
|
|
}
|
|
|
|
#endif
|