mirror of https://github.com/status-im/op-geth.git
885 lines
31 KiB
Go
885 lines
31 KiB
Go
// Copyright 2015 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package core
|
|
|
|
import (
|
|
"crypto/ecdsa"
|
|
"math/big"
|
|
"math/rand"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/core/state"
|
|
"github.com/ethereum/go-ethereum/core/types"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/ethdb"
|
|
"github.com/ethereum/go-ethereum/event"
|
|
)
|
|
|
|
func transaction(nonce uint64, gaslimit *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
|
|
tx, _ := types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, big.NewInt(1), nil).SignECDSA(types.HomesteadSigner{}, key)
|
|
return tx
|
|
}
|
|
|
|
func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
|
|
db, _ := ethdb.NewMemDatabase()
|
|
statedb, _ := state.New(common.Hash{}, db)
|
|
|
|
key, _ := crypto.GenerateKey()
|
|
newPool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
|
|
newPool.resetState()
|
|
|
|
return newPool, key
|
|
}
|
|
|
|
func deriveSender(tx *types.Transaction) (common.Address, error) {
|
|
return types.Sender(types.HomesteadSigner{}, tx)
|
|
}
|
|
|
|
// This test simulates a scenario where a new block is imported during a
|
|
// state reset and tests whether the pending state is in sync with the
|
|
// block head event that initiated the resetState().
|
|
func TestStateChangeDuringPoolReset(t *testing.T) {
|
|
var (
|
|
db, _ = ethdb.NewMemDatabase()
|
|
key, _ = crypto.GenerateKey()
|
|
address = crypto.PubkeyToAddress(key.PublicKey)
|
|
mux = new(event.TypeMux)
|
|
statedb, _ = state.New(common.Hash{}, db)
|
|
trigger = false
|
|
)
|
|
|
|
// setup pool with 2 transaction in it
|
|
statedb.SetBalance(address, new(big.Int).Mul(common.Big1, common.Ether))
|
|
|
|
tx0 := transaction(0, big.NewInt(100000), key)
|
|
tx1 := transaction(1, big.NewInt(100000), key)
|
|
|
|
// stateFunc is used multiple times to reset the pending state.
|
|
// when simulate is true it will create a state that indicates
|
|
// that tx0 and tx1 are included in the chain.
|
|
stateFunc := func() (*state.StateDB, error) {
|
|
// delay "state change" by one. The tx pool fetches the
|
|
// state multiple times and by delaying it a bit we simulate
|
|
// a state change between those fetches.
|
|
stdb := statedb
|
|
if trigger {
|
|
statedb, _ = state.New(common.Hash{}, db)
|
|
// simulate that the new head block included tx0 and tx1
|
|
statedb.SetNonce(address, 2)
|
|
statedb.SetBalance(address, new(big.Int).Mul(common.Big1, common.Ether))
|
|
trigger = false
|
|
}
|
|
return stdb, nil
|
|
}
|
|
|
|
gasLimitFunc := func() *big.Int { return big.NewInt(1000000000) }
|
|
|
|
txpool := NewTxPool(testChainConfig(), mux, stateFunc, gasLimitFunc)
|
|
txpool.resetState()
|
|
|
|
nonce := txpool.State().GetNonce(address)
|
|
if nonce != 0 {
|
|
t.Fatalf("Invalid nonce, want 0, got %d", nonce)
|
|
}
|
|
|
|
txpool.AddBatch(types.Transactions{tx0, tx1})
|
|
|
|
nonce = txpool.State().GetNonce(address)
|
|
if nonce != 2 {
|
|
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
|
|
}
|
|
|
|
// trigger state change in the background
|
|
trigger = true
|
|
|
|
txpool.resetState()
|
|
|
|
pendingTx, err := txpool.Pending()
|
|
if err != nil {
|
|
t.Fatalf("Could not fetch pending transactions: %v", err)
|
|
}
|
|
|
|
for addr, txs := range pendingTx {
|
|
t.Logf("%0x: %d\n", addr, len(txs))
|
|
}
|
|
|
|
nonce = txpool.State().GetNonce(address)
|
|
if nonce != 2 {
|
|
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
|
|
}
|
|
}
|
|
|
|
func TestInvalidTransactions(t *testing.T) {
|
|
pool, key := setupTxPool()
|
|
|
|
tx := transaction(0, big.NewInt(100), key)
|
|
from, _ := deriveSender(tx)
|
|
currentState, _ := pool.currentState()
|
|
currentState.AddBalance(from, big.NewInt(1))
|
|
if err := pool.Add(tx); err != ErrInsufficientFunds {
|
|
t.Error("expected", ErrInsufficientFunds)
|
|
}
|
|
|
|
balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(tx.Gas(), tx.GasPrice()))
|
|
currentState.AddBalance(from, balance)
|
|
if err := pool.Add(tx); err != ErrIntrinsicGas {
|
|
t.Error("expected", ErrIntrinsicGas, "got", err)
|
|
}
|
|
|
|
currentState.SetNonce(from, 1)
|
|
currentState.AddBalance(from, big.NewInt(0xffffffffffffff))
|
|
tx = transaction(0, big.NewInt(100000), key)
|
|
if err := pool.Add(tx); err != ErrNonce {
|
|
t.Error("expected", ErrNonce)
|
|
}
|
|
|
|
tx = transaction(1, big.NewInt(100000), key)
|
|
pool.minGasPrice = big.NewInt(1000)
|
|
if err := pool.Add(tx); err != ErrCheap {
|
|
t.Error("expected", ErrCheap, "got", err)
|
|
}
|
|
|
|
pool.SetLocal(tx)
|
|
if err := pool.Add(tx); err != nil {
|
|
t.Error("expected", nil, "got", err)
|
|
}
|
|
}
|
|
|
|
func TestTransactionQueue(t *testing.T) {
|
|
pool, key := setupTxPool()
|
|
tx := transaction(0, big.NewInt(100), key)
|
|
from, _ := deriveSender(tx)
|
|
currentState, _ := pool.currentState()
|
|
currentState.AddBalance(from, big.NewInt(1000))
|
|
pool.resetState()
|
|
pool.enqueueTx(tx.Hash(), tx)
|
|
|
|
pool.promoteExecutables(currentState)
|
|
if len(pool.pending) != 1 {
|
|
t.Error("expected valid txs to be 1 is", len(pool.pending))
|
|
}
|
|
|
|
tx = transaction(1, big.NewInt(100), key)
|
|
from, _ = deriveSender(tx)
|
|
currentState.SetNonce(from, 2)
|
|
pool.enqueueTx(tx.Hash(), tx)
|
|
pool.promoteExecutables(currentState)
|
|
if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok {
|
|
t.Error("expected transaction to be in tx pool")
|
|
}
|
|
|
|
if len(pool.queue) > 0 {
|
|
t.Error("expected transaction queue to be empty. is", len(pool.queue))
|
|
}
|
|
|
|
pool, key = setupTxPool()
|
|
tx1 := transaction(0, big.NewInt(100), key)
|
|
tx2 := transaction(10, big.NewInt(100), key)
|
|
tx3 := transaction(11, big.NewInt(100), key)
|
|
from, _ = deriveSender(tx1)
|
|
currentState, _ = pool.currentState()
|
|
currentState.AddBalance(from, big.NewInt(1000))
|
|
pool.resetState()
|
|
|
|
pool.enqueueTx(tx1.Hash(), tx1)
|
|
pool.enqueueTx(tx2.Hash(), tx2)
|
|
pool.enqueueTx(tx3.Hash(), tx3)
|
|
|
|
pool.promoteExecutables(currentState)
|
|
|
|
if len(pool.pending) != 1 {
|
|
t.Error("expected tx pool to be 1, got", len(pool.pending))
|
|
}
|
|
if pool.queue[from].Len() != 2 {
|
|
t.Error("expected len(queue) == 2, got", pool.queue[from].Len())
|
|
}
|
|
}
|
|
|
|
func TestRemoveTx(t *testing.T) {
|
|
pool, key := setupTxPool()
|
|
tx := transaction(0, big.NewInt(100), key)
|
|
from, _ := deriveSender(tx)
|
|
currentState, _ := pool.currentState()
|
|
currentState.AddBalance(from, big.NewInt(1))
|
|
|
|
pool.enqueueTx(tx.Hash(), tx)
|
|
pool.promoteTx(from, tx.Hash(), tx)
|
|
if len(pool.queue) != 1 {
|
|
t.Error("expected queue to be 1, got", len(pool.queue))
|
|
}
|
|
if len(pool.pending) != 1 {
|
|
t.Error("expected pending to be 1, got", len(pool.pending))
|
|
}
|
|
pool.Remove(tx.Hash())
|
|
if len(pool.queue) > 0 {
|
|
t.Error("expected queue to be 0, got", len(pool.queue))
|
|
}
|
|
if len(pool.pending) > 0 {
|
|
t.Error("expected pending to be 0, got", len(pool.pending))
|
|
}
|
|
}
|
|
|
|
func TestNegativeValue(t *testing.T) {
|
|
pool, key := setupTxPool()
|
|
|
|
tx, _ := types.NewTransaction(0, common.Address{}, big.NewInt(-1), big.NewInt(100), big.NewInt(1), nil).SignECDSA(types.HomesteadSigner{}, key)
|
|
from, _ := deriveSender(tx)
|
|
currentState, _ := pool.currentState()
|
|
currentState.AddBalance(from, big.NewInt(1))
|
|
if err := pool.Add(tx); err != ErrNegativeValue {
|
|
t.Error("expected", ErrNegativeValue, "got", err)
|
|
}
|
|
}
|
|
|
|
func TestTransactionChainFork(t *testing.T) {
|
|
pool, key := setupTxPool()
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
resetState := func() {
|
|
db, _ := ethdb.NewMemDatabase()
|
|
statedb, _ := state.New(common.Hash{}, db)
|
|
pool.currentState = func() (*state.StateDB, error) { return statedb, nil }
|
|
currentState, _ := pool.currentState()
|
|
currentState.AddBalance(addr, big.NewInt(100000000000000))
|
|
pool.resetState()
|
|
}
|
|
resetState()
|
|
|
|
tx := transaction(0, big.NewInt(100000), key)
|
|
if err := pool.add(tx); err != nil {
|
|
t.Error("didn't expect error", err)
|
|
}
|
|
pool.RemoveBatch([]*types.Transaction{tx})
|
|
|
|
// reset the pool's internal state
|
|
resetState()
|
|
if err := pool.add(tx); err != nil {
|
|
t.Error("didn't expect error", err)
|
|
}
|
|
}
|
|
|
|
func TestTransactionDoubleNonce(t *testing.T) {
|
|
pool, key := setupTxPool()
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
resetState := func() {
|
|
db, _ := ethdb.NewMemDatabase()
|
|
statedb, _ := state.New(common.Hash{}, db)
|
|
pool.currentState = func() (*state.StateDB, error) { return statedb, nil }
|
|
currentState, _ := pool.currentState()
|
|
currentState.AddBalance(addr, big.NewInt(100000000000000))
|
|
pool.resetState()
|
|
}
|
|
resetState()
|
|
|
|
signer := types.HomesteadSigner{}
|
|
tx1, _ := types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(100000), big.NewInt(1), nil).SignECDSA(signer, key)
|
|
tx2, _ := types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(1000000), big.NewInt(2), nil).SignECDSA(signer, key)
|
|
tx3, _ := types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(1000000), big.NewInt(1), nil).SignECDSA(signer, key)
|
|
|
|
// Add the first two transaction, ensure higher priced stays only
|
|
if err := pool.add(tx1); err != nil {
|
|
t.Error("didn't expect error", err)
|
|
}
|
|
if err := pool.add(tx2); err != nil {
|
|
t.Error("didn't expect error", err)
|
|
}
|
|
state, _ := pool.currentState()
|
|
pool.promoteExecutables(state)
|
|
if pool.pending[addr].Len() != 1 {
|
|
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
|
|
}
|
|
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
|
|
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
|
|
}
|
|
// Add the thid transaction and ensure it's not saved (smaller price)
|
|
if err := pool.add(tx3); err != nil {
|
|
t.Error("didn't expect error", err)
|
|
}
|
|
pool.promoteExecutables(state)
|
|
if pool.pending[addr].Len() != 1 {
|
|
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
|
|
}
|
|
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
|
|
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
|
|
}
|
|
// Ensure the total transaction count is correct
|
|
if len(pool.all) != 1 {
|
|
t.Error("expected 1 total transactions, got", len(pool.all))
|
|
}
|
|
}
|
|
|
|
func TestMissingNonce(t *testing.T) {
|
|
pool, key := setupTxPool()
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
currentState, _ := pool.currentState()
|
|
currentState.AddBalance(addr, big.NewInt(100000000000000))
|
|
tx := transaction(1, big.NewInt(100000), key)
|
|
if err := pool.add(tx); err != nil {
|
|
t.Error("didn't expect error", err)
|
|
}
|
|
if len(pool.pending) != 0 {
|
|
t.Error("expected 0 pending transactions, got", len(pool.pending))
|
|
}
|
|
if pool.queue[addr].Len() != 1 {
|
|
t.Error("expected 1 queued transaction, got", pool.queue[addr].Len())
|
|
}
|
|
if len(pool.all) != 1 {
|
|
t.Error("expected 1 total transactions, got", len(pool.all))
|
|
}
|
|
}
|
|
|
|
func TestNonceRecovery(t *testing.T) {
|
|
const n = 10
|
|
pool, key := setupTxPool()
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
currentState, _ := pool.currentState()
|
|
currentState.SetNonce(addr, n)
|
|
currentState.AddBalance(addr, big.NewInt(100000000000000))
|
|
pool.resetState()
|
|
tx := transaction(n, big.NewInt(100000), key)
|
|
if err := pool.Add(tx); err != nil {
|
|
t.Error(err)
|
|
}
|
|
// simulate some weird re-order of transactions and missing nonce(s)
|
|
currentState.SetNonce(addr, n-1)
|
|
pool.resetState()
|
|
if fn := pool.pendingState.GetNonce(addr); fn != n+1 {
|
|
t.Errorf("expected nonce to be %d, got %d", n+1, fn)
|
|
}
|
|
}
|
|
|
|
func TestRemovedTxEvent(t *testing.T) {
|
|
pool, key := setupTxPool()
|
|
tx := transaction(0, big.NewInt(1000000), key)
|
|
from, _ := deriveSender(tx)
|
|
currentState, _ := pool.currentState()
|
|
currentState.AddBalance(from, big.NewInt(1000000000000))
|
|
pool.resetState()
|
|
pool.eventMux.Post(RemovedTransactionEvent{types.Transactions{tx}})
|
|
pool.eventMux.Post(ChainHeadEvent{nil})
|
|
if pool.pending[from].Len() != 1 {
|
|
t.Error("expected 1 pending tx, got", pool.pending[from].Len())
|
|
}
|
|
if len(pool.all) != 1 {
|
|
t.Error("expected 1 total transactions, got", len(pool.all))
|
|
}
|
|
}
|
|
|
|
// Tests that if an account runs out of funds, any pending and queued transactions
|
|
// are dropped.
|
|
func TestTransactionDropping(t *testing.T) {
|
|
// Create a test account and fund it
|
|
pool, key := setupTxPool()
|
|
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
|
|
|
|
state, _ := pool.currentState()
|
|
state.AddBalance(account, big.NewInt(1000))
|
|
|
|
// Add some pending and some queued transactions
|
|
var (
|
|
tx0 = transaction(0, big.NewInt(100), key)
|
|
tx1 = transaction(1, big.NewInt(200), key)
|
|
tx10 = transaction(10, big.NewInt(100), key)
|
|
tx11 = transaction(11, big.NewInt(200), key)
|
|
)
|
|
pool.promoteTx(account, tx0.Hash(), tx0)
|
|
pool.promoteTx(account, tx1.Hash(), tx1)
|
|
pool.enqueueTx(tx10.Hash(), tx10)
|
|
pool.enqueueTx(tx11.Hash(), tx11)
|
|
|
|
// Check that pre and post validations leave the pool as is
|
|
if pool.pending[account].Len() != 2 {
|
|
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
|
|
}
|
|
if pool.queue[account].Len() != 2 {
|
|
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
|
|
}
|
|
if len(pool.all) != 4 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
|
|
}
|
|
pool.resetState()
|
|
if pool.pending[account].Len() != 2 {
|
|
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
|
|
}
|
|
if pool.queue[account].Len() != 2 {
|
|
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
|
|
}
|
|
if len(pool.all) != 4 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
|
|
}
|
|
// Reduce the balance of the account, and check that invalidated transactions are dropped
|
|
state.AddBalance(account, big.NewInt(-750))
|
|
pool.resetState()
|
|
|
|
if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
|
|
t.Errorf("funded pending transaction missing: %v", tx0)
|
|
}
|
|
if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok {
|
|
t.Errorf("out-of-fund pending transaction present: %v", tx1)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
|
|
t.Errorf("funded queued transaction missing: %v", tx10)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok {
|
|
t.Errorf("out-of-fund queued transaction present: %v", tx11)
|
|
}
|
|
if len(pool.all) != 2 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 2)
|
|
}
|
|
}
|
|
|
|
// Tests that if a transaction is dropped from the current pending pool (e.g. out
|
|
// of fund), all consecutive (still valid, but not executable) transactions are
|
|
// postponed back into the future queue to prevent broadcasting them.
|
|
func TestTransactionPostponing(t *testing.T) {
|
|
// Create a test account and fund it
|
|
pool, key := setupTxPool()
|
|
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
|
|
|
|
state, _ := pool.currentState()
|
|
state.AddBalance(account, big.NewInt(1000))
|
|
|
|
// Add a batch consecutive pending transactions for validation
|
|
txns := []*types.Transaction{}
|
|
for i := 0; i < 100; i++ {
|
|
var tx *types.Transaction
|
|
if i%2 == 0 {
|
|
tx = transaction(uint64(i), big.NewInt(100), key)
|
|
} else {
|
|
tx = transaction(uint64(i), big.NewInt(500), key)
|
|
}
|
|
pool.promoteTx(account, tx.Hash(), tx)
|
|
txns = append(txns, tx)
|
|
}
|
|
// Check that pre and post validations leave the pool as is
|
|
if pool.pending[account].Len() != len(txns) {
|
|
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns))
|
|
}
|
|
if len(pool.queue) != 0 {
|
|
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0)
|
|
}
|
|
if len(pool.all) != len(txns) {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns))
|
|
}
|
|
pool.resetState()
|
|
if pool.pending[account].Len() != len(txns) {
|
|
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns))
|
|
}
|
|
if len(pool.queue) != 0 {
|
|
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0)
|
|
}
|
|
if len(pool.all) != len(txns) {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns))
|
|
}
|
|
// Reduce the balance of the account, and check that transactions are reorganised
|
|
state.AddBalance(account, big.NewInt(-750))
|
|
pool.resetState()
|
|
|
|
if _, ok := pool.pending[account].txs.items[txns[0].Nonce()]; !ok {
|
|
t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0])
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[txns[0].Nonce()]; ok {
|
|
t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0])
|
|
}
|
|
for i, tx := range txns[1:] {
|
|
if i%2 == 1 {
|
|
if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok {
|
|
t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx.Nonce()]; !ok {
|
|
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
|
|
}
|
|
} else {
|
|
if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok {
|
|
t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx.Nonce()]; ok {
|
|
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
|
|
}
|
|
}
|
|
}
|
|
if len(pool.all) != len(txns)/2 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns)/2)
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction count belonging to a single account goes above
|
|
// some threshold, the higher transactions are dropped to prevent DOS attacks.
|
|
func TestTransactionQueueAccountLimiting(t *testing.T) {
|
|
// Create a test account and fund it
|
|
pool, key := setupTxPool()
|
|
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
|
|
|
|
state, _ := pool.currentState()
|
|
state.AddBalance(account, big.NewInt(1000000))
|
|
pool.resetState()
|
|
|
|
// Keep queuing up transactions and make sure all above a limit are dropped
|
|
for i := uint64(1); i <= maxQueuedPerAccount+5; i++ {
|
|
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
|
|
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
|
|
}
|
|
if len(pool.pending) != 0 {
|
|
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
|
|
}
|
|
if i <= maxQueuedPerAccount {
|
|
if pool.queue[account].Len() != int(i) {
|
|
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i)
|
|
}
|
|
} else {
|
|
if pool.queue[account].Len() != int(maxQueuedPerAccount) {
|
|
t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), maxQueuedPerAccount)
|
|
}
|
|
}
|
|
}
|
|
if len(pool.all) != int(maxQueuedPerAccount) {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), maxQueuedPerAccount)
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction count belonging to multiple accounts go above
|
|
// some threshold, the higher transactions are dropped to prevent DOS attacks.
|
|
func TestTransactionQueueGlobalLimiting(t *testing.T) {
|
|
// Reduce the queue limits to shorten test time
|
|
defer func(old uint64) { maxQueuedInTotal = old }(maxQueuedInTotal)
|
|
maxQueuedInTotal = maxQueuedPerAccount * 3
|
|
|
|
// Create the pool to test the limit enforcement with
|
|
db, _ := ethdb.NewMemDatabase()
|
|
statedb, _ := state.New(common.Hash{}, db)
|
|
|
|
pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
|
|
pool.resetState()
|
|
|
|
// Create a number of test accounts and fund them
|
|
state, _ := pool.currentState()
|
|
|
|
keys := make([]*ecdsa.PrivateKey, 5)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions
|
|
nonces := make(map[common.Address]uint64)
|
|
|
|
txs := make(types.Transactions, 0, 3*maxQueuedInTotal)
|
|
for len(txs) < cap(txs) {
|
|
key := keys[rand.Intn(len(keys))]
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
|
|
txs = append(txs, transaction(nonces[addr]+1, big.NewInt(100000), key))
|
|
nonces[addr]++
|
|
}
|
|
// Import the batch and verify that limits have been enforced
|
|
pool.AddBatch(txs)
|
|
|
|
queued := 0
|
|
for addr, list := range pool.queue {
|
|
if list.Len() > int(maxQueuedPerAccount) {
|
|
t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), maxQueuedPerAccount)
|
|
}
|
|
queued += list.Len()
|
|
}
|
|
if queued > int(maxQueuedInTotal) {
|
|
t.Fatalf("total transactions overflow allowance: %d > %d", queued, maxQueuedInTotal)
|
|
}
|
|
}
|
|
|
|
// Tests that if an account remains idle for a prolonged amount of time, any
|
|
// non-executable transactions queued up are dropped to prevent wasting resources
|
|
// on shuffling them around.
|
|
func TestTransactionQueueTimeLimiting(t *testing.T) {
|
|
// Reduce the queue limits to shorten test time
|
|
defer func(old time.Duration) { maxQueuedLifetime = old }(maxQueuedLifetime)
|
|
defer func(old time.Duration) { evictionInterval = old }(evictionInterval)
|
|
maxQueuedLifetime = time.Second
|
|
evictionInterval = time.Second
|
|
|
|
// Create a test account and fund it
|
|
pool, key := setupTxPool()
|
|
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
|
|
|
|
state, _ := pool.currentState()
|
|
state.AddBalance(account, big.NewInt(1000000))
|
|
|
|
// Queue up a batch of transactions
|
|
for i := uint64(1); i <= maxQueuedPerAccount; i++ {
|
|
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
|
|
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
|
|
}
|
|
}
|
|
// Wait until at least two expiration cycles hit and make sure the transactions are gone
|
|
time.Sleep(2 * evictionInterval)
|
|
if len(pool.queue) > 0 {
|
|
t.Fatalf("old transactions remained after eviction")
|
|
}
|
|
}
|
|
|
|
// Tests that even if the transaction count belonging to a single account goes
|
|
// above some threshold, as long as the transactions are executable, they are
|
|
// accepted.
|
|
func TestTransactionPendingLimiting(t *testing.T) {
|
|
// Create a test account and fund it
|
|
pool, key := setupTxPool()
|
|
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
|
|
|
|
state, _ := pool.currentState()
|
|
state.AddBalance(account, big.NewInt(1000000))
|
|
pool.resetState()
|
|
|
|
// Keep queuing up transactions and make sure all above a limit are dropped
|
|
for i := uint64(0); i < maxQueuedPerAccount+5; i++ {
|
|
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
|
|
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
|
|
}
|
|
if pool.pending[account].Len() != int(i)+1 {
|
|
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1)
|
|
}
|
|
if len(pool.queue) != 0 {
|
|
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0)
|
|
}
|
|
}
|
|
if len(pool.all) != int(maxQueuedPerAccount+5) {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), maxQueuedPerAccount+5)
|
|
}
|
|
}
|
|
|
|
// Tests that the transaction limits are enforced the same way irrelevant whether
|
|
// the transactions are added one by one or in batches.
|
|
func TestTransactionQueueLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 1) }
|
|
func TestTransactionPendingLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 0) }
|
|
|
|
func testTransactionLimitingEquivalency(t *testing.T, origin uint64) {
|
|
// Add a batch of transactions to a pool one by one
|
|
pool1, key1 := setupTxPool()
|
|
account1, _ := deriveSender(transaction(0, big.NewInt(0), key1))
|
|
state1, _ := pool1.currentState()
|
|
state1.AddBalance(account1, big.NewInt(1000000))
|
|
|
|
for i := uint64(0); i < maxQueuedPerAccount+5; i++ {
|
|
if err := pool1.Add(transaction(origin+i, big.NewInt(100000), key1)); err != nil {
|
|
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
|
|
}
|
|
}
|
|
// Add a batch of transactions to a pool in one big batch
|
|
pool2, key2 := setupTxPool()
|
|
account2, _ := deriveSender(transaction(0, big.NewInt(0), key2))
|
|
state2, _ := pool2.currentState()
|
|
state2.AddBalance(account2, big.NewInt(1000000))
|
|
|
|
txns := []*types.Transaction{}
|
|
for i := uint64(0); i < maxQueuedPerAccount+5; i++ {
|
|
txns = append(txns, transaction(origin+i, big.NewInt(100000), key2))
|
|
}
|
|
pool2.AddBatch(txns)
|
|
|
|
// Ensure the batch optimization honors the same pool mechanics
|
|
if len(pool1.pending) != len(pool2.pending) {
|
|
t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending))
|
|
}
|
|
if len(pool1.queue) != len(pool2.queue) {
|
|
t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue), len(pool2.queue))
|
|
}
|
|
if len(pool1.all) != len(pool2.all) {
|
|
t.Errorf("total transaction count mismatch: one-by-one algo %d, batch algo %d", len(pool1.all), len(pool2.all))
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction count belonging to multiple accounts go above
|
|
// some hard threshold, the higher transactions are dropped to prevent DOS
|
|
// attacks.
|
|
func TestTransactionPendingGlobalLimiting(t *testing.T) {
|
|
// Reduce the queue limits to shorten test time
|
|
defer func(old uint64) { maxPendingTotal = old }(maxPendingTotal)
|
|
maxPendingTotal = minPendingPerAccount * 10
|
|
|
|
// Create the pool to test the limit enforcement with
|
|
db, _ := ethdb.NewMemDatabase()
|
|
statedb, _ := state.New(common.Hash{}, db)
|
|
|
|
pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
|
|
pool.resetState()
|
|
|
|
// Create a number of test accounts and fund them
|
|
state, _ := pool.currentState()
|
|
|
|
keys := make([]*ecdsa.PrivateKey, 5)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions
|
|
nonces := make(map[common.Address]uint64)
|
|
|
|
txs := types.Transactions{}
|
|
for _, key := range keys {
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
for j := 0; j < int(maxPendingTotal)/len(keys)*2; j++ {
|
|
txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key))
|
|
nonces[addr]++
|
|
}
|
|
}
|
|
// Import the batch and verify that limits have been enforced
|
|
pool.AddBatch(txs)
|
|
|
|
pending := 0
|
|
for _, list := range pool.pending {
|
|
pending += list.Len()
|
|
}
|
|
if pending > int(maxPendingTotal) {
|
|
t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, maxPendingTotal)
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction count belonging to multiple accounts go above
|
|
// some hard threshold, if they are under the minimum guaranteed slot count then
|
|
// the transactions are still kept.
|
|
func TestTransactionPendingMinimumAllowance(t *testing.T) {
|
|
// Reduce the queue limits to shorten test time
|
|
defer func(old uint64) { maxPendingTotal = old }(maxPendingTotal)
|
|
maxPendingTotal = 0
|
|
|
|
// Create the pool to test the limit enforcement with
|
|
db, _ := ethdb.NewMemDatabase()
|
|
statedb, _ := state.New(common.Hash{}, db)
|
|
|
|
pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
|
|
pool.resetState()
|
|
|
|
// Create a number of test accounts and fund them
|
|
state, _ := pool.currentState()
|
|
|
|
keys := make([]*ecdsa.PrivateKey, 5)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions
|
|
nonces := make(map[common.Address]uint64)
|
|
|
|
txs := types.Transactions{}
|
|
for _, key := range keys {
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
for j := 0; j < int(minPendingPerAccount)*2; j++ {
|
|
txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key))
|
|
nonces[addr]++
|
|
}
|
|
}
|
|
// Import the batch and verify that limits have been enforced
|
|
pool.AddBatch(txs)
|
|
|
|
for addr, list := range pool.pending {
|
|
if list.Len() != int(minPendingPerAccount) {
|
|
t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), minPendingPerAccount)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Benchmarks the speed of validating the contents of the pending queue of the
|
|
// transaction pool.
|
|
func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) }
|
|
func BenchmarkPendingDemotion1000(b *testing.B) { benchmarkPendingDemotion(b, 1000) }
|
|
func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) }
|
|
|
|
func benchmarkPendingDemotion(b *testing.B, size int) {
|
|
// Add a batch of transactions to a pool one by one
|
|
pool, key := setupTxPool()
|
|
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
|
|
state, _ := pool.currentState()
|
|
state.AddBalance(account, big.NewInt(1000000))
|
|
|
|
for i := 0; i < size; i++ {
|
|
tx := transaction(uint64(i), big.NewInt(100000), key)
|
|
pool.promoteTx(account, tx.Hash(), tx)
|
|
}
|
|
// Benchmark the speed of pool validation
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
pool.demoteUnexecutables(state)
|
|
}
|
|
}
|
|
|
|
// Benchmarks the speed of scheduling the contents of the future queue of the
|
|
// transaction pool.
|
|
func BenchmarkFuturePromotion100(b *testing.B) { benchmarkFuturePromotion(b, 100) }
|
|
func BenchmarkFuturePromotion1000(b *testing.B) { benchmarkFuturePromotion(b, 1000) }
|
|
func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) }
|
|
|
|
func benchmarkFuturePromotion(b *testing.B, size int) {
|
|
// Add a batch of transactions to a pool one by one
|
|
pool, key := setupTxPool()
|
|
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
|
|
state, _ := pool.currentState()
|
|
state.AddBalance(account, big.NewInt(1000000))
|
|
|
|
for i := 0; i < size; i++ {
|
|
tx := transaction(uint64(1+i), big.NewInt(100000), key)
|
|
pool.enqueueTx(tx.Hash(), tx)
|
|
}
|
|
// Benchmark the speed of pool validation
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
pool.promoteExecutables(state)
|
|
}
|
|
}
|
|
|
|
// Benchmarks the speed of iterative transaction insertion.
|
|
func BenchmarkPoolInsert(b *testing.B) {
|
|
// Generate a batch of transactions to enqueue into the pool
|
|
pool, key := setupTxPool()
|
|
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
|
|
state, _ := pool.currentState()
|
|
state.AddBalance(account, big.NewInt(1000000))
|
|
|
|
txs := make(types.Transactions, b.N)
|
|
for i := 0; i < b.N; i++ {
|
|
txs[i] = transaction(uint64(i), big.NewInt(100000), key)
|
|
}
|
|
// Benchmark importing the transactions into the queue
|
|
b.ResetTimer()
|
|
for _, tx := range txs {
|
|
pool.Add(tx)
|
|
}
|
|
}
|
|
|
|
// Benchmarks the speed of batched transaction insertion.
|
|
func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100) }
|
|
func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000) }
|
|
func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) }
|
|
|
|
func benchmarkPoolBatchInsert(b *testing.B, size int) {
|
|
// Generate a batch of transactions to enqueue into the pool
|
|
pool, key := setupTxPool()
|
|
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
|
|
state, _ := pool.currentState()
|
|
state.AddBalance(account, big.NewInt(1000000))
|
|
|
|
batches := make([]types.Transactions, b.N)
|
|
for i := 0; i < b.N; i++ {
|
|
batches[i] = make(types.Transactions, size)
|
|
for j := 0; j < size; j++ {
|
|
batches[i][j] = transaction(uint64(size*i+j), big.NewInt(100000), key)
|
|
}
|
|
}
|
|
// Benchmark importing the transactions into the queue
|
|
b.ResetTimer()
|
|
for _, batch := range batches {
|
|
pool.AddBatch(batch)
|
|
}
|
|
}
|