op-geth/p2p/rlpx_test.go
Felix Lange bfbcfbe4a9 all: fix license headers one more time
I forgot to update one instance of "go-ethereum" in commit 3f047be5a.
2015-07-23 18:35:11 +02:00

375 lines
10 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package p2p
import (
"bytes"
"crypto/rand"
"errors"
"fmt"
"io/ioutil"
"net"
"reflect"
"strings"
"sync"
"testing"
"time"
"github.com/davecgh/go-spew/spew"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/crypto/sha3"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/rlp"
)
func TestSharedSecret(t *testing.T) {
prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
pub0 := &prv0.PublicKey
prv1, _ := crypto.GenerateKey()
pub1 := &prv1.PublicKey
ss0, err := ecies.ImportECDSA(prv0).GenerateShared(ecies.ImportECDSAPublic(pub1), sskLen, sskLen)
if err != nil {
return
}
ss1, err := ecies.ImportECDSA(prv1).GenerateShared(ecies.ImportECDSAPublic(pub0), sskLen, sskLen)
if err != nil {
return
}
t.Logf("Secret:\n%v %x\n%v %x", len(ss0), ss0, len(ss0), ss1)
if !bytes.Equal(ss0, ss1) {
t.Errorf("dont match :(")
}
}
func TestEncHandshake(t *testing.T) {
for i := 0; i < 10; i++ {
start := time.Now()
if err := testEncHandshake(nil); err != nil {
t.Fatalf("i=%d %v", i, err)
}
t.Logf("(without token) %d %v\n", i+1, time.Since(start))
}
for i := 0; i < 10; i++ {
tok := make([]byte, shaLen)
rand.Reader.Read(tok)
start := time.Now()
if err := testEncHandshake(tok); err != nil {
t.Fatalf("i=%d %v", i, err)
}
t.Logf("(with token) %d %v\n", i+1, time.Since(start))
}
}
func testEncHandshake(token []byte) error {
type result struct {
side string
id discover.NodeID
err error
}
var (
prv0, _ = crypto.GenerateKey()
prv1, _ = crypto.GenerateKey()
fd0, fd1 = net.Pipe()
c0, c1 = newRLPX(fd0).(*rlpx), newRLPX(fd1).(*rlpx)
output = make(chan result)
)
go func() {
r := result{side: "initiator"}
defer func() { output <- r }()
dest := &discover.Node{ID: discover.PubkeyID(&prv1.PublicKey)}
r.id, r.err = c0.doEncHandshake(prv0, dest)
if r.err != nil {
return
}
id1 := discover.PubkeyID(&prv1.PublicKey)
if r.id != id1 {
r.err = fmt.Errorf("remote ID mismatch: got %v, want: %v", r.id, id1)
}
}()
go func() {
r := result{side: "receiver"}
defer func() { output <- r }()
r.id, r.err = c1.doEncHandshake(prv1, nil)
if r.err != nil {
return
}
id0 := discover.PubkeyID(&prv0.PublicKey)
if r.id != id0 {
r.err = fmt.Errorf("remote ID mismatch: got %v, want: %v", r.id, id0)
}
}()
// wait for results from both sides
r1, r2 := <-output, <-output
if r1.err != nil {
return fmt.Errorf("%s side error: %v", r1.side, r1.err)
}
if r2.err != nil {
return fmt.Errorf("%s side error: %v", r2.side, r2.err)
}
// compare derived secrets
if !reflect.DeepEqual(c0.rw.egressMAC, c1.rw.ingressMAC) {
return fmt.Errorf("egress mac mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.egressMAC, c1.rw.ingressMAC)
}
if !reflect.DeepEqual(c0.rw.ingressMAC, c1.rw.egressMAC) {
return fmt.Errorf("ingress mac mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.ingressMAC, c1.rw.egressMAC)
}
if !reflect.DeepEqual(c0.rw.enc, c1.rw.enc) {
return fmt.Errorf("enc cipher mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.enc, c1.rw.enc)
}
if !reflect.DeepEqual(c0.rw.dec, c1.rw.dec) {
return fmt.Errorf("dec cipher mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.dec, c1.rw.dec)
}
return nil
}
func TestProtocolHandshake(t *testing.T) {
var (
prv0, _ = crypto.GenerateKey()
node0 = &discover.Node{ID: discover.PubkeyID(&prv0.PublicKey), IP: net.IP{1, 2, 3, 4}, TCP: 33}
hs0 = &protoHandshake{Version: 3, ID: node0.ID, Caps: []Cap{{"a", 0}, {"b", 2}}}
prv1, _ = crypto.GenerateKey()
node1 = &discover.Node{ID: discover.PubkeyID(&prv1.PublicKey), IP: net.IP{5, 6, 7, 8}, TCP: 44}
hs1 = &protoHandshake{Version: 3, ID: node1.ID, Caps: []Cap{{"c", 1}, {"d", 3}}}
fd0, fd1 = net.Pipe()
wg sync.WaitGroup
)
wg.Add(2)
go func() {
defer wg.Done()
rlpx := newRLPX(fd0)
remid, err := rlpx.doEncHandshake(prv0, node1)
if err != nil {
t.Errorf("dial side enc handshake failed: %v", err)
return
}
if remid != node1.ID {
t.Errorf("dial side remote id mismatch: got %v, want %v", remid, node1.ID)
return
}
phs, err := rlpx.doProtoHandshake(hs0)
if err != nil {
t.Errorf("dial side proto handshake error: %v", err)
return
}
if !reflect.DeepEqual(phs, hs1) {
t.Errorf("dial side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs1))
return
}
rlpx.close(DiscQuitting)
}()
go func() {
defer wg.Done()
rlpx := newRLPX(fd1)
remid, err := rlpx.doEncHandshake(prv1, nil)
if err != nil {
t.Errorf("listen side enc handshake failed: %v", err)
return
}
if remid != node0.ID {
t.Errorf("listen side remote id mismatch: got %v, want %v", remid, node0.ID)
return
}
phs, err := rlpx.doProtoHandshake(hs1)
if err != nil {
t.Errorf("listen side proto handshake error: %v", err)
return
}
if !reflect.DeepEqual(phs, hs0) {
t.Errorf("listen side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs0))
return
}
if err := ExpectMsg(rlpx, discMsg, []DiscReason{DiscQuitting}); err != nil {
t.Errorf("error receiving disconnect: %v", err)
}
}()
wg.Wait()
}
func TestProtocolHandshakeErrors(t *testing.T) {
our := &protoHandshake{Version: 3, Caps: []Cap{{"foo", 2}, {"bar", 3}}, Name: "quux"}
id := randomID()
tests := []struct {
code uint64
msg interface{}
err error
}{
{
code: discMsg,
msg: []DiscReason{DiscQuitting},
err: DiscQuitting,
},
{
code: 0x989898,
msg: []byte{1},
err: errors.New("expected handshake, got 989898"),
},
{
code: handshakeMsg,
msg: make([]byte, baseProtocolMaxMsgSize+2),
err: errors.New("message too big"),
},
{
code: handshakeMsg,
msg: []byte{1, 2, 3},
err: newPeerError(errInvalidMsg, "(code 0) (size 4) rlp: expected input list for p2p.protoHandshake"),
},
{
code: handshakeMsg,
msg: &protoHandshake{Version: 9944, ID: id},
err: DiscIncompatibleVersion,
},
{
code: handshakeMsg,
msg: &protoHandshake{Version: 3},
err: DiscInvalidIdentity,
},
}
for i, test := range tests {
p1, p2 := MsgPipe()
go Send(p1, test.code, test.msg)
_, err := readProtocolHandshake(p2, our)
if !reflect.DeepEqual(err, test.err) {
t.Errorf("test %d: error mismatch: got %q, want %q", i, err, test.err)
}
}
}
func TestRLPXFrameFake(t *testing.T) {
buf := new(bytes.Buffer)
hash := fakeHash([]byte{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})
rw := newRLPXFrameRW(buf, secrets{
AES: crypto.Sha3(),
MAC: crypto.Sha3(),
IngressMAC: hash,
EgressMAC: hash,
})
golden := unhex(`
00828ddae471818bb0bfa6b551d1cb42
01010101010101010101010101010101
ba628a4ba590cb43f7848f41c4382885
01010101010101010101010101010101
`)
// Check WriteMsg. This puts a message into the buffer.
if err := Send(rw, 8, []uint{1, 2, 3, 4}); err != nil {
t.Fatalf("WriteMsg error: %v", err)
}
written := buf.Bytes()
if !bytes.Equal(written, golden) {
t.Fatalf("output mismatch:\n got: %x\n want: %x", written, golden)
}
// Check ReadMsg. It reads the message encoded by WriteMsg, which
// is equivalent to the golden message above.
msg, err := rw.ReadMsg()
if err != nil {
t.Fatalf("ReadMsg error: %v", err)
}
if msg.Size != 5 {
t.Errorf("msg size mismatch: got %d, want %d", msg.Size, 5)
}
if msg.Code != 8 {
t.Errorf("msg code mismatch: got %d, want %d", msg.Code, 8)
}
payload, _ := ioutil.ReadAll(msg.Payload)
wantPayload := unhex("C401020304")
if !bytes.Equal(payload, wantPayload) {
t.Errorf("msg payload mismatch:\ngot %x\nwant %x", payload, wantPayload)
}
}
type fakeHash []byte
func (fakeHash) Write(p []byte) (int, error) { return len(p), nil }
func (fakeHash) Reset() {}
func (fakeHash) BlockSize() int { return 0 }
func (h fakeHash) Size() int { return len(h) }
func (h fakeHash) Sum(b []byte) []byte { return append(b, h...) }
func TestRLPXFrameRW(t *testing.T) {
var (
aesSecret = make([]byte, 16)
macSecret = make([]byte, 16)
egressMACinit = make([]byte, 32)
ingressMACinit = make([]byte, 32)
)
for _, s := range [][]byte{aesSecret, macSecret, egressMACinit, ingressMACinit} {
rand.Read(s)
}
conn := new(bytes.Buffer)
s1 := secrets{
AES: aesSecret,
MAC: macSecret,
EgressMAC: sha3.NewKeccak256(),
IngressMAC: sha3.NewKeccak256(),
}
s1.EgressMAC.Write(egressMACinit)
s1.IngressMAC.Write(ingressMACinit)
rw1 := newRLPXFrameRW(conn, s1)
s2 := secrets{
AES: aesSecret,
MAC: macSecret,
EgressMAC: sha3.NewKeccak256(),
IngressMAC: sha3.NewKeccak256(),
}
s2.EgressMAC.Write(ingressMACinit)
s2.IngressMAC.Write(egressMACinit)
rw2 := newRLPXFrameRW(conn, s2)
// send some messages
for i := 0; i < 10; i++ {
// write message into conn buffer
wmsg := []interface{}{"foo", "bar", strings.Repeat("test", i)}
err := Send(rw1, uint64(i), wmsg)
if err != nil {
t.Fatalf("WriteMsg error (i=%d): %v", i, err)
}
// read message that rw1 just wrote
msg, err := rw2.ReadMsg()
if err != nil {
t.Fatalf("ReadMsg error (i=%d): %v", i, err)
}
if msg.Code != uint64(i) {
t.Fatalf("msg code mismatch: got %d, want %d", msg.Code, i)
}
payload, _ := ioutil.ReadAll(msg.Payload)
wantPayload, _ := rlp.EncodeToBytes(wmsg)
if !bytes.Equal(payload, wantPayload) {
t.Fatalf("msg payload mismatch:\ngot %x\nwant %x", payload, wantPayload)
}
}
}