mirror of
https://github.com/status-im/op-geth.git
synced 2025-01-28 07:25:18 +00:00
555273495b
This PR implements a differenceIterator, which allows iterating over trie nodes that exist in one trie but not in another. This is a prerequisite for most GC strategies, in order to find obsolete nodes.
366 lines
9.8 KiB
Go
366 lines
9.8 KiB
Go
// Copyright 2014 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package trie
|
|
|
|
import (
|
|
"bytes"
|
|
"github.com/ethereum/go-ethereum/common"
|
|
)
|
|
|
|
// Iterator is a key-value trie iterator that traverses a Trie.
|
|
type Iterator struct {
|
|
nodeIt NodeIterator
|
|
|
|
Key []byte // Current data key on which the iterator is positioned on
|
|
Value []byte // Current data value on which the iterator is positioned on
|
|
}
|
|
|
|
// NewIterator creates a new key-value iterator.
|
|
func NewIterator(trie *Trie) *Iterator {
|
|
return &Iterator{
|
|
nodeIt: NewNodeIterator(trie),
|
|
}
|
|
}
|
|
|
|
// FromNodeIterator creates a new key-value iterator from a node iterator
|
|
func NewIteratorFromNodeIterator(it NodeIterator) *Iterator {
|
|
return &Iterator{
|
|
nodeIt: it,
|
|
}
|
|
}
|
|
|
|
// Next moves the iterator forward one key-value entry.
|
|
func (it *Iterator) Next() bool {
|
|
for it.nodeIt.Next(true) {
|
|
if it.nodeIt.Leaf() {
|
|
it.Key = decodeCompact(it.nodeIt.Path())
|
|
it.Value = it.nodeIt.LeafBlob()
|
|
return true
|
|
}
|
|
}
|
|
it.Key = nil
|
|
it.Value = nil
|
|
return false
|
|
}
|
|
|
|
// NodeIterator is an iterator to traverse the trie pre-order.
|
|
type NodeIterator interface {
|
|
// Hash returns the hash of the current node
|
|
Hash() common.Hash
|
|
// Parent returns the hash of the parent of the current node
|
|
Parent() common.Hash
|
|
// Leaf returns true iff the current node is a leaf node.
|
|
Leaf() bool
|
|
// LeafBlob returns the contents of the node, if it is a leaf.
|
|
// Callers must not retain references to the return value after calling Next()
|
|
LeafBlob() []byte
|
|
// Path returns the hex-encoded path to the current node.
|
|
// Callers must not retain references to the return value after calling Next()
|
|
Path() []byte
|
|
// Next moves the iterator to the next node. If the parameter is false, any child
|
|
// nodes will be skipped.
|
|
Next(bool) bool
|
|
// Error returns the error status of the iterator.
|
|
Error() error
|
|
}
|
|
|
|
// nodeIteratorState represents the iteration state at one particular node of the
|
|
// trie, which can be resumed at a later invocation.
|
|
type nodeIteratorState struct {
|
|
hash common.Hash // Hash of the node being iterated (nil if not standalone)
|
|
node node // Trie node being iterated
|
|
parent common.Hash // Hash of the first full ancestor node (nil if current is the root)
|
|
child int // Child to be processed next
|
|
pathlen int // Length of the path to this node
|
|
}
|
|
|
|
type nodeIterator struct {
|
|
trie *Trie // Trie being iterated
|
|
stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state
|
|
|
|
err error // Failure set in case of an internal error in the iterator
|
|
|
|
path []byte // Path to the current node
|
|
}
|
|
|
|
// NewNodeIterator creates an post-order trie iterator.
|
|
func NewNodeIterator(trie *Trie) NodeIterator {
|
|
if trie.Hash() == emptyState {
|
|
return new(nodeIterator)
|
|
}
|
|
return &nodeIterator{trie: trie}
|
|
}
|
|
|
|
// Hash returns the hash of the current node
|
|
func (it *nodeIterator) Hash() common.Hash {
|
|
if len(it.stack) == 0 {
|
|
return common.Hash{}
|
|
}
|
|
|
|
return it.stack[len(it.stack)-1].hash
|
|
}
|
|
|
|
// Parent returns the hash of the parent node
|
|
func (it *nodeIterator) Parent() common.Hash {
|
|
if len(it.stack) == 0 {
|
|
return common.Hash{}
|
|
}
|
|
|
|
return it.stack[len(it.stack)-1].parent
|
|
}
|
|
|
|
// Leaf returns true if the current node is a leaf
|
|
func (it *nodeIterator) Leaf() bool {
|
|
if len(it.stack) == 0 {
|
|
return false
|
|
}
|
|
|
|
_, ok := it.stack[len(it.stack)-1].node.(valueNode)
|
|
return ok
|
|
}
|
|
|
|
// LeafBlob returns the data for the current node, if it is a leaf
|
|
func (it *nodeIterator) LeafBlob() []byte {
|
|
if len(it.stack) == 0 {
|
|
return nil
|
|
}
|
|
|
|
if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
|
|
return []byte(node)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Path returns the hex-encoded path to the current node
|
|
func (it *nodeIterator) Path() []byte {
|
|
return it.path
|
|
}
|
|
|
|
// Error returns the error set in case of an internal error in the iterator
|
|
func (it *nodeIterator) Error() error {
|
|
return it.err
|
|
}
|
|
|
|
// Next moves the iterator to the next node, returning whether there are any
|
|
// further nodes. In case of an internal error this method returns false and
|
|
// sets the Error field to the encountered failure. If `descend` is false,
|
|
// skips iterating over any subnodes of the current node.
|
|
func (it *nodeIterator) Next(descend bool) bool {
|
|
// If the iterator failed previously, don't do anything
|
|
if it.err != nil {
|
|
return false
|
|
}
|
|
// Otherwise step forward with the iterator and report any errors
|
|
if err := it.step(descend); err != nil {
|
|
it.err = err
|
|
return false
|
|
}
|
|
return it.trie != nil
|
|
}
|
|
|
|
// step moves the iterator to the next node of the trie.
|
|
func (it *nodeIterator) step(descend bool) error {
|
|
if it.trie == nil {
|
|
// Abort if we reached the end of the iteration
|
|
return nil
|
|
}
|
|
if len(it.stack) == 0 {
|
|
// Initialize the iterator if we've just started.
|
|
root := it.trie.Hash()
|
|
state := &nodeIteratorState{node: it.trie.root, child: -1}
|
|
if root != emptyRoot {
|
|
state.hash = root
|
|
}
|
|
it.stack = append(it.stack, state)
|
|
return nil
|
|
}
|
|
|
|
if !descend {
|
|
// If we're skipping children, pop the current node first
|
|
it.path = it.path[:it.stack[len(it.stack)-1].pathlen]
|
|
it.stack = it.stack[:len(it.stack)-1]
|
|
}
|
|
|
|
// Continue iteration to the next child
|
|
outer:
|
|
for {
|
|
if len(it.stack) == 0 {
|
|
it.trie = nil
|
|
return nil
|
|
}
|
|
parent := it.stack[len(it.stack)-1]
|
|
ancestor := parent.hash
|
|
if (ancestor == common.Hash{}) {
|
|
ancestor = parent.parent
|
|
}
|
|
if node, ok := parent.node.(*fullNode); ok {
|
|
// Full node, iterate over children
|
|
for parent.child++; parent.child < len(node.Children); parent.child++ {
|
|
child := node.Children[parent.child]
|
|
if child != nil {
|
|
hash, _ := child.cache()
|
|
it.stack = append(it.stack, &nodeIteratorState{
|
|
hash: common.BytesToHash(hash),
|
|
node: child,
|
|
parent: ancestor,
|
|
child: -1,
|
|
pathlen: len(it.path),
|
|
})
|
|
it.path = append(it.path, byte(parent.child))
|
|
break outer
|
|
}
|
|
}
|
|
} else if node, ok := parent.node.(*shortNode); ok {
|
|
// Short node, return the pointer singleton child
|
|
if parent.child < 0 {
|
|
parent.child++
|
|
hash, _ := node.Val.cache()
|
|
it.stack = append(it.stack, &nodeIteratorState{
|
|
hash: common.BytesToHash(hash),
|
|
node: node.Val,
|
|
parent: ancestor,
|
|
child: -1,
|
|
pathlen: len(it.path),
|
|
})
|
|
if hasTerm(node.Key) {
|
|
it.path = append(it.path, node.Key[:len(node.Key)-1]...)
|
|
} else {
|
|
it.path = append(it.path, node.Key...)
|
|
}
|
|
break
|
|
}
|
|
} else if hash, ok := parent.node.(hashNode); ok {
|
|
// Hash node, resolve the hash child from the database
|
|
if parent.child < 0 {
|
|
parent.child++
|
|
node, err := it.trie.resolveHash(hash, nil, nil)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
it.stack = append(it.stack, &nodeIteratorState{
|
|
hash: common.BytesToHash(hash),
|
|
node: node,
|
|
parent: ancestor,
|
|
child: -1,
|
|
pathlen: len(it.path),
|
|
})
|
|
break
|
|
}
|
|
}
|
|
it.path = it.path[:parent.pathlen]
|
|
it.stack = it.stack[:len(it.stack)-1]
|
|
}
|
|
return nil
|
|
}
|
|
|
|
type differenceIterator struct {
|
|
a, b NodeIterator // Nodes returned are those in b - a.
|
|
eof bool // Indicates a has run out of elements
|
|
count int // Number of nodes scanned on either trie
|
|
}
|
|
|
|
// NewDifferenceIterator constructs a NodeIterator that iterates over elements in b that
|
|
// are not in a. Returns the iterator, and a pointer to an integer recording the number
|
|
// of nodes seen.
|
|
func NewDifferenceIterator(a, b NodeIterator) (NodeIterator, *int) {
|
|
a.Next(true)
|
|
it := &differenceIterator{
|
|
a: a,
|
|
b: b,
|
|
}
|
|
return it, &it.count
|
|
}
|
|
|
|
func (it *differenceIterator) Hash() common.Hash {
|
|
return it.b.Hash()
|
|
}
|
|
|
|
func (it *differenceIterator) Parent() common.Hash {
|
|
return it.b.Parent()
|
|
}
|
|
|
|
func (it *differenceIterator) Leaf() bool {
|
|
return it.b.Leaf()
|
|
}
|
|
|
|
func (it *differenceIterator) LeafBlob() []byte {
|
|
return it.b.LeafBlob()
|
|
}
|
|
|
|
func (it *differenceIterator) Path() []byte {
|
|
return it.b.Path()
|
|
}
|
|
|
|
func (it *differenceIterator) Next(bool) bool {
|
|
// Invariants:
|
|
// - We always advance at least one element in b.
|
|
// - At the start of this function, a's path is lexically greater than b's.
|
|
if !it.b.Next(true) {
|
|
return false
|
|
}
|
|
it.count += 1
|
|
|
|
if it.eof {
|
|
// a has reached eof, so we just return all elements from b
|
|
return true
|
|
}
|
|
|
|
for {
|
|
apath, bpath := it.a.Path(), it.b.Path()
|
|
switch bytes.Compare(apath, bpath) {
|
|
case -1:
|
|
// b jumped past a; advance a
|
|
if !it.a.Next(true) {
|
|
it.eof = true
|
|
return true
|
|
}
|
|
it.count += 1
|
|
case 1:
|
|
// b is before a
|
|
return true
|
|
case 0:
|
|
if it.a.Hash() != it.b.Hash() || it.a.Leaf() != it.b.Leaf() {
|
|
// Keys are identical, but hashes or leaf status differs
|
|
return true
|
|
}
|
|
if it.a.Leaf() && it.b.Leaf() && !bytes.Equal(it.a.LeafBlob(), it.b.LeafBlob()) {
|
|
// Both are leaf nodes, but with different values
|
|
return true
|
|
}
|
|
|
|
// a and b are identical; skip this whole subtree if the nodes have hashes
|
|
hasHash := it.a.Hash() == common.Hash{}
|
|
if !it.b.Next(hasHash) {
|
|
return false
|
|
}
|
|
it.count += 1
|
|
if !it.a.Next(hasHash) {
|
|
it.eof = true
|
|
return true
|
|
}
|
|
it.count += 1
|
|
}
|
|
}
|
|
}
|
|
|
|
func (it *differenceIterator) Error() error {
|
|
if err := it.a.Error(); err != nil {
|
|
return err
|
|
}
|
|
return it.b.Error()
|
|
}
|