op-geth/core/state_transition.go

256 lines
7.4 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"errors"
"math"
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
)
var (
errInsufficientBalanceForGas = errors.New("insufficient balance to pay for gas")
)
/*
The State Transitioning Model
A state transition is a change made when a transaction is applied to the current world state
The state transitioning model does all the necessary work to work out a valid new state root.
1) Nonce handling
2) Pre pay gas
3) Create a new state object if the recipient is \0*32
4) Value transfer
== If contract creation ==
4a) Attempt to run transaction data
4b) If valid, use result as code for the new state object
== end ==
5) Run Script section
6) Derive new state root
*/
type StateTransition struct {
gp *GasPool
msg Message
gas uint64
gasPrice *big.Int
initialGas uint64
value *big.Int
data []byte
state vm.StateDB
evm *vm.EVM
}
// Message represents a message sent to a contract.
type Message interface {
From() common.Address
//FromFrontier() (common.Address, error)
To() *common.Address
GasPrice() *big.Int
Gas() uint64
Value() *big.Int
Nonce() uint64
CheckNonce() bool
Data() []byte
}
// IntrinsicGas computes the 'intrinsic gas' for a message with the given data.
func IntrinsicGas(data []byte, contractCreation, isEIP155 bool, isEIP2028 bool) (uint64, error) {
// Set the starting gas for the raw transaction
var gas uint64
if contractCreation && isEIP155 {
gas = params.TxGasContractCreation
} else {
gas = params.TxGas
}
// Bump the required gas by the amount of transactional data
if len(data) > 0 {
// Zero and non-zero bytes are priced differently
var nz uint64
for _, byt := range data {
if byt != 0 {
nz++
}
}
// Make sure we don't exceed uint64 for all data combinations
nonZeroGas := params.TxDataNonZeroGasFrontier
if isEIP2028 {
nonZeroGas = params.TxDataNonZeroGasEIP2028
}
if (math.MaxUint64-gas)/nonZeroGas < nz {
return 0, vm.ErrOutOfGas
}
gas += nz * nonZeroGas
z := uint64(len(data)) - nz
if (math.MaxUint64-gas)/params.TxDataZeroGas < z {
return 0, vm.ErrOutOfGas
}
gas += z * params.TxDataZeroGas
}
return gas, nil
}
// NewStateTransition initialises and returns a new state transition object.
func NewStateTransition(evm *vm.EVM, msg Message, gp *GasPool) *StateTransition {
return &StateTransition{
gp: gp,
evm: evm,
msg: msg,
gasPrice: msg.GasPrice(),
value: msg.Value(),
data: msg.Data(),
state: evm.StateDB,
}
}
// ApplyMessage computes the new state by applying the given message
// against the old state within the environment.
//
// ApplyMessage returns the bytes returned by any EVM execution (if it took place),
// the gas used (which includes gas refunds) and an error if it failed. An error always
// indicates a core error meaning that the message would always fail for that particular
// state and would never be accepted within a block.
func ApplyMessage(evm *vm.EVM, msg Message, gp *GasPool) ([]byte, uint64, bool, error) {
return NewStateTransition(evm, msg, gp).TransitionDb()
}
// to returns the recipient of the message.
func (st *StateTransition) to() common.Address {
if st.msg == nil || st.msg.To() == nil /* contract creation */ {
return common.Address{}
}
return *st.msg.To()
}
func (st *StateTransition) useGas(amount uint64) error {
if st.gas < amount {
return vm.ErrOutOfGas
}
st.gas -= amount
return nil
}
func (st *StateTransition) buyGas() error {
mgval := new(big.Int).Mul(new(big.Int).SetUint64(st.msg.Gas()), st.gasPrice)
if st.state.GetBalance(st.msg.From()).Cmp(mgval) < 0 {
return errInsufficientBalanceForGas
}
if err := st.gp.SubGas(st.msg.Gas()); err != nil {
return err
}
st.gas += st.msg.Gas()
st.initialGas = st.msg.Gas()
st.state.SubBalance(st.msg.From(), mgval)
return nil
}
func (st *StateTransition) preCheck() error {
// Make sure this transaction's nonce is correct.
if st.msg.CheckNonce() {
nonce := st.state.GetNonce(st.msg.From())
if nonce < st.msg.Nonce() {
return ErrNonceTooHigh
} else if nonce > st.msg.Nonce() {
return ErrNonceTooLow
}
}
return st.buyGas()
}
// TransitionDb will transition the state by applying the current message and
// returning the result including the used gas. It returns an error if failed.
// An error indicates a consensus issue.
func (st *StateTransition) TransitionDb() (ret []byte, usedGas uint64, failed bool, err error) {
if err = st.preCheck(); err != nil {
return
}
msg := st.msg
sender := vm.AccountRef(msg.From())
homestead := st.evm.ChainConfig().IsHomestead(st.evm.BlockNumber)
istanbul := st.evm.ChainConfig().IsIstanbul(st.evm.BlockNumber)
contractCreation := msg.To() == nil
// Pay intrinsic gas
gas, err := IntrinsicGas(st.data, contractCreation, homestead, istanbul)
if err != nil {
return nil, 0, false, err
}
if err = st.useGas(gas); err != nil {
return nil, 0, false, err
}
var (
evm = st.evm
// vm errors do not effect consensus and are therefor
// not assigned to err, except for insufficient balance
// error.
vmerr error
)
if contractCreation {
ret, _, st.gas, vmerr = evm.Create(sender, st.data, st.gas, st.value)
} else {
// Increment the nonce for the next transaction
st.state.SetNonce(msg.From(), st.state.GetNonce(sender.Address())+1)
ret, st.gas, vmerr = evm.Call(sender, st.to(), st.data, st.gas, st.value)
}
if vmerr != nil {
log.Debug("VM returned with error", "err", vmerr)
// The only possible consensus-error would be if there wasn't
// sufficient balance to make the transfer happen. The first
// balance transfer may never fail.
if vmerr == vm.ErrInsufficientBalance {
return nil, 0, false, vmerr
}
}
st.refundGas()
st.state.AddBalance(st.evm.Coinbase, new(big.Int).Mul(new(big.Int).SetUint64(st.gasUsed()), st.gasPrice))
return ret, st.gasUsed(), vmerr != nil, err
}
func (st *StateTransition) refundGas() {
// Apply refund counter, capped to half of the used gas.
refund := st.gasUsed() / 2
if refund > st.state.GetRefund() {
refund = st.state.GetRefund()
}
st.gas += refund
// Return ETH for remaining gas, exchanged at the original rate.
remaining := new(big.Int).Mul(new(big.Int).SetUint64(st.gas), st.gasPrice)
st.state.AddBalance(st.msg.From(), remaining)
// Also return remaining gas to the block gas counter so it is
// available for the next transaction.
st.gp.AddGas(st.gas)
}
// gasUsed returns the amount of gas used up by the state transition.
func (st *StateTransition) gasUsed() uint64 {
return st.initialGas - st.gas
}