op-geth/swarm/network/stream/visualized_snapshot_sync_sim_test.go
holisticode 90ea542e9e Update visualized snapshot test (#18286)
* swarm/network/stream: fix visualized_snapshot_sync_sim_test

* swarm/network/stream: updated visualized snapshot-test;data in p2p event

* swarm/network/stream: cleanup visualized snapshot sync test

* swarm/network/stream: re-enable t.Skip for visualized test

* swarm/network/stream: addressed PR comments
2018-12-18 07:20:59 +01:00

390 lines
11 KiB
Go

// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// +build withserver
package stream
import (
"bytes"
"context"
"errors"
"fmt"
"io"
"os"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/node"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/protocols"
"github.com/ethereum/go-ethereum/p2p/simulations"
"github.com/ethereum/go-ethereum/p2p/simulations/adapters"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/swarm/log"
"github.com/ethereum/go-ethereum/swarm/network"
"github.com/ethereum/go-ethereum/swarm/network/simulation"
"github.com/ethereum/go-ethereum/swarm/state"
"github.com/ethereum/go-ethereum/swarm/storage"
)
/*
The tests in this file need to be executed with
-tags=withserver
Also, they will stall if executed stand-alone, because they wait
for the visualization frontend to send a POST /runsim message.
*/
//setup the sim, evaluate nodeCount and chunkCount and create the sim
func setupSim(serviceMap map[string]simulation.ServiceFunc) (int, int, *simulation.Simulation) {
nodeCount := *nodes
chunkCount := *chunks
if nodeCount == 0 || chunkCount == 0 {
nodeCount = 32
chunkCount = 1
}
//setup the simulation with server, which means the sim won't run
//until it receives a POST /runsim from the frontend
sim := simulation.New(serviceMap).WithServer(":8888")
return nodeCount, chunkCount, sim
}
//watch for disconnections and wait for healthy
func watchSim(sim *simulation.Simulation) (context.Context, context.CancelFunc) {
ctx, cancelSimRun := context.WithTimeout(context.Background(), 1*time.Minute)
if _, err := sim.WaitTillHealthy(ctx, 2); err != nil {
panic(err)
}
disconnections := sim.PeerEvents(
context.Background(),
sim.NodeIDs(),
simulation.NewPeerEventsFilter().Drop(),
)
go func() {
for d := range disconnections {
log.Error("peer drop", "node", d.NodeID, "peer", d.PeerID)
panic("unexpected disconnect")
cancelSimRun()
}
}()
return ctx, cancelSimRun
}
//This test requests bogus hashes into the network
func TestNonExistingHashesWithServer(t *testing.T) {
t.Skip("temporarily disabled as simulations.WaitTillHealthy cannot be trusted")
nodeCount, _, sim := setupSim(retrievalSimServiceMap)
defer sim.Close()
err := sim.UploadSnapshot(fmt.Sprintf("testing/snapshot_%d.json", nodeCount))
if err != nil {
panic(err)
}
ctx, cancelSimRun := watchSim(sim)
defer cancelSimRun()
//in order to get some meaningful visualization, it is beneficial
//to define a minimum duration of this test
testDuration := 20 * time.Second
result := sim.Run(ctx, func(ctx context.Context, sim *simulation.Simulation) error {
//check on the node's FileStore (netstore)
id := sim.Net.GetRandomUpNode().ID()
item, ok := sim.NodeItem(id, bucketKeyFileStore)
if !ok {
t.Fatalf("No filestore")
}
fileStore := item.(*storage.FileStore)
//create a bogus hash
fakeHash := storage.GenerateRandomChunk(1000).Address()
//try to retrieve it - will propagate RetrieveRequestMsg into the network
reader, _ := fileStore.Retrieve(context.TODO(), fakeHash)
if _, err := reader.Size(ctx, nil); err != nil {
log.Debug("expected error for non-existing chunk")
}
//sleep so that the frontend can have something to display
time.Sleep(testDuration)
return nil
})
if result.Error != nil {
sendSimTerminatedEvent(sim)
t.Fatal(result.Error)
}
sendSimTerminatedEvent(sim)
}
//send a termination event to the frontend
func sendSimTerminatedEvent(sim *simulation.Simulation) {
evt := &simulations.Event{
Type: EventTypeSimTerminated,
Control: false,
}
sim.Net.Events().Send(evt)
}
//This test is the same as the snapshot sync test,
//but with a HTTP server
//It also sends some custom events so that the frontend
//can visualize messages like SendOfferedMsg, WantedHashesMsg, DeliveryMsg
func TestSnapshotSyncWithServer(t *testing.T) {
//t.Skip("temporarily disabled as simulations.WaitTillHealthy cannot be trusted")
//define a wrapper object to be able to pass around data
wrapper := &netWrapper{}
nodeCount := *nodes
chunkCount := *chunks
if nodeCount == 0 || chunkCount == 0 {
nodeCount = 32
chunkCount = 1
}
log.Info(fmt.Sprintf("Running the simulation with %d nodes and %d chunks", nodeCount, chunkCount))
sim := simulation.New(map[string]simulation.ServiceFunc{
"streamer": func(ctx *adapters.ServiceContext, bucket *sync.Map) (s node.Service, cleanup func(), err error) {
n := ctx.Config.Node()
addr := network.NewAddr(n)
store, datadir, err := createTestLocalStorageForID(n.ID(), addr)
if err != nil {
return nil, nil, err
}
bucket.Store(bucketKeyStore, store)
localStore := store.(*storage.LocalStore)
netStore, err := storage.NewNetStore(localStore, nil)
if err != nil {
return nil, nil, err
}
kad := network.NewKademlia(addr.Over(), network.NewKadParams())
delivery := NewDelivery(kad, netStore)
netStore.NewNetFetcherFunc = network.NewFetcherFactory(dummyRequestFromPeers, true).New
r := NewRegistry(addr.ID(), delivery, netStore, state.NewInmemoryStore(), &RegistryOptions{
Retrieval: RetrievalDisabled,
Syncing: SyncingAutoSubscribe,
SyncUpdateDelay: 3 * time.Second,
}, nil)
tr := &testRegistry{
Registry: r,
w: wrapper,
}
bucket.Store(bucketKeyRegistry, tr)
cleanup = func() {
netStore.Close()
tr.Close()
os.RemoveAll(datadir)
}
return tr, cleanup, nil
},
}).WithServer(":8888") //start with the HTTP server
defer sim.Close()
log.Info("Initializing test config")
conf := &synctestConfig{}
//map of discover ID to indexes of chunks expected at that ID
conf.idToChunksMap = make(map[enode.ID][]int)
//map of overlay address to discover ID
conf.addrToIDMap = make(map[string]enode.ID)
//array where the generated chunk hashes will be stored
conf.hashes = make([]storage.Address, 0)
//pass the network to the wrapper object
wrapper.setNetwork(sim.Net)
err := sim.UploadSnapshot(fmt.Sprintf("testing/snapshot_%d.json", nodeCount))
if err != nil {
panic(err)
}
ctx, cancelSimRun := watchSim(sim)
defer cancelSimRun()
//run the sim
result := runSim(conf, ctx, sim, chunkCount)
//send terminated event
evt := &simulations.Event{
Type: EventTypeSimTerminated,
Control: false,
}
go sim.Net.Events().Send(evt)
if result.Error != nil {
panic(result.Error)
}
log.Info("Simulation ended")
}
//testRegistry embeds registry
//it allows to replace the protocol run function
type testRegistry struct {
*Registry
w *netWrapper
}
//Protocols replaces the protocol's run function
func (tr *testRegistry) Protocols() []p2p.Protocol {
regProto := tr.Registry.Protocols()
//set the `stream` protocol's run function with the testRegistry's one
regProto[0].Run = tr.runProto
return regProto
}
//runProto is the new overwritten protocol's run function for this test
func (tr *testRegistry) runProto(p *p2p.Peer, rw p2p.MsgReadWriter) error {
//create a custom rw message ReadWriter
testRw := &testMsgReadWriter{
MsgReadWriter: rw,
Peer: p,
w: tr.w,
Registry: tr.Registry,
}
//now run the actual upper layer `Registry`'s protocol function
return tr.runProtocol(p, testRw)
}
//testMsgReadWriter is a custom rw
//it will allow us to re-use the message twice
type testMsgReadWriter struct {
*Registry
p2p.MsgReadWriter
*p2p.Peer
w *netWrapper
}
//netWrapper wrapper object so we can pass data around
type netWrapper struct {
net *simulations.Network
}
//set the network to the wrapper for later use (used inside the custom rw)
func (w *netWrapper) setNetwork(n *simulations.Network) {
w.net = n
}
//get he network from the wrapper (used inside the custom rw)
func (w *netWrapper) getNetwork() *simulations.Network {
return w.net
}
// ReadMsg reads a message from the underlying MsgReadWriter and emits a
// "message received" event
//we do this because we are interested in the Payload of the message for custom use
//in this test, but messages can only be consumed once (stream io.Reader)
func (ev *testMsgReadWriter) ReadMsg() (p2p.Msg, error) {
//read the message from the underlying rw
msg, err := ev.MsgReadWriter.ReadMsg()
if err != nil {
return msg, err
}
//don't do anything with message codes we actually are not needing/reading
subCodes := []uint64{1, 2, 10}
found := false
for _, c := range subCodes {
if c == msg.Code {
found = true
}
}
//just return if not a msg code we are interested in
if !found {
return msg, nil
}
//we use a io.TeeReader so that we can read the message twice
//the Payload is a io.Reader, so if we read from it, the actual protocol handler
//cannot access it anymore.
//But we need that handler to be able to consume the message as normal,
//as if we would not do anything here with that message
var buf bytes.Buffer
tee := io.TeeReader(msg.Payload, &buf)
mcp := &p2p.Msg{
Code: msg.Code,
Size: msg.Size,
ReceivedAt: msg.ReceivedAt,
Payload: tee,
}
//assign the copy for later use
msg.Payload = &buf
//now let's look into the message
var wmsg protocols.WrappedMsg
err = mcp.Decode(&wmsg)
if err != nil {
log.Error(err.Error())
return msg, err
}
//create a new message from the code
val, ok := ev.Registry.GetSpec().NewMsg(mcp.Code)
if !ok {
return msg, errors.New(fmt.Sprintf("Invalid message code: %v", msg.Code))
}
//decode it
if err := rlp.DecodeBytes(wmsg.Payload, val); err != nil {
return msg, errors.New(fmt.Sprintf("Decoding error <= %v: %v", msg, err))
}
//now for every message type we are interested in, create a custom event and send it
var evt *simulations.Event
switch val := val.(type) {
case *OfferedHashesMsg:
evt = &simulations.Event{
Type: EventTypeChunkOffered,
Node: ev.w.getNetwork().GetNode(ev.ID()),
Control: false,
Data: val.Hashes,
}
case *WantedHashesMsg:
evt = &simulations.Event{
Type: EventTypeChunkWanted,
Node: ev.w.getNetwork().GetNode(ev.ID()),
Control: false,
}
case *ChunkDeliveryMsgSyncing:
evt = &simulations.Event{
Type: EventTypeChunkDelivered,
Node: ev.w.getNetwork().GetNode(ev.ID()),
Control: false,
Data: val.Addr.String(),
}
}
if evt != nil {
//send custom event to feed; frontend will listen to it and display
ev.w.getNetwork().Events().Send(evt)
}
return msg, nil
}