mirror of
https://github.com/status-im/op-geth.git
synced 2025-01-17 02:00:56 +00:00
5f7826270c
* common/math: optimize PaddedBigBytes, use it more name old time/op new time/op delta PaddedBigBytes-8 71.1ns ± 5% 46.1ns ± 1% -35.15% (p=0.000 n=20+19) name old alloc/op new alloc/op delta PaddedBigBytes-8 48.0B ± 0% 32.0B ± 0% -33.33% (p=0.000 n=20+20) * all: unify big.Int zero checks Various checks were in use. This commit replaces them all with Int.Sign, which is cheaper and less code. eg templates: func before(x *big.Int) bool { return x.BitLen() == 0 } func after(x *big.Int) bool { return x.Sign() == 0 } func before(x *big.Int) bool { return x.BitLen() > 0 } func after(x *big.Int) bool { return x.Sign() != 0 } func before(x *big.Int) int { return x.Cmp(common.Big0) } func after(x *big.Int) int { return x.Sign() } * common/math, crypto/secp256k1: make ReadBits public in package math
161 lines
4.1 KiB
Go
161 lines
4.1 KiB
Go
// Copyright 2017 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Package math provides integer math utilities.
|
|
package math
|
|
|
|
import (
|
|
"math/big"
|
|
)
|
|
|
|
var (
|
|
tt255 = BigPow(2, 255)
|
|
tt256 = BigPow(2, 256)
|
|
tt256m1 = new(big.Int).Sub(tt256, big.NewInt(1))
|
|
MaxBig256 = new(big.Int).Set(tt256m1)
|
|
)
|
|
|
|
const (
|
|
// number of bits in a big.Word
|
|
wordBits = 32 << (uint64(^big.Word(0)) >> 63)
|
|
// number of bytes in a big.Word
|
|
wordBytes = wordBits / 8
|
|
)
|
|
|
|
// ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax.
|
|
// Leading zeros are accepted. The empty string parses as zero.
|
|
func ParseBig256(s string) (*big.Int, bool) {
|
|
if s == "" {
|
|
return new(big.Int), true
|
|
}
|
|
var bigint *big.Int
|
|
var ok bool
|
|
if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") {
|
|
bigint, ok = new(big.Int).SetString(s[2:], 16)
|
|
} else {
|
|
bigint, ok = new(big.Int).SetString(s, 10)
|
|
}
|
|
if ok && bigint.BitLen() > 256 {
|
|
bigint, ok = nil, false
|
|
}
|
|
return bigint, ok
|
|
}
|
|
|
|
// MustParseBig parses s as a 256 bit big integer and panics if the string is invalid.
|
|
func MustParseBig256(s string) *big.Int {
|
|
v, ok := ParseBig256(s)
|
|
if !ok {
|
|
panic("invalid 256 bit integer: " + s)
|
|
}
|
|
return v
|
|
}
|
|
|
|
// BigPow returns a ** b as a big integer.
|
|
func BigPow(a, b int64) *big.Int {
|
|
r := big.NewInt(a)
|
|
return r.Exp(r, big.NewInt(b), nil)
|
|
}
|
|
|
|
// BigMax returns the larger of x or y.
|
|
func BigMax(x, y *big.Int) *big.Int {
|
|
if x.Cmp(y) < 0 {
|
|
return y
|
|
}
|
|
return x
|
|
}
|
|
|
|
// BigMin returns the smaller of x or y.
|
|
func BigMin(x, y *big.Int) *big.Int {
|
|
if x.Cmp(y) > 0 {
|
|
return y
|
|
}
|
|
return x
|
|
}
|
|
|
|
// FirstBitSet returns the index of the first 1 bit in v, counting from LSB.
|
|
func FirstBitSet(v *big.Int) int {
|
|
for i := 0; i < v.BitLen(); i++ {
|
|
if v.Bit(i) > 0 {
|
|
return i
|
|
}
|
|
}
|
|
return v.BitLen()
|
|
}
|
|
|
|
// PaddedBigBytes encodes a big integer as a big-endian byte slice. The length
|
|
// of the slice is at least n bytes.
|
|
func PaddedBigBytes(bigint *big.Int, n int) []byte {
|
|
if bigint.BitLen()/8 >= n {
|
|
return bigint.Bytes()
|
|
}
|
|
ret := make([]byte, n)
|
|
ReadBits(bigint, ret)
|
|
return ret
|
|
}
|
|
|
|
// ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure
|
|
// that buf has enough space. If buf is too short the result will be incomplete.
|
|
func ReadBits(bigint *big.Int, buf []byte) {
|
|
i := len(buf)
|
|
for _, d := range bigint.Bits() {
|
|
for j := 0; j < wordBytes && i > 0; j++ {
|
|
i--
|
|
buf[i] = byte(d)
|
|
d >>= 8
|
|
}
|
|
}
|
|
}
|
|
|
|
// U256 encodes as a 256 bit two's complement number. This operation is destructive.
|
|
func U256(x *big.Int) *big.Int {
|
|
return x.And(x, tt256m1)
|
|
}
|
|
|
|
// S256 interprets x as a two's complement number.
|
|
// x must not exceed 256 bits (the result is undefined if it does) and is not modified.
|
|
//
|
|
// S256(0) = 0
|
|
// S256(1) = 1
|
|
// S256(2**255) = -2**255
|
|
// S256(2**256-1) = -1
|
|
func S256(x *big.Int) *big.Int {
|
|
if x.Cmp(tt255) < 0 {
|
|
return x
|
|
} else {
|
|
return new(big.Int).Sub(x, tt256)
|
|
}
|
|
}
|
|
|
|
// Exp implements exponentiation by squaring.
|
|
// Exp returns a newly-allocated big integer and does not change
|
|
// base or exponent. The result is truncated to 256 bits.
|
|
//
|
|
// Courtesy @karalabe and @chfast
|
|
func Exp(base, exponent *big.Int) *big.Int {
|
|
result := big.NewInt(1)
|
|
|
|
for _, word := range exponent.Bits() {
|
|
for i := 0; i < wordBits; i++ {
|
|
if word&1 == 1 {
|
|
U256(result.Mul(result, base))
|
|
}
|
|
U256(base.Mul(base, base))
|
|
word >>= 1
|
|
}
|
|
}
|
|
return result
|
|
}
|