op-geth/trie/sync.go

382 lines
12 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"errors"
"fmt"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
)
// ErrNotRequested is returned by the trie sync when it's requested to process a
// node it did not request.
var ErrNotRequested = errors.New("not requested")
// ErrAlreadyProcessed is returned by the trie sync when it's requested to process a
// node it already processed previously.
var ErrAlreadyProcessed = errors.New("already processed")
// request represents a scheduled or already in-flight state retrieval request.
type request struct {
hash common.Hash // Hash of the node data content to retrieve
data []byte // Data content of the node, cached until all subtrees complete
code bool // Whether this is a code entry
parents []*request // Parent state nodes referencing this entry (notify all upon completion)
depth int // Depth level within the trie the node is located to prioritise DFS
deps int // Number of dependencies before allowed to commit this node
callback LeafCallback // Callback to invoke if a leaf node it reached on this branch
}
// SyncResult is a response with requested data along with it's hash.
type SyncResult struct {
Hash common.Hash // Hash of the originally unknown trie node
Data []byte // Data content of the retrieved node
}
// syncMemBatch is an in-memory buffer of successfully downloaded but not yet
// persisted data items.
type syncMemBatch struct {
nodes map[common.Hash][]byte // In-memory membatch of recently completed nodes
codes map[common.Hash][]byte // In-memory membatch of recently completed codes
}
// newSyncMemBatch allocates a new memory-buffer for not-yet persisted trie nodes.
func newSyncMemBatch() *syncMemBatch {
return &syncMemBatch{
nodes: make(map[common.Hash][]byte),
codes: make(map[common.Hash][]byte),
}
}
// hasNode reports the trie node with specific hash is already cached.
func (batch *syncMemBatch) hasNode(hash common.Hash) bool {
_, ok := batch.nodes[hash]
return ok
}
// hasCode reports the contract code with specific hash is already cached.
func (batch *syncMemBatch) hasCode(hash common.Hash) bool {
_, ok := batch.codes[hash]
return ok
}
// Sync is the main state trie synchronisation scheduler, which provides yet
// unknown trie hashes to retrieve, accepts node data associated with said hashes
// and reconstructs the trie step by step until all is done.
type Sync struct {
database ethdb.KeyValueReader // Persistent database to check for existing entries
membatch *syncMemBatch // Memory buffer to avoid frequent database writes
nodeReqs map[common.Hash]*request // Pending requests pertaining to a trie node hash
codeReqs map[common.Hash]*request // Pending requests pertaining to a code hash
queue *prque.Prque // Priority queue with the pending requests
bloom *SyncBloom // Bloom filter for fast state existence checks
}
// NewSync creates a new trie data download scheduler.
func NewSync(root common.Hash, database ethdb.KeyValueReader, callback LeafCallback, bloom *SyncBloom) *Sync {
ts := &Sync{
database: database,
membatch: newSyncMemBatch(),
nodeReqs: make(map[common.Hash]*request),
codeReqs: make(map[common.Hash]*request),
queue: prque.New(nil),
bloom: bloom,
}
ts.AddSubTrie(root, 0, common.Hash{}, callback)
return ts
}
// AddSubTrie registers a new trie to the sync code, rooted at the designated parent.
func (s *Sync) AddSubTrie(root common.Hash, depth int, parent common.Hash, callback LeafCallback) {
// Short circuit if the trie is empty or already known
if root == emptyRoot {
return
}
if s.membatch.hasNode(root) {
return
}
if s.bloom == nil || s.bloom.Contains(root[:]) {
// Bloom filter says this might be a duplicate, double check.
// If database says yes, then at least the trie node is present
// and we hold the assumption that it's NOT legacy contract code.
blob := rawdb.ReadTrieNode(s.database, root)
if len(blob) > 0 {
return
}
// False positive, bump fault meter
bloomFaultMeter.Mark(1)
}
// Assemble the new sub-trie sync request
req := &request{
hash: root,
depth: depth,
callback: callback,
}
// If this sub-trie has a designated parent, link them together
if parent != (common.Hash{}) {
ancestor := s.nodeReqs[parent]
if ancestor == nil {
panic(fmt.Sprintf("sub-trie ancestor not found: %x", parent))
}
ancestor.deps++
req.parents = append(req.parents, ancestor)
}
s.schedule(req)
}
// AddCodeEntry schedules the direct retrieval of a contract code that should not
// be interpreted as a trie node, but rather accepted and stored into the database
// as is.
func (s *Sync) AddCodeEntry(hash common.Hash, depth int, parent common.Hash) {
// Short circuit if the entry is empty or already known
if hash == emptyState {
return
}
if s.membatch.hasCode(hash) {
return
}
if s.bloom == nil || s.bloom.Contains(hash[:]) {
// Bloom filter says this might be a duplicate, double check.
// If database says yes, the blob is present for sure.
// Note we only check the existence with new code scheme, fast
// sync is expected to run with a fresh new node. Even there
// exists the code with legacy format, fetch and store with
// new scheme anyway.
if blob := rawdb.ReadCodeWithPrefix(s.database, hash); len(blob) > 0 {
return
}
// False positive, bump fault meter
bloomFaultMeter.Mark(1)
}
// Assemble the new sub-trie sync request
req := &request{
hash: hash,
code: true,
depth: depth,
}
// If this sub-trie has a designated parent, link them together
if parent != (common.Hash{}) {
ancestor := s.nodeReqs[parent] // the parent of codereq can ONLY be nodereq
if ancestor == nil {
panic(fmt.Sprintf("raw-entry ancestor not found: %x", parent))
}
ancestor.deps++
req.parents = append(req.parents, ancestor)
}
s.schedule(req)
}
// Missing retrieves the known missing nodes from the trie for retrieval.
func (s *Sync) Missing(max int) []common.Hash {
var requests []common.Hash
for !s.queue.Empty() && (max == 0 || len(requests) < max) {
requests = append(requests, s.queue.PopItem().(common.Hash))
}
return requests
}
// Process injects the received data for requested item. Note it can
// happpen that the single response commits two pending requests(e.g.
// there are two requests one for code and one for node but the hash
// is same). In this case the second response for the same hash will
// be treated as "non-requested" item or "already-processed" item but
// there is no downside.
func (s *Sync) Process(result SyncResult) error {
// If the item was not requested either for code or node, bail out
if s.nodeReqs[result.Hash] == nil && s.codeReqs[result.Hash] == nil {
return ErrNotRequested
}
// There is an pending code request for this data, commit directly
var filled bool
if req := s.codeReqs[result.Hash]; req != nil && req.data == nil {
filled = true
req.data = result.Data
s.commit(req)
}
// There is an pending node request for this data, fill it.
if req := s.nodeReqs[result.Hash]; req != nil && req.data == nil {
filled = true
// Decode the node data content and update the request
node, err := decodeNode(result.Hash[:], result.Data)
if err != nil {
return err
}
req.data = result.Data
// Create and schedule a request for all the children nodes
requests, err := s.children(req, node)
if err != nil {
return err
}
if len(requests) == 0 && req.deps == 0 {
s.commit(req)
} else {
req.deps += len(requests)
for _, child := range requests {
s.schedule(child)
}
}
}
if !filled {
return ErrAlreadyProcessed
}
return nil
}
// Commit flushes the data stored in the internal membatch out to persistent
// storage, returning any occurred error.
func (s *Sync) Commit(dbw ethdb.Batch) error {
// Dump the membatch into a database dbw
for key, value := range s.membatch.nodes {
rawdb.WriteTrieNode(dbw, key, value)
s.bloom.Add(key[:])
}
for key, value := range s.membatch.codes {
rawdb.WriteCode(dbw, key, value)
s.bloom.Add(key[:])
}
// Drop the membatch data and return
s.membatch = newSyncMemBatch()
return nil
}
// Pending returns the number of state entries currently pending for download.
func (s *Sync) Pending() int {
return len(s.nodeReqs) + len(s.codeReqs)
}
// schedule inserts a new state retrieval request into the fetch queue. If there
// is already a pending request for this node, the new request will be discarded
// and only a parent reference added to the old one.
func (s *Sync) schedule(req *request) {
var reqset = s.nodeReqs
if req.code {
reqset = s.codeReqs
}
// If we're already requesting this node, add a new reference and stop
if old, ok := reqset[req.hash]; ok {
old.parents = append(old.parents, req.parents...)
return
}
reqset[req.hash] = req
// Schedule the request for future retrieval. This queue is shared
// by both node requests and code requests. It can happen that there
// is a trie node and code has same hash. In this case two elements
// with same hash and same or different depth will be pushed. But it's
// ok the worst case is the second response will be treated as duplicated.
s.queue.Push(req.hash, int64(req.depth))
}
// children retrieves all the missing children of a state trie entry for future
// retrieval scheduling.
func (s *Sync) children(req *request, object node) ([]*request, error) {
// Gather all the children of the node, irrelevant whether known or not
type child struct {
node node
depth int
}
var children []child
switch node := (object).(type) {
case *shortNode:
children = []child{{
node: node.Val,
depth: req.depth + len(node.Key),
}}
case *fullNode:
for i := 0; i < 17; i++ {
if node.Children[i] != nil {
children = append(children, child{
node: node.Children[i],
depth: req.depth + 1,
})
}
}
default:
panic(fmt.Sprintf("unknown node: %+v", node))
}
// Iterate over the children, and request all unknown ones
requests := make([]*request, 0, len(children))
for _, child := range children {
// Notify any external watcher of a new key/value node
if req.callback != nil {
if node, ok := (child.node).(valueNode); ok {
if err := req.callback(node, req.hash); err != nil {
return nil, err
}
}
}
// If the child references another node, resolve or schedule
if node, ok := (child.node).(hashNode); ok {
// Try to resolve the node from the local database
hash := common.BytesToHash(node)
if s.membatch.hasNode(hash) {
continue
}
if s.bloom == nil || s.bloom.Contains(node) {
// Bloom filter says this might be a duplicate, double check.
// If database says yes, then at least the trie node is present
// and we hold the assumption that it's NOT legacy contract code.
if blob := rawdb.ReadTrieNode(s.database, common.BytesToHash(node)); len(blob) > 0 {
continue
}
// False positive, bump fault meter
bloomFaultMeter.Mark(1)
}
// Locally unknown node, schedule for retrieval
requests = append(requests, &request{
hash: hash,
parents: []*request{req},
depth: child.depth,
callback: req.callback,
})
}
}
return requests, nil
}
// commit finalizes a retrieval request and stores it into the membatch. If any
// of the referencing parent requests complete due to this commit, they are also
// committed themselves.
func (s *Sync) commit(req *request) (err error) {
// Write the node content to the membatch
if req.code {
s.membatch.codes[req.hash] = req.data
delete(s.codeReqs, req.hash)
} else {
s.membatch.nodes[req.hash] = req.data
delete(s.nodeReqs, req.hash)
}
// Check all parents for completion
for _, parent := range req.parents {
parent.deps--
if parent.deps == 0 {
if err := s.commit(parent); err != nil {
return err
}
}
}
return nil
}