mirror of
https://github.com/status-im/op-geth.git
synced 2025-01-24 21:49:22 +00:00
5c8fe28b72
* common: remove CurrencyToString Move denomination values to params instead. * common: delete dead code * common: move big integer operations to common/math This commit consolidates all big integer operations into common/math and adds tests and documentation. There should be no change in semantics for BigPow, BigMin, BigMax, S256, U256, Exp and their behaviour is now locked in by tests. The BigD, BytesToBig and Bytes2Big functions don't provide additional value, all uses are replaced by new(big.Int).SetBytes(). BigToBytes is now called PaddedBigBytes, its minimum output size parameter is now specified as the number of bytes instead of bits. The single use of this function is in the EVM's MSTORE instruction. Big and String2Big are replaced by ParseBig, which is slightly stricter. It previously accepted leading zeros for hexadecimal inputs but treated decimal inputs as octal if a leading zero digit was present. ParseUint64 is used in places where String2Big was used to decode a uint64. The new functions MustParseBig and MustParseUint64 are now used in many places where parsing errors were previously ignored. * common: delete unused big integer variables * accounts/abi: replace uses of BytesToBig with use of encoding/binary * common: remove BytesToBig * common: remove Bytes2Big * common: remove BigTrue * cmd/utils: add BigFlag and use it for error-checked integer flags While here, remove environment variable processing for DirectoryFlag because we don't use it. * core: add missing error checks in genesis block parser * common: remove String2Big * cmd/evm: use utils.BigFlag * common/math: check for 256 bit overflow in ParseBig This is supposed to prevent silent overflow/truncation of values in the genesis block JSON. Without this check, a genesis block that set a balance larger than 256 bits would lead to weird behaviour in the VM. * cmd/utils: fixup import
246 lines
6.8 KiB
Go
246 lines
6.8 KiB
Go
// Copyright 2016 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Contains the Whisper protocol Envelope element.
|
|
|
|
package whisperv5
|
|
|
|
import (
|
|
"crypto/ecdsa"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
gmath "math"
|
|
"math/big"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/common/math"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/crypto/ecies"
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
)
|
|
|
|
// Envelope represents a clear-text data packet to transmit through the Whisper
|
|
// network. Its contents may or may not be encrypted and signed.
|
|
type Envelope struct {
|
|
Version []byte
|
|
Expiry uint32
|
|
TTL uint32
|
|
Topic TopicType
|
|
Salt []byte
|
|
AESNonce []byte
|
|
Data []byte
|
|
EnvNonce uint64
|
|
|
|
pow float64 // Message-specific PoW as described in the Whisper specification.
|
|
hash common.Hash // Cached hash of the envelope to avoid rehashing every time.
|
|
// Don't access hash directly, use Hash() function instead.
|
|
}
|
|
|
|
// NewEnvelope wraps a Whisper message with expiration and destination data
|
|
// included into an envelope for network forwarding.
|
|
func NewEnvelope(ttl uint32, topic TopicType, salt []byte, aesNonce []byte, msg *SentMessage) *Envelope {
|
|
env := Envelope{
|
|
Version: make([]byte, 1),
|
|
Expiry: uint32(time.Now().Add(time.Second * time.Duration(ttl)).Unix()),
|
|
TTL: ttl,
|
|
Topic: topic,
|
|
Salt: salt,
|
|
AESNonce: aesNonce,
|
|
Data: msg.Raw,
|
|
EnvNonce: 0,
|
|
}
|
|
|
|
if EnvelopeVersion < 256 {
|
|
env.Version[0] = byte(EnvelopeVersion)
|
|
} else {
|
|
panic("please increase the size of Envelope.Version before releasing this version")
|
|
}
|
|
|
|
return &env
|
|
}
|
|
|
|
func (e *Envelope) IsSymmetric() bool {
|
|
return len(e.AESNonce) > 0
|
|
}
|
|
|
|
func (e *Envelope) isAsymmetric() bool {
|
|
return !e.IsSymmetric()
|
|
}
|
|
|
|
func (e *Envelope) Ver() uint64 {
|
|
return bytesToIntLittleEndian(e.Version)
|
|
}
|
|
|
|
// Seal closes the envelope by spending the requested amount of time as a proof
|
|
// of work on hashing the data.
|
|
func (e *Envelope) Seal(options *MessageParams) error {
|
|
var target, bestBit int
|
|
if options.PoW == 0 {
|
|
// adjust for the duration of Seal() execution only if execution time is predefined unconditionally
|
|
e.Expiry += options.WorkTime
|
|
} else {
|
|
target = e.powToFirstBit(options.PoW)
|
|
}
|
|
|
|
buf := make([]byte, 64)
|
|
h := crypto.Keccak256(e.rlpWithoutNonce())
|
|
copy(buf[:32], h)
|
|
|
|
finish := time.Now().Add(time.Duration(options.WorkTime) * time.Second).UnixNano()
|
|
for nonce := uint64(0); time.Now().UnixNano() < finish; {
|
|
for i := 0; i < 1024; i++ {
|
|
binary.BigEndian.PutUint64(buf[56:], nonce)
|
|
d := new(big.Int).SetBytes(crypto.Keccak256(buf))
|
|
firstBit := math.FirstBitSet(d)
|
|
if firstBit > bestBit {
|
|
e.EnvNonce, bestBit = nonce, firstBit
|
|
if target > 0 && bestBit >= target {
|
|
return nil
|
|
}
|
|
}
|
|
nonce++
|
|
}
|
|
}
|
|
|
|
if target > 0 && bestBit < target {
|
|
return errors.New("Failed to reach the PoW target, insufficient work time")
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (e *Envelope) size() int {
|
|
return len(e.Data) + len(e.Version) + len(e.AESNonce) + len(e.Salt) + 20
|
|
}
|
|
|
|
func (e *Envelope) PoW() float64 {
|
|
if e.pow == 0 {
|
|
e.calculatePoW(0)
|
|
}
|
|
return e.pow
|
|
}
|
|
|
|
func (e *Envelope) calculatePoW(diff uint32) {
|
|
buf := make([]byte, 64)
|
|
h := crypto.Keccak256(e.rlpWithoutNonce())
|
|
copy(buf[:32], h)
|
|
binary.BigEndian.PutUint64(buf[56:], e.EnvNonce)
|
|
d := new(big.Int).SetBytes(crypto.Keccak256(buf))
|
|
firstBit := math.FirstBitSet(d)
|
|
x := gmath.Pow(2, float64(firstBit))
|
|
x /= float64(e.size())
|
|
x /= float64(e.TTL + diff)
|
|
e.pow = x
|
|
}
|
|
|
|
func (e *Envelope) powToFirstBit(pow float64) int {
|
|
x := pow
|
|
x *= float64(e.size())
|
|
x *= float64(e.TTL)
|
|
bits := gmath.Log2(x)
|
|
bits = gmath.Ceil(bits)
|
|
return int(bits)
|
|
}
|
|
|
|
// rlpWithoutNonce returns the RLP encoded envelope contents, except the nonce.
|
|
func (e *Envelope) rlpWithoutNonce() []byte {
|
|
res, _ := rlp.EncodeToBytes([]interface{}{e.Expiry, e.TTL, e.Topic, e.Salt, e.AESNonce, e.Data})
|
|
return res
|
|
}
|
|
|
|
// Hash returns the SHA3 hash of the envelope, calculating it if not yet done.
|
|
func (e *Envelope) Hash() common.Hash {
|
|
if (e.hash == common.Hash{}) {
|
|
encoded, _ := rlp.EncodeToBytes(e)
|
|
e.hash = crypto.Keccak256Hash(encoded)
|
|
}
|
|
return e.hash
|
|
}
|
|
|
|
// DecodeRLP decodes an Envelope from an RLP data stream.
|
|
func (e *Envelope) DecodeRLP(s *rlp.Stream) error {
|
|
raw, err := s.Raw()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
// The decoding of Envelope uses the struct fields but also needs
|
|
// to compute the hash of the whole RLP-encoded envelope. This
|
|
// type has the same structure as Envelope but is not an
|
|
// rlp.Decoder (does not implement DecodeRLP function).
|
|
// Only public members will be encoded.
|
|
type rlpenv Envelope
|
|
if err := rlp.DecodeBytes(raw, (*rlpenv)(e)); err != nil {
|
|
return err
|
|
}
|
|
e.hash = crypto.Keccak256Hash(raw)
|
|
return nil
|
|
}
|
|
|
|
// OpenAsymmetric tries to decrypt an envelope, potentially encrypted with a particular key.
|
|
func (e *Envelope) OpenAsymmetric(key *ecdsa.PrivateKey) (*ReceivedMessage, error) {
|
|
message := &ReceivedMessage{Raw: e.Data}
|
|
err := message.decryptAsymmetric(key)
|
|
switch err {
|
|
case nil:
|
|
return message, nil
|
|
case ecies.ErrInvalidPublicKey: // addressed to somebody else
|
|
return nil, err
|
|
default:
|
|
return nil, fmt.Errorf("unable to open envelope, decrypt failed: %v", err)
|
|
}
|
|
}
|
|
|
|
// OpenSymmetric tries to decrypt an envelope, potentially encrypted with a particular key.
|
|
func (e *Envelope) OpenSymmetric(key []byte) (msg *ReceivedMessage, err error) {
|
|
msg = &ReceivedMessage{Raw: e.Data}
|
|
err = msg.decryptSymmetric(key, e.Salt, e.AESNonce)
|
|
if err != nil {
|
|
msg = nil
|
|
}
|
|
return msg, err
|
|
}
|
|
|
|
// Open tries to decrypt an envelope, and populates the message fields in case of success.
|
|
func (e *Envelope) Open(watcher *Filter) (msg *ReceivedMessage) {
|
|
if e.isAsymmetric() {
|
|
msg, _ = e.OpenAsymmetric(watcher.KeyAsym)
|
|
if msg != nil {
|
|
msg.Dst = &watcher.KeyAsym.PublicKey
|
|
}
|
|
} else if e.IsSymmetric() {
|
|
msg, _ = e.OpenSymmetric(watcher.KeySym)
|
|
if msg != nil {
|
|
msg.SymKeyHash = crypto.Keccak256Hash(watcher.KeySym)
|
|
}
|
|
}
|
|
|
|
if msg != nil {
|
|
ok := msg.Validate()
|
|
if !ok {
|
|
return nil
|
|
}
|
|
msg.Topic = e.Topic
|
|
msg.PoW = e.PoW()
|
|
msg.TTL = e.TTL
|
|
msg.Sent = e.Expiry - e.TTL
|
|
msg.EnvelopeHash = e.Hash()
|
|
msg.EnvelopeVersion = e.Ver()
|
|
}
|
|
return msg
|
|
}
|