Péter Szilágyi 289b30715d Godeps, vendor: convert dependency management to trash (#3198)
This commit converts the dependency management from Godeps to the vendor
folder, also switching the tool from godep to trash. Since the upstream tool
lacks a few features proposed via a few PRs, until those PRs are merged in
(if), use github.com/karalabe/trash.

You can update dependencies via trash --update.

All dependencies have been updated to their latest version.

Parts of the build system are reworked to drop old notions of Godeps and
invocation of the go vet command so that it doesn't run against the vendor
folder, as that will just blow up during vetting.

The conversion drops OpenCL (and hence GPU mining support) from ethash and our
codebase. The short reasoning is that there's noone to maintain and having
opencl libs in our deps messes up builds as go install ./... tries to build
them, failing with unsatisfied link errors for the C OpenCL deps.

golang.org/x/net/context is not vendored in. We expect it to be fetched by the
user (i.e. using go get). To keep ci.go builds reproducible the package is
"vendored" in build/_vendor.
2016-10-28 19:05:01 +02:00

319 lines
8.1 KiB
Go

package otto
import (
"fmt"
"math"
"strings"
"github.com/robertkrimen/otto/token"
)
func (self *_runtime) evaluateMultiply(left float64, right float64) Value {
// TODO 11.5.1
return Value{}
}
func (self *_runtime) evaluateDivide(left float64, right float64) Value {
if math.IsNaN(left) || math.IsNaN(right) {
return NaNValue()
}
if math.IsInf(left, 0) && math.IsInf(right, 0) {
return NaNValue()
}
if left == 0 && right == 0 {
return NaNValue()
}
if math.IsInf(left, 0) {
if math.Signbit(left) == math.Signbit(right) {
return positiveInfinityValue()
} else {
return negativeInfinityValue()
}
}
if math.IsInf(right, 0) {
if math.Signbit(left) == math.Signbit(right) {
return positiveZeroValue()
} else {
return negativeZeroValue()
}
}
if right == 0 {
if math.Signbit(left) == math.Signbit(right) {
return positiveInfinityValue()
} else {
return negativeInfinityValue()
}
}
return toValue_float64(left / right)
}
func (self *_runtime) evaluateModulo(left float64, right float64) Value {
// TODO 11.5.3
return Value{}
}
func (self *_runtime) calculateBinaryExpression(operator token.Token, left Value, right Value) Value {
leftValue := left.resolve()
switch operator {
// Additive
case token.PLUS:
leftValue = toPrimitive(leftValue)
rightValue := right.resolve()
rightValue = toPrimitive(rightValue)
if leftValue.IsString() || rightValue.IsString() {
return toValue_string(strings.Join([]string{leftValue.string(), rightValue.string()}, ""))
} else {
return toValue_float64(leftValue.float64() + rightValue.float64())
}
case token.MINUS:
rightValue := right.resolve()
return toValue_float64(leftValue.float64() - rightValue.float64())
// Multiplicative
case token.MULTIPLY:
rightValue := right.resolve()
return toValue_float64(leftValue.float64() * rightValue.float64())
case token.SLASH:
rightValue := right.resolve()
return self.evaluateDivide(leftValue.float64(), rightValue.float64())
case token.REMAINDER:
rightValue := right.resolve()
return toValue_float64(math.Mod(leftValue.float64(), rightValue.float64()))
// Logical
case token.LOGICAL_AND:
left := leftValue.bool()
if !left {
return falseValue
}
return toValue_bool(right.resolve().bool())
case token.LOGICAL_OR:
left := leftValue.bool()
if left {
return trueValue
}
return toValue_bool(right.resolve().bool())
// Bitwise
case token.AND:
rightValue := right.resolve()
return toValue_int32(toInt32(leftValue) & toInt32(rightValue))
case token.OR:
rightValue := right.resolve()
return toValue_int32(toInt32(leftValue) | toInt32(rightValue))
case token.EXCLUSIVE_OR:
rightValue := right.resolve()
return toValue_int32(toInt32(leftValue) ^ toInt32(rightValue))
// Shift
// (Masking of 0x1f is to restrict the shift to a maximum of 31 places)
case token.SHIFT_LEFT:
rightValue := right.resolve()
return toValue_int32(toInt32(leftValue) << (toUint32(rightValue) & 0x1f))
case token.SHIFT_RIGHT:
rightValue := right.resolve()
return toValue_int32(toInt32(leftValue) >> (toUint32(rightValue) & 0x1f))
case token.UNSIGNED_SHIFT_RIGHT:
rightValue := right.resolve()
// Shifting an unsigned integer is a logical shift
return toValue_uint32(toUint32(leftValue) >> (toUint32(rightValue) & 0x1f))
case token.INSTANCEOF:
rightValue := right.resolve()
if !rightValue.IsObject() {
panic(self.panicTypeError("Expecting a function in instanceof check, but got: %v", rightValue))
}
return toValue_bool(rightValue._object().hasInstance(leftValue))
case token.IN:
rightValue := right.resolve()
if !rightValue.IsObject() {
panic(self.panicTypeError())
}
return toValue_bool(rightValue._object().hasProperty(leftValue.string()))
}
panic(hereBeDragons(operator))
}
func valueKindDispatchKey(left _valueKind, right _valueKind) int {
return (int(left) << 2) + int(right)
}
var equalDispatch map[int](func(Value, Value) bool) = makeEqualDispatch()
func makeEqualDispatch() map[int](func(Value, Value) bool) {
key := valueKindDispatchKey
return map[int](func(Value, Value) bool){
key(valueNumber, valueObject): func(x Value, y Value) bool { return x.float64() == y.float64() },
key(valueString, valueObject): func(x Value, y Value) bool { return x.float64() == y.float64() },
key(valueObject, valueNumber): func(x Value, y Value) bool { return x.float64() == y.float64() },
key(valueObject, valueString): func(x Value, y Value) bool { return x.float64() == y.float64() },
}
}
type _lessThanResult int
const (
lessThanFalse _lessThanResult = iota
lessThanTrue
lessThanUndefined
)
func calculateLessThan(left Value, right Value, leftFirst bool) _lessThanResult {
x := Value{}
y := x
if leftFirst {
x = toNumberPrimitive(left)
y = toNumberPrimitive(right)
} else {
y = toNumberPrimitive(right)
x = toNumberPrimitive(left)
}
result := false
if x.kind != valueString || y.kind != valueString {
x, y := x.float64(), y.float64()
if math.IsNaN(x) || math.IsNaN(y) {
return lessThanUndefined
}
result = x < y
} else {
x, y := x.string(), y.string()
result = x < y
}
if result {
return lessThanTrue
}
return lessThanFalse
}
// FIXME Probably a map is not the most efficient way to do this
var lessThanTable [4](map[_lessThanResult]bool) = [4](map[_lessThanResult]bool){
// <
map[_lessThanResult]bool{
lessThanFalse: false,
lessThanTrue: true,
lessThanUndefined: false,
},
// >
map[_lessThanResult]bool{
lessThanFalse: false,
lessThanTrue: true,
lessThanUndefined: false,
},
// <=
map[_lessThanResult]bool{
lessThanFalse: true,
lessThanTrue: false,
lessThanUndefined: false,
},
// >=
map[_lessThanResult]bool{
lessThanFalse: true,
lessThanTrue: false,
lessThanUndefined: false,
},
}
func (self *_runtime) calculateComparison(comparator token.Token, left Value, right Value) bool {
// FIXME Use strictEqualityComparison?
// TODO This might be redundant now (with regards to evaluateComparison)
x := left.resolve()
y := right.resolve()
kindEqualKind := false
result := true
negate := false
switch comparator {
case token.LESS:
result = lessThanTable[0][calculateLessThan(x, y, true)]
case token.GREATER:
result = lessThanTable[1][calculateLessThan(y, x, false)]
case token.LESS_OR_EQUAL:
result = lessThanTable[2][calculateLessThan(y, x, false)]
case token.GREATER_OR_EQUAL:
result = lessThanTable[3][calculateLessThan(x, y, true)]
case token.STRICT_NOT_EQUAL:
negate = true
fallthrough
case token.STRICT_EQUAL:
if x.kind != y.kind {
result = false
} else {
kindEqualKind = true
}
case token.NOT_EQUAL:
negate = true
fallthrough
case token.EQUAL:
if x.kind == y.kind {
kindEqualKind = true
} else if x.kind <= valueNull && y.kind <= valueNull {
result = true
} else if x.kind <= valueNull || y.kind <= valueNull {
result = false
} else if x.kind <= valueString && y.kind <= valueString {
result = x.float64() == y.float64()
} else if x.kind == valueBoolean {
result = self.calculateComparison(token.EQUAL, toValue_float64(x.float64()), y)
} else if y.kind == valueBoolean {
result = self.calculateComparison(token.EQUAL, x, toValue_float64(y.float64()))
} else if x.kind == valueObject {
result = self.calculateComparison(token.EQUAL, toPrimitive(x), y)
} else if y.kind == valueObject {
result = self.calculateComparison(token.EQUAL, x, toPrimitive(y))
} else {
panic(hereBeDragons("Unable to test for equality: %v ==? %v", x, y))
}
default:
panic(fmt.Errorf("Unknown comparator %s", comparator.String()))
}
if kindEqualKind {
switch x.kind {
case valueUndefined, valueNull:
result = true
case valueNumber:
x := x.float64()
y := y.float64()
if math.IsNaN(x) || math.IsNaN(y) {
result = false
} else {
result = x == y
}
case valueString:
result = x.string() == y.string()
case valueBoolean:
result = x.bool() == y.bool()
case valueObject:
result = x._object() == y._object()
default:
goto ERROR
}
}
if negate {
result = !result
}
return result
ERROR:
panic(hereBeDragons("%v (%v) %s %v (%v)", x, x.kind, comparator, y, y.kind))
}