op-geth/core/state_processor.go

107 lines
3.4 KiB
Go

package core
import (
"math/big"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
)
var (
big8 = big.NewInt(8)
big32 = big.NewInt(32)
)
type StateProcessor struct {
bc *BlockChain
}
func NewStateProcessor(bc *BlockChain) *StateProcessor {
return &StateProcessor{bc}
}
// Process processes the state changes according to the Ethereum rules by running
// the transaction messages using the statedb and applying any rewards to both
// the processor (coinbase) and any included uncles.
//
// Process returns the receipts and logs accumulated during the process and
// returns the amount of gas that was used in the process. If any of the
// transactions failed to execute due to insufficient gas it will return an error.
func (p *StateProcessor) Process(block *types.Block, statedb *state.StateDB) (types.Receipts, vm.Logs, *big.Int, error) {
var (
receipts types.Receipts
totalUsedGas = big.NewInt(0)
err error
header = block.Header()
allLogs vm.Logs
gp = new(GasPool).AddGas(block.GasLimit())
)
for i, tx := range block.Transactions() {
statedb.StartRecord(tx.Hash(), block.Hash(), i)
receipt, logs, _, err := ApplyTransaction(p.bc, gp, statedb, header, tx, totalUsedGas)
if err != nil {
return nil, nil, totalUsedGas, err
}
receipts = append(receipts, receipt)
allLogs = append(allLogs, logs...)
}
AccumulateRewards(statedb, header, block.Uncles())
return receipts, allLogs, totalUsedGas, err
}
// ApplyTransaction attemps to apply a transaction to the given state database
// and uses the input parameters for its environment.
//
// ApplyTransactions returns the generated receipts and vm logs during the
// execution of the state transition phase.
func ApplyTransaction(bc *BlockChain, gp *GasPool, statedb *state.StateDB, header *types.Header, tx *types.Transaction, usedGas *big.Int) (*types.Receipt, vm.Logs, *big.Int, error) {
_, gas, err := ApplyMessage(NewEnv(statedb, bc, tx, header), tx, gp)
if err != nil {
return nil, nil, nil, err
}
// Update the state with pending changes
usedGas.Add(usedGas, gas)
receipt := types.NewReceipt(statedb.IntermediateRoot().Bytes(), usedGas)
receipt.TxHash = tx.Hash()
receipt.GasUsed = new(big.Int).Set(gas)
if MessageCreatesContract(tx) {
from, _ := tx.From()
receipt.ContractAddress = crypto.CreateAddress(from, tx.Nonce())
}
logs := statedb.GetLogs(tx.Hash())
receipt.Logs = logs
receipt.Bloom = types.CreateBloom(types.Receipts{receipt})
glog.V(logger.Debug).Infoln(receipt)
return receipt, logs, gas, err
}
// AccumulateRewards credits the coinbase of the given block with the
// mining reward. The total reward consists of the static block reward
// and rewards for included uncles. The coinbase of each uncle block is
// also rewarded.
func AccumulateRewards(statedb *state.StateDB, header *types.Header, uncles []*types.Header) {
reward := new(big.Int).Set(BlockReward)
r := new(big.Int)
for _, uncle := range uncles {
r.Add(uncle.Number, big8)
r.Sub(r, header.Number)
r.Mul(r, BlockReward)
r.Div(r, big8)
statedb.AddBalance(uncle.Coinbase, r)
r.Div(BlockReward, big32)
reward.Add(reward, r)
}
statedb.AddBalance(header.Coinbase, reward)
}