mirror of
https://github.com/status-im/op-geth.git
synced 2025-01-23 21:19:16 +00:00
289b30715d
This commit converts the dependency management from Godeps to the vendor folder, also switching the tool from godep to trash. Since the upstream tool lacks a few features proposed via a few PRs, until those PRs are merged in (if), use github.com/karalabe/trash. You can update dependencies via trash --update. All dependencies have been updated to their latest version. Parts of the build system are reworked to drop old notions of Godeps and invocation of the go vet command so that it doesn't run against the vendor folder, as that will just blow up during vetting. The conversion drops OpenCL (and hence GPU mining support) from ethash and our codebase. The short reasoning is that there's noone to maintain and having opencl libs in our deps messes up builds as go install ./... tries to build them, failing with unsatisfied link errors for the C OpenCL deps. golang.org/x/net/context is not vendored in. We expect it to be fetched by the user (i.e. using go get). To keep ci.go builds reproducible the package is "vendored" in build/_vendor.
842 lines
26 KiB
Go
842 lines
26 KiB
Go
// Copyright 2013 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package language
|
|
|
|
import "errors"
|
|
|
|
// Matcher is the interface that wraps the Match method.
|
|
//
|
|
// Match returns the best match for any of the given tags, along with
|
|
// a unique index associated with the returned tag and a confidence
|
|
// score.
|
|
type Matcher interface {
|
|
Match(t ...Tag) (tag Tag, index int, c Confidence)
|
|
}
|
|
|
|
// Comprehends reports the confidence score for a speaker of a given language
|
|
// to being able to comprehend the written form of an alternative language.
|
|
func Comprehends(speaker, alternative Tag) Confidence {
|
|
_, _, c := NewMatcher([]Tag{alternative}).Match(speaker)
|
|
return c
|
|
}
|
|
|
|
// NewMatcher returns a Matcher that matches an ordered list of preferred tags
|
|
// against a list of supported tags based on written intelligibility, closeness
|
|
// of dialect, equivalence of subtags and various other rules. It is initialized
|
|
// with the list of supported tags. The first element is used as the default
|
|
// value in case no match is found.
|
|
//
|
|
// Its Match method matches the first of the given Tags to reach a certain
|
|
// confidence threshold. The tags passed to Match should therefore be specified
|
|
// in order of preference. Extensions are ignored for matching.
|
|
//
|
|
// The index returned by the Match method corresponds to the index of the
|
|
// matched tag in t, but is augmented with the Unicode extension ('u')of the
|
|
// corresponding preferred tag. This allows user locale options to be passed
|
|
// transparently.
|
|
func NewMatcher(t []Tag) Matcher {
|
|
return newMatcher(t)
|
|
}
|
|
|
|
func (m *matcher) Match(want ...Tag) (t Tag, index int, c Confidence) {
|
|
match, w, c := m.getBest(want...)
|
|
if match == nil {
|
|
t = m.default_.tag
|
|
} else {
|
|
t, index = match.tag, match.index
|
|
}
|
|
// Copy options from the user-provided tag into the result tag. This is hard
|
|
// to do after the fact, so we do it here.
|
|
// TODO: consider also adding in variants that are compatible with the
|
|
// matched language.
|
|
// TODO: Add back region if it is non-ambiguous? Or create another tag to
|
|
// preserve the region?
|
|
if u, ok := w.Extension('u'); ok {
|
|
t, _ = Raw.Compose(t, u)
|
|
}
|
|
return t, index, c
|
|
}
|
|
|
|
type scriptRegionFlags uint8
|
|
|
|
const (
|
|
isList = 1 << iota
|
|
scriptInFrom
|
|
regionInFrom
|
|
)
|
|
|
|
func (t *Tag) setUndefinedLang(id langID) {
|
|
if t.lang == 0 {
|
|
t.lang = id
|
|
}
|
|
}
|
|
|
|
func (t *Tag) setUndefinedScript(id scriptID) {
|
|
if t.script == 0 {
|
|
t.script = id
|
|
}
|
|
}
|
|
|
|
func (t *Tag) setUndefinedRegion(id regionID) {
|
|
if t.region == 0 || t.region.contains(id) {
|
|
t.region = id
|
|
}
|
|
}
|
|
|
|
// ErrMissingLikelyTagsData indicates no information was available
|
|
// to compute likely values of missing tags.
|
|
var ErrMissingLikelyTagsData = errors.New("missing likely tags data")
|
|
|
|
// addLikelySubtags sets subtags to their most likely value, given the locale.
|
|
// In most cases this means setting fields for unknown values, but in some
|
|
// cases it may alter a value. It returns a ErrMissingLikelyTagsData error
|
|
// if the given locale cannot be expanded.
|
|
func (t Tag) addLikelySubtags() (Tag, error) {
|
|
id, err := addTags(t)
|
|
if err != nil {
|
|
return t, err
|
|
} else if id.equalTags(t) {
|
|
return t, nil
|
|
}
|
|
id.remakeString()
|
|
return id, nil
|
|
}
|
|
|
|
// specializeRegion attempts to specialize a group region.
|
|
func specializeRegion(t *Tag) bool {
|
|
if i := regionInclusion[t.region]; i < nRegionGroups {
|
|
x := likelyRegionGroup[i]
|
|
if langID(x.lang) == t.lang && scriptID(x.script) == t.script {
|
|
t.region = regionID(x.region)
|
|
}
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func addTags(t Tag) (Tag, error) {
|
|
// We leave private use identifiers alone.
|
|
if t.private() {
|
|
return t, nil
|
|
}
|
|
if t.script != 0 && t.region != 0 {
|
|
if t.lang != 0 {
|
|
// already fully specified
|
|
specializeRegion(&t)
|
|
return t, nil
|
|
}
|
|
// Search matches for und-script-region. Note that for these cases
|
|
// region will never be a group so there is no need to check for this.
|
|
list := likelyRegion[t.region : t.region+1]
|
|
if x := list[0]; x.flags&isList != 0 {
|
|
list = likelyRegionList[x.lang : x.lang+uint16(x.script)]
|
|
}
|
|
for _, x := range list {
|
|
// Deviating from the spec. See match_test.go for details.
|
|
if scriptID(x.script) == t.script {
|
|
t.setUndefinedLang(langID(x.lang))
|
|
return t, nil
|
|
}
|
|
}
|
|
}
|
|
if t.lang != 0 {
|
|
// Search matches for lang-script and lang-region, where lang != und.
|
|
if t.lang < langNoIndexOffset {
|
|
x := likelyLang[t.lang]
|
|
if x.flags&isList != 0 {
|
|
list := likelyLangList[x.region : x.region+uint16(x.script)]
|
|
if t.script != 0 {
|
|
for _, x := range list {
|
|
if scriptID(x.script) == t.script && x.flags&scriptInFrom != 0 {
|
|
t.setUndefinedRegion(regionID(x.region))
|
|
return t, nil
|
|
}
|
|
}
|
|
} else if t.region != 0 {
|
|
count := 0
|
|
goodScript := true
|
|
tt := t
|
|
for _, x := range list {
|
|
// We visit all entries for which the script was not
|
|
// defined, including the ones where the region was not
|
|
// defined. This allows for proper disambiguation within
|
|
// regions.
|
|
if x.flags&scriptInFrom == 0 && t.region.contains(regionID(x.region)) {
|
|
tt.region = regionID(x.region)
|
|
tt.setUndefinedScript(scriptID(x.script))
|
|
goodScript = goodScript && tt.script == scriptID(x.script)
|
|
count++
|
|
}
|
|
}
|
|
if count == 1 {
|
|
return tt, nil
|
|
}
|
|
// Even if we fail to find a unique Region, we might have
|
|
// an unambiguous script.
|
|
if goodScript {
|
|
t.script = tt.script
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Search matches for und-script.
|
|
if t.script != 0 {
|
|
x := likelyScript[t.script]
|
|
if x.region != 0 {
|
|
t.setUndefinedRegion(regionID(x.region))
|
|
t.setUndefinedLang(langID(x.lang))
|
|
return t, nil
|
|
}
|
|
}
|
|
// Search matches for und-region. If und-script-region exists, it would
|
|
// have been found earlier.
|
|
if t.region != 0 {
|
|
if i := regionInclusion[t.region]; i < nRegionGroups {
|
|
x := likelyRegionGroup[i]
|
|
if x.region != 0 {
|
|
t.setUndefinedLang(langID(x.lang))
|
|
t.setUndefinedScript(scriptID(x.script))
|
|
t.region = regionID(x.region)
|
|
}
|
|
} else {
|
|
x := likelyRegion[t.region]
|
|
if x.flags&isList != 0 {
|
|
x = likelyRegionList[x.lang]
|
|
}
|
|
if x.script != 0 && x.flags != scriptInFrom {
|
|
t.setUndefinedLang(langID(x.lang))
|
|
t.setUndefinedScript(scriptID(x.script))
|
|
return t, nil
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Search matches for lang.
|
|
if t.lang < langNoIndexOffset {
|
|
x := likelyLang[t.lang]
|
|
if x.flags&isList != 0 {
|
|
x = likelyLangList[x.region]
|
|
}
|
|
if x.region != 0 {
|
|
t.setUndefinedScript(scriptID(x.script))
|
|
t.setUndefinedRegion(regionID(x.region))
|
|
}
|
|
specializeRegion(&t)
|
|
if t.lang == 0 {
|
|
t.lang = _en // default language
|
|
}
|
|
return t, nil
|
|
}
|
|
return t, ErrMissingLikelyTagsData
|
|
}
|
|
|
|
func (t *Tag) setTagsFrom(id Tag) {
|
|
t.lang = id.lang
|
|
t.script = id.script
|
|
t.region = id.region
|
|
}
|
|
|
|
// minimize removes the region or script subtags from t such that
|
|
// t.addLikelySubtags() == t.minimize().addLikelySubtags().
|
|
func (t Tag) minimize() (Tag, error) {
|
|
t, err := minimizeTags(t)
|
|
if err != nil {
|
|
return t, err
|
|
}
|
|
t.remakeString()
|
|
return t, nil
|
|
}
|
|
|
|
// minimizeTags mimics the behavior of the ICU 51 C implementation.
|
|
func minimizeTags(t Tag) (Tag, error) {
|
|
if t.equalTags(und) {
|
|
return t, nil
|
|
}
|
|
max, err := addTags(t)
|
|
if err != nil {
|
|
return t, err
|
|
}
|
|
for _, id := range [...]Tag{
|
|
{lang: t.lang},
|
|
{lang: t.lang, region: t.region},
|
|
{lang: t.lang, script: t.script},
|
|
} {
|
|
if x, err := addTags(id); err == nil && max.equalTags(x) {
|
|
t.setTagsFrom(id)
|
|
break
|
|
}
|
|
}
|
|
return t, nil
|
|
}
|
|
|
|
// Tag Matching
|
|
// CLDR defines an algorithm for finding the best match between two sets of language
|
|
// tags. The basic algorithm defines how to score a possible match and then find
|
|
// the match with the best score
|
|
// (see http://www.unicode.org/reports/tr35/#LanguageMatching).
|
|
// Using scoring has several disadvantages. The scoring obfuscates the importance of
|
|
// the various factors considered, making the algorithm harder to understand. Using
|
|
// scoring also requires the full score to be computed for each pair of tags.
|
|
//
|
|
// We will use a different algorithm which aims to have the following properties:
|
|
// - clarity on the precedence of the various selection factors, and
|
|
// - improved performance by allowing early termination of a comparison.
|
|
//
|
|
// Matching algorithm (overview)
|
|
// Input:
|
|
// - supported: a set of supported tags
|
|
// - default: the default tag to return in case there is no match
|
|
// - desired: list of desired tags, ordered by preference, starting with
|
|
// the most-preferred.
|
|
//
|
|
// Algorithm:
|
|
// 1) Set the best match to the lowest confidence level
|
|
// 2) For each tag in "desired":
|
|
// a) For each tag in "supported":
|
|
// 1) compute the match between the two tags.
|
|
// 2) if the match is better than the previous best match, replace it
|
|
// with the new match. (see next section)
|
|
// b) if the current best match is above a certain threshold, return this
|
|
// match without proceeding to the next tag in "desired". [See Note 1]
|
|
// 3) If the best match so far is below a certain threshold, return "default".
|
|
//
|
|
// Ranking:
|
|
// We use two phases to determine whether one pair of tags are a better match
|
|
// than another pair of tags. First, we determine a rough confidence level. If the
|
|
// levels are different, the one with the highest confidence wins.
|
|
// Second, if the rough confidence levels are identical, we use a set of tie-breaker
|
|
// rules.
|
|
//
|
|
// The confidence level of matching a pair of tags is determined by finding the
|
|
// lowest confidence level of any matches of the corresponding subtags (the
|
|
// result is deemed as good as its weakest link).
|
|
// We define the following levels:
|
|
// Exact - An exact match of a subtag, before adding likely subtags.
|
|
// MaxExact - An exact match of a subtag, after adding likely subtags.
|
|
// [See Note 2].
|
|
// High - High level of mutual intelligibility between different subtag
|
|
// variants.
|
|
// Low - Low level of mutual intelligibility between different subtag
|
|
// variants.
|
|
// No - No mutual intelligibility.
|
|
//
|
|
// The following levels can occur for each type of subtag:
|
|
// Base: Exact, MaxExact, High, Low, No
|
|
// Script: Exact, MaxExact [see Note 3], Low, No
|
|
// Region: Exact, MaxExact, High
|
|
// Variant: Exact, High
|
|
// Private: Exact, No
|
|
//
|
|
// Any result with a confidence level of Low or higher is deemed a possible match.
|
|
// Once a desired tag matches any of the supported tags with a level of MaxExact
|
|
// or higher, the next desired tag is not considered (see Step 2.b).
|
|
// Note that CLDR provides languageMatching data that defines close equivalence
|
|
// classes for base languages, scripts and regions.
|
|
//
|
|
// Tie-breaking
|
|
// If we get the same confidence level for two matches, we apply a sequence of
|
|
// tie-breaking rules. The first that succeeds defines the result. The rules are
|
|
// applied in the following order.
|
|
// 1) Original language was defined and was identical.
|
|
// 2) Original region was defined and was identical.
|
|
// 3) Distance between two maximized regions was the smallest.
|
|
// 4) Original script was defined and was identical.
|
|
// 5) Distance from want tag to have tag using the parent relation [see Note 5.]
|
|
// If there is still no winner after these rules are applied, the first match
|
|
// found wins.
|
|
//
|
|
// Notes:
|
|
// [1] Note that even if we may not have a perfect match, if a match is above a
|
|
// certain threshold, it is considered a better match than any other match
|
|
// to a tag later in the list of preferred language tags.
|
|
// [2] In practice, as matching of Exact is done in a separate phase from
|
|
// matching the other levels, we reuse the Exact level to mean MaxExact in
|
|
// the second phase. As a consequence, we only need the levels defined by
|
|
// the Confidence type. The MaxExact confidence level is mapped to High in
|
|
// the public API.
|
|
// [3] We do not differentiate between maximized script values that were derived
|
|
// from suppressScript versus most likely tag data. We determined that in
|
|
// ranking the two, one ranks just after the other. Moreover, the two cannot
|
|
// occur concurrently. As a consequence, they are identical for practical
|
|
// purposes.
|
|
// [4] In case of deprecated, macro-equivalents and legacy mappings, we assign
|
|
// the MaxExact level to allow iw vs he to still be a closer match than
|
|
// en-AU vs en-US, for example.
|
|
// [5] In CLDR a locale inherits fields that are unspecified for this locale
|
|
// from its parent. Therefore, if a locale is a parent of another locale,
|
|
// it is a strong measure for closeness, especially when no other tie
|
|
// breaker rule applies. One could also argue it is inconsistent, for
|
|
// example, when pt-AO matches pt (which CLDR equates with pt-BR), even
|
|
// though its parent is pt-PT according to the inheritance rules.
|
|
//
|
|
// Implementation Details:
|
|
// There are several performance considerations worth pointing out. Most notably,
|
|
// we preprocess as much as possible (within reason) at the time of creation of a
|
|
// matcher. This includes:
|
|
// - creating a per-language map, which includes data for the raw base language
|
|
// and its canonicalized variant (if applicable),
|
|
// - expanding entries for the equivalence classes defined in CLDR's
|
|
// languageMatch data.
|
|
// The per-language map ensures that typically only a very small number of tags
|
|
// need to be considered. The pre-expansion of canonicalized subtags and
|
|
// equivalence classes reduces the amount of map lookups that need to be done at
|
|
// runtime.
|
|
|
|
// matcher keeps a set of supported language tags, indexed by language.
|
|
type matcher struct {
|
|
default_ *haveTag
|
|
index map[langID]*matchHeader
|
|
passSettings bool
|
|
}
|
|
|
|
// matchHeader has the lists of tags for exact matches and matches based on
|
|
// maximized and canonicalized tags for a given language.
|
|
type matchHeader struct {
|
|
exact []*haveTag
|
|
max []*haveTag
|
|
}
|
|
|
|
// haveTag holds a supported Tag and its maximized script and region. The maximized
|
|
// or canonicalized language is not stored as it is not needed during matching.
|
|
type haveTag struct {
|
|
tag Tag
|
|
|
|
// index of this tag in the original list of supported tags.
|
|
index int
|
|
|
|
// conf is the maximum confidence that can result from matching this haveTag.
|
|
// When conf < Exact this means it was inserted after applying a CLDR equivalence rule.
|
|
conf Confidence
|
|
|
|
// Maximized region and script.
|
|
maxRegion regionID
|
|
maxScript scriptID
|
|
|
|
// altScript may be checked as an alternative match to maxScript. If altScript
|
|
// matches, the confidence level for this match is Low. Theoretically there
|
|
// could be multiple alternative scripts. This does not occur in practice.
|
|
altScript scriptID
|
|
|
|
// nextMax is the index of the next haveTag with the same maximized tags.
|
|
nextMax uint16
|
|
}
|
|
|
|
func makeHaveTag(tag Tag, index int) (haveTag, langID) {
|
|
max := tag
|
|
if tag.lang != 0 {
|
|
max, _ = max.canonicalize(All)
|
|
max, _ = addTags(max)
|
|
max.remakeString()
|
|
}
|
|
return haveTag{tag, index, Exact, max.region, max.script, altScript(max.lang, max.script), 0}, max.lang
|
|
}
|
|
|
|
// altScript returns an alternative script that may match the given script with
|
|
// a low confidence. At the moment, the langMatch data allows for at most one
|
|
// script to map to another and we rely on this to keep the code simple.
|
|
func altScript(l langID, s scriptID) scriptID {
|
|
for _, alt := range matchScript {
|
|
if (alt.lang == 0 || langID(alt.lang) == l) && scriptID(alt.have) == s {
|
|
return scriptID(alt.want)
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// addIfNew adds a haveTag to the list of tags only if it is a unique tag.
|
|
// Tags that have the same maximized values are linked by index.
|
|
func (h *matchHeader) addIfNew(n haveTag, exact bool) {
|
|
// Don't add new exact matches.
|
|
for _, v := range h.exact {
|
|
if v.tag.equalsRest(n.tag) {
|
|
return
|
|
}
|
|
}
|
|
if exact {
|
|
h.exact = append(h.exact, &n)
|
|
}
|
|
// Allow duplicate maximized tags, but create a linked list to allow quickly
|
|
// comparing the equivalents and bail out.
|
|
for i, v := range h.max {
|
|
if v.maxScript == n.maxScript &&
|
|
v.maxRegion == n.maxRegion &&
|
|
v.tag.variantOrPrivateTagStr() == n.tag.variantOrPrivateTagStr() {
|
|
for h.max[i].nextMax != 0 {
|
|
i = int(h.max[i].nextMax)
|
|
}
|
|
h.max[i].nextMax = uint16(len(h.max))
|
|
break
|
|
}
|
|
}
|
|
h.max = append(h.max, &n)
|
|
}
|
|
|
|
// header returns the matchHeader for the given language. It creates one if
|
|
// it doesn't already exist.
|
|
func (m *matcher) header(l langID) *matchHeader {
|
|
if h := m.index[l]; h != nil {
|
|
return h
|
|
}
|
|
h := &matchHeader{}
|
|
m.index[l] = h
|
|
return h
|
|
}
|
|
|
|
// newMatcher builds an index for the given supported tags and returns it as
|
|
// a matcher. It also expands the index by considering various equivalence classes
|
|
// for a given tag.
|
|
func newMatcher(supported []Tag) *matcher {
|
|
m := &matcher{
|
|
index: make(map[langID]*matchHeader),
|
|
}
|
|
if len(supported) == 0 {
|
|
m.default_ = &haveTag{}
|
|
return m
|
|
}
|
|
// Add supported languages to the index. Add exact matches first to give
|
|
// them precedence.
|
|
for i, tag := range supported {
|
|
pair, _ := makeHaveTag(tag, i)
|
|
m.header(tag.lang).addIfNew(pair, true)
|
|
}
|
|
m.default_ = m.header(supported[0].lang).exact[0]
|
|
for i, tag := range supported {
|
|
pair, max := makeHaveTag(tag, i)
|
|
if max != tag.lang {
|
|
m.header(max).addIfNew(pair, false)
|
|
}
|
|
}
|
|
|
|
// update is used to add indexes in the map for equivalent languages.
|
|
// If force is true, the update will also apply to derived entries. To
|
|
// avoid applying a "transitive closure", use false.
|
|
update := func(want, have uint16, conf Confidence, force bool) {
|
|
if hh := m.index[langID(have)]; hh != nil {
|
|
if !force && len(hh.exact) == 0 {
|
|
return
|
|
}
|
|
hw := m.header(langID(want))
|
|
for _, ht := range hh.max {
|
|
v := *ht
|
|
if conf < v.conf {
|
|
v.conf = conf
|
|
}
|
|
v.nextMax = 0 // this value needs to be recomputed
|
|
if v.altScript != 0 {
|
|
v.altScript = altScript(langID(want), v.maxScript)
|
|
}
|
|
hw.addIfNew(v, conf == Exact && len(hh.exact) > 0)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add entries for languages with mutual intelligibility as defined by CLDR's
|
|
// languageMatch data.
|
|
for _, ml := range matchLang {
|
|
update(ml.want, ml.have, Confidence(ml.conf), false)
|
|
if !ml.oneway {
|
|
update(ml.have, ml.want, Confidence(ml.conf), false)
|
|
}
|
|
}
|
|
|
|
// Add entries for possible canonicalizations. This is an optimization to
|
|
// ensure that only one map lookup needs to be done at runtime per desired tag.
|
|
// First we match deprecated equivalents. If they are perfect equivalents
|
|
// (their canonicalization simply substitutes a different language code, but
|
|
// nothing else), the match confidence is Exact, otherwise it is High.
|
|
for i, lm := range langAliasMap {
|
|
if lm.from == _sh {
|
|
continue
|
|
}
|
|
|
|
// If deprecated codes match and there is no fiddling with the script or
|
|
// or region, we consider it an exact match.
|
|
conf := Exact
|
|
if langAliasTypes[i] != langMacro {
|
|
if !isExactEquivalent(langID(lm.from)) {
|
|
conf = High
|
|
}
|
|
update(lm.to, lm.from, conf, true)
|
|
}
|
|
update(lm.from, lm.to, conf, true)
|
|
}
|
|
return m
|
|
}
|
|
|
|
// getBest gets the best matching tag in m for any of the given tags, taking into
|
|
// account the order of preference of the given tags.
|
|
func (m *matcher) getBest(want ...Tag) (got *haveTag, orig Tag, c Confidence) {
|
|
best := bestMatch{}
|
|
for _, w := range want {
|
|
var max Tag
|
|
// Check for exact match first.
|
|
h := m.index[w.lang]
|
|
if w.lang != 0 {
|
|
// Base language is defined.
|
|
if h == nil {
|
|
continue
|
|
}
|
|
for i := range h.exact {
|
|
have := h.exact[i]
|
|
if have.tag.equalsRest(w) {
|
|
return have, w, Exact
|
|
}
|
|
}
|
|
max, _ = w.canonicalize(Legacy | Deprecated)
|
|
max, _ = addTags(max)
|
|
} else {
|
|
// Base language is not defined.
|
|
if h != nil {
|
|
for i := range h.exact {
|
|
have := h.exact[i]
|
|
if have.tag.equalsRest(w) {
|
|
return have, w, Exact
|
|
}
|
|
}
|
|
}
|
|
if w.script == 0 && w.region == 0 {
|
|
// We skip all tags matching und for approximate matching, including
|
|
// private tags.
|
|
continue
|
|
}
|
|
max, _ = addTags(w)
|
|
if h = m.index[max.lang]; h == nil {
|
|
continue
|
|
}
|
|
}
|
|
// Check for match based on maximized tag.
|
|
for i := range h.max {
|
|
have := h.max[i]
|
|
best.update(have, w, max.script, max.region)
|
|
if best.conf == Exact {
|
|
for have.nextMax != 0 {
|
|
have = h.max[have.nextMax]
|
|
best.update(have, w, max.script, max.region)
|
|
}
|
|
return best.have, best.want, High
|
|
}
|
|
}
|
|
}
|
|
if best.conf <= No {
|
|
if len(want) != 0 {
|
|
return nil, want[0], No
|
|
}
|
|
return nil, Tag{}, No
|
|
}
|
|
return best.have, best.want, best.conf
|
|
}
|
|
|
|
// bestMatch accumulates the best match so far.
|
|
type bestMatch struct {
|
|
have *haveTag
|
|
want Tag
|
|
conf Confidence
|
|
// Cached results from applying tie-breaking rules.
|
|
origLang bool
|
|
origReg bool
|
|
regDist uint8
|
|
origScript bool
|
|
parentDist uint8 // 255 if have is not an ancestor of want tag.
|
|
}
|
|
|
|
// update updates the existing best match if the new pair is considered to be a
|
|
// better match.
|
|
// To determine if the given pair is a better match, it first computes the rough
|
|
// confidence level. If this surpasses the current match, it will replace it and
|
|
// update the tie-breaker rule cache. If there is a tie, it proceeds with applying
|
|
// a series of tie-breaker rules. If there is no conclusive winner after applying
|
|
// the tie-breaker rules, it leaves the current match as the preferred match.
|
|
func (m *bestMatch) update(have *haveTag, tag Tag, maxScript scriptID, maxRegion regionID) {
|
|
// Bail if the maximum attainable confidence is below that of the current best match.
|
|
c := have.conf
|
|
if c < m.conf {
|
|
return
|
|
}
|
|
if have.maxScript != maxScript {
|
|
// There is usually very little comprehension between different scripts.
|
|
// In a few cases there may still be Low comprehension. This possibility is
|
|
// pre-computed and stored in have.altScript.
|
|
if Low < m.conf || have.altScript != maxScript {
|
|
return
|
|
}
|
|
c = Low
|
|
} else if have.maxRegion != maxRegion {
|
|
// There is usually a small difference between languages across regions.
|
|
// We use the region distance (below) to disambiguate between equal matches.
|
|
if High < c {
|
|
c = High
|
|
}
|
|
}
|
|
|
|
// We store the results of the computations of the tie-breaker rules along
|
|
// with the best match. There is no need to do the checks once we determine
|
|
// we have a winner, but we do still need to do the tie-breaker computations.
|
|
// We use "beaten" to keep track if we still need to do the checks.
|
|
beaten := false // true if the new pair defeats the current one.
|
|
if c != m.conf {
|
|
if c < m.conf {
|
|
return
|
|
}
|
|
beaten = true
|
|
}
|
|
|
|
// Tie-breaker rules:
|
|
// We prefer if the pre-maximized language was specified and identical.
|
|
origLang := have.tag.lang == tag.lang && tag.lang != 0
|
|
if !beaten && m.origLang != origLang {
|
|
if m.origLang {
|
|
return
|
|
}
|
|
beaten = true
|
|
}
|
|
|
|
// We prefer if the pre-maximized region was specified and identical.
|
|
origReg := have.tag.region == tag.region && tag.region != 0
|
|
if !beaten && m.origReg != origReg {
|
|
if m.origReg {
|
|
return
|
|
}
|
|
beaten = true
|
|
}
|
|
|
|
// Next we prefer smaller distances between regions, as defined by regionDist.
|
|
regDist := regionDist(have.maxRegion, maxRegion, tag.lang)
|
|
if !beaten && m.regDist != regDist {
|
|
if regDist > m.regDist {
|
|
return
|
|
}
|
|
beaten = true
|
|
}
|
|
|
|
// Next we prefer if the pre-maximized script was specified and identical.
|
|
origScript := have.tag.script == tag.script && tag.script != 0
|
|
if !beaten && m.origScript != origScript {
|
|
if m.origScript {
|
|
return
|
|
}
|
|
beaten = true
|
|
}
|
|
|
|
// Finally we prefer tags which have a closer parent relationship.
|
|
parentDist := parentDistance(have.tag.region, tag)
|
|
if !beaten && m.parentDist != parentDist {
|
|
if parentDist > m.parentDist {
|
|
return
|
|
}
|
|
beaten = true
|
|
}
|
|
|
|
// Update m to the newly found best match.
|
|
if beaten {
|
|
m.have = have
|
|
m.want = tag
|
|
m.conf = c
|
|
m.origLang = origLang
|
|
m.origReg = origReg
|
|
m.origScript = origScript
|
|
m.regDist = regDist
|
|
m.parentDist = parentDist
|
|
}
|
|
}
|
|
|
|
// parentDistance returns the number of times Parent must be called before the
|
|
// regions match. It is assumed that it has already been checked that lang and
|
|
// script are identical. If haveRegion does not occur in the ancestor chain of
|
|
// tag, it returns 255.
|
|
func parentDistance(haveRegion regionID, tag Tag) uint8 {
|
|
p := tag.Parent()
|
|
d := uint8(1)
|
|
for haveRegion != p.region {
|
|
if p.region == 0 {
|
|
return 255
|
|
}
|
|
p = p.Parent()
|
|
d++
|
|
}
|
|
return d
|
|
}
|
|
|
|
// regionDist wraps regionDistance with some exceptions to the algorithmic distance.
|
|
func regionDist(a, b regionID, lang langID) uint8 {
|
|
if lang == _en {
|
|
// Two variants of non-US English are close to each other, regardless of distance.
|
|
if a != _US && b != _US {
|
|
return 2
|
|
}
|
|
}
|
|
return uint8(regionDistance(a, b))
|
|
}
|
|
|
|
// regionDistance computes the distance between two regions based on the
|
|
// distance in the graph of region containments as defined in CLDR. It iterates
|
|
// over increasingly inclusive sets of groups, represented as bit vectors, until
|
|
// the source bit vector has bits in common with the destination vector.
|
|
func regionDistance(a, b regionID) int {
|
|
if a == b {
|
|
return 0
|
|
}
|
|
p, q := regionInclusion[a], regionInclusion[b]
|
|
if p < nRegionGroups {
|
|
p, q = q, p
|
|
}
|
|
set := regionInclusionBits
|
|
if q < nRegionGroups && set[p]&(1<<q) != 0 {
|
|
return 1
|
|
}
|
|
d := 2
|
|
for goal := set[q]; set[p]&goal == 0; p = regionInclusionNext[p] {
|
|
d++
|
|
}
|
|
return d
|
|
}
|
|
|
|
func (t Tag) variants() string {
|
|
if t.pVariant == 0 {
|
|
return ""
|
|
}
|
|
return t.str[t.pVariant:t.pExt]
|
|
}
|
|
|
|
// variantOrPrivateTagStr returns variants or private use tags.
|
|
func (t Tag) variantOrPrivateTagStr() string {
|
|
if t.pExt > 0 {
|
|
return t.str[t.pVariant:t.pExt]
|
|
}
|
|
return t.str[t.pVariant:]
|
|
}
|
|
|
|
// equalsRest compares everything except the language.
|
|
func (a Tag) equalsRest(b Tag) bool {
|
|
// TODO: don't include extensions in this comparison. To do this efficiently,
|
|
// though, we should handle private tags separately.
|
|
return a.script == b.script && a.region == b.region && a.variantOrPrivateTagStr() == b.variantOrPrivateTagStr()
|
|
}
|
|
|
|
// isExactEquivalent returns true if canonicalizing the language will not alter
|
|
// the script or region of a tag.
|
|
func isExactEquivalent(l langID) bool {
|
|
for _, o := range notEquivalent {
|
|
if o == l {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
var notEquivalent []langID
|
|
|
|
func init() {
|
|
// Create a list of all languages for which canonicalization may alter the
|
|
// script or region.
|
|
for _, lm := range langAliasMap {
|
|
tag := Tag{lang: langID(lm.from)}
|
|
if tag, _ = tag.canonicalize(All); tag.script != 0 || tag.region != 0 {
|
|
notEquivalent = append(notEquivalent, langID(lm.from))
|
|
}
|
|
}
|
|
}
|