op-geth/trie/hasher.go
gary rong 0f7fbb85d6 trie: make fullnode children hash calculation concurrently (#15131)
* trie: make fullnode children hash calculation concurrently

* trie: thread out only on topmost fullnode

* trie: clean up full node children hash calculation

* trie: minor code fixups
2017-11-27 13:34:17 +02:00

231 lines
6.8 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"hash"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto/sha3"
"github.com/ethereum/go-ethereum/rlp"
)
// calculator is a utility used by the hasher to calculate the hash value of the tree node.
type calculator struct {
sha hash.Hash
buffer *bytes.Buffer
}
// calculatorPool is a set of temporary calculators that may be individually saved and retrieved.
var calculatorPool = sync.Pool{
New: func() interface{} {
return &calculator{buffer: new(bytes.Buffer), sha: sha3.NewKeccak256()}
},
}
// hasher hasher is used to calculate the hash value of the whole tree.
type hasher struct {
cachegen uint16
cachelimit uint16
threaded bool
mu sync.Mutex
}
func newHasher(cachegen, cachelimit uint16) *hasher {
h := &hasher{
cachegen: cachegen,
cachelimit: cachelimit,
}
return h
}
// newCalculator retrieves a cleaned calculator from calculator pool.
func (h *hasher) newCalculator() *calculator {
calculator := calculatorPool.Get().(*calculator)
calculator.buffer.Reset()
calculator.sha.Reset()
return calculator
}
// returnCalculator returns a no longer used calculator to the pool.
func (h *hasher) returnCalculator(calculator *calculator) {
calculatorPool.Put(calculator)
}
// hash collapses a node down into a hash node, also returning a copy of the
// original node initialized with the computed hash to replace the original one.
func (h *hasher) hash(n node, db DatabaseWriter, force bool) (node, node, error) {
// If we're not storing the node, just hashing, use available cached data
if hash, dirty := n.cache(); hash != nil {
if db == nil {
return hash, n, nil
}
if n.canUnload(h.cachegen, h.cachelimit) {
// Unload the node from cache. All of its subnodes will have a lower or equal
// cache generation number.
cacheUnloadCounter.Inc(1)
return hash, hash, nil
}
if !dirty {
return hash, n, nil
}
}
// Trie not processed yet or needs storage, walk the children
collapsed, cached, err := h.hashChildren(n, db)
if err != nil {
return hashNode{}, n, err
}
hashed, err := h.store(collapsed, db, force)
if err != nil {
return hashNode{}, n, err
}
// Cache the hash of the node for later reuse and remove
// the dirty flag in commit mode. It's fine to assign these values directly
// without copying the node first because hashChildren copies it.
cachedHash, _ := hashed.(hashNode)
switch cn := cached.(type) {
case *shortNode:
cn.flags.hash = cachedHash
if db != nil {
cn.flags.dirty = false
}
case *fullNode:
cn.flags.hash = cachedHash
if db != nil {
cn.flags.dirty = false
}
}
return hashed, cached, nil
}
// hashChildren replaces the children of a node with their hashes if the encoded
// size of the child is larger than a hash, returning the collapsed node as well
// as a replacement for the original node with the child hashes cached in.
func (h *hasher) hashChildren(original node, db DatabaseWriter) (node, node, error) {
var err error
switch n := original.(type) {
case *shortNode:
// Hash the short node's child, caching the newly hashed subtree
collapsed, cached := n.copy(), n.copy()
collapsed.Key = hexToCompact(n.Key)
cached.Key = common.CopyBytes(n.Key)
if _, ok := n.Val.(valueNode); !ok {
collapsed.Val, cached.Val, err = h.hash(n.Val, db, false)
if err != nil {
return original, original, err
}
}
if collapsed.Val == nil {
collapsed.Val = valueNode(nil) // Ensure that nil children are encoded as empty strings.
}
return collapsed, cached, nil
case *fullNode:
// Hash the full node's children, caching the newly hashed subtrees
collapsed, cached := n.copy(), n.copy()
// hashChild is a helper to hash a single child, which is called either on the
// same thread as the caller or in a goroutine for the toplevel branching.
hashChild := func(index int, wg *sync.WaitGroup) {
if wg != nil {
defer wg.Done()
}
// Ensure that nil children are encoded as empty strings.
if collapsed.Children[index] == nil {
collapsed.Children[index] = valueNode(nil)
return
}
// Hash all other children properly
var herr error
collapsed.Children[index], cached.Children[index], herr = h.hash(n.Children[index], db, false)
if herr != nil {
h.mu.Lock() // rarely if ever locked, no congenstion
err = herr
h.mu.Unlock()
}
}
// If we're not running in threaded mode yet, span a goroutine for each child
if !h.threaded {
// Disable further threading
h.threaded = true
// Hash all the children concurrently
var wg sync.WaitGroup
for i := 0; i < 16; i++ {
wg.Add(1)
go hashChild(i, &wg)
}
wg.Wait()
// Reenable threading for subsequent hash calls
h.threaded = false
} else {
for i := 0; i < 16; i++ {
hashChild(i, nil)
}
}
if err != nil {
return original, original, err
}
cached.Children[16] = n.Children[16]
if collapsed.Children[16] == nil {
collapsed.Children[16] = valueNode(nil)
}
return collapsed, cached, nil
default:
// Value and hash nodes don't have children so they're left as were
return n, original, nil
}
}
func (h *hasher) store(n node, db DatabaseWriter, force bool) (node, error) {
// Don't store hashes or empty nodes.
if _, isHash := n.(hashNode); n == nil || isHash {
return n, nil
}
calculator := h.newCalculator()
defer h.returnCalculator(calculator)
// Generate the RLP encoding of the node
if err := rlp.Encode(calculator.buffer, n); err != nil {
panic("encode error: " + err.Error())
}
if calculator.buffer.Len() < 32 && !force {
return n, nil // Nodes smaller than 32 bytes are stored inside their parent
}
// Larger nodes are replaced by their hash and stored in the database.
hash, _ := n.cache()
if hash == nil {
calculator.sha.Write(calculator.buffer.Bytes())
hash = hashNode(calculator.sha.Sum(nil))
}
if db != nil {
// db might be a leveldb batch, which is not safe for concurrent writes
h.mu.Lock()
err := db.Put(hash, calculator.buffer.Bytes())
h.mu.Unlock()
return hash, err
}
return hash, nil
}