mirror of https://github.com/status-im/op-geth.git
216 lines
6.5 KiB
Go
216 lines
6.5 KiB
Go
// Copyright 2019 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package trie
|
|
|
|
import (
|
|
"hash"
|
|
"sync"
|
|
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
"golang.org/x/crypto/sha3"
|
|
)
|
|
|
|
// keccakState wraps sha3.state. In addition to the usual hash methods, it also supports
|
|
// Read to get a variable amount of data from the hash state. Read is faster than Sum
|
|
// because it doesn't copy the internal state, but also modifies the internal state.
|
|
type keccakState interface {
|
|
hash.Hash
|
|
Read([]byte) (int, error)
|
|
}
|
|
|
|
type sliceBuffer []byte
|
|
|
|
func (b *sliceBuffer) Write(data []byte) (n int, err error) {
|
|
*b = append(*b, data...)
|
|
return len(data), nil
|
|
}
|
|
|
|
func (b *sliceBuffer) Reset() {
|
|
*b = (*b)[:0]
|
|
}
|
|
|
|
// hasher is a type used for the trie Hash operation. A hasher has some
|
|
// internal preallocated temp space
|
|
type hasher struct {
|
|
sha keccakState
|
|
tmp sliceBuffer
|
|
parallel bool // Whether to use paralallel threads when hashing
|
|
}
|
|
|
|
// hasherPool holds pureHashers
|
|
var hasherPool = sync.Pool{
|
|
New: func() interface{} {
|
|
return &hasher{
|
|
tmp: make(sliceBuffer, 0, 550), // cap is as large as a full fullNode.
|
|
sha: sha3.NewLegacyKeccak256().(keccakState),
|
|
}
|
|
},
|
|
}
|
|
|
|
func newHasher(parallel bool) *hasher {
|
|
h := hasherPool.Get().(*hasher)
|
|
h.parallel = parallel
|
|
return h
|
|
}
|
|
|
|
func returnHasherToPool(h *hasher) {
|
|
hasherPool.Put(h)
|
|
}
|
|
|
|
// hash collapses a node down into a hash node, also returning a copy of the
|
|
// original node initialized with the computed hash to replace the original one.
|
|
func (h *hasher) hash(n node, force bool) (hashed node, cached node) {
|
|
// We're not storing the node, just hashing, use available cached data
|
|
if hash, _ := n.cache(); hash != nil {
|
|
return hash, n
|
|
}
|
|
// Trie not processed yet or needs storage, walk the children
|
|
switch n := n.(type) {
|
|
case *shortNode:
|
|
collapsed, cached := h.hashShortNodeChildren(n)
|
|
hashed := h.shortnodeToHash(collapsed, force)
|
|
// We need to retain the possibly _not_ hashed node, in case it was too
|
|
// small to be hashed
|
|
if hn, ok := hashed.(hashNode); ok {
|
|
cached.flags.hash = hn
|
|
} else {
|
|
cached.flags.hash = nil
|
|
}
|
|
return hashed, cached
|
|
case *fullNode:
|
|
collapsed, cached := h.hashFullNodeChildren(n)
|
|
hashed = h.fullnodeToHash(collapsed, force)
|
|
if hn, ok := hashed.(hashNode); ok {
|
|
cached.flags.hash = hn
|
|
} else {
|
|
cached.flags.hash = nil
|
|
}
|
|
return hashed, cached
|
|
default:
|
|
// Value and hash nodes don't have children so they're left as were
|
|
return n, n
|
|
}
|
|
}
|
|
|
|
// hashShortNodeChildren collapses the short node. The returned collapsed node
|
|
// holds a live reference to the Key, and must not be modified.
|
|
// The cached
|
|
func (h *hasher) hashShortNodeChildren(n *shortNode) (collapsed, cached *shortNode) {
|
|
// Hash the short node's child, caching the newly hashed subtree
|
|
collapsed, cached = n.copy(), n.copy()
|
|
// Previously, we did copy this one. We don't seem to need to actually
|
|
// do that, since we don't overwrite/reuse keys
|
|
//cached.Key = common.CopyBytes(n.Key)
|
|
collapsed.Key = hexToCompact(n.Key)
|
|
// Unless the child is a valuenode or hashnode, hash it
|
|
switch n.Val.(type) {
|
|
case *fullNode, *shortNode:
|
|
collapsed.Val, cached.Val = h.hash(n.Val, false)
|
|
}
|
|
return collapsed, cached
|
|
}
|
|
|
|
func (h *hasher) hashFullNodeChildren(n *fullNode) (collapsed *fullNode, cached *fullNode) {
|
|
// Hash the full node's children, caching the newly hashed subtrees
|
|
cached = n.copy()
|
|
collapsed = n.copy()
|
|
if h.parallel {
|
|
var wg sync.WaitGroup
|
|
wg.Add(16)
|
|
for i := 0; i < 16; i++ {
|
|
go func(i int) {
|
|
hasher := newHasher(false)
|
|
if child := n.Children[i]; child != nil {
|
|
collapsed.Children[i], cached.Children[i] = hasher.hash(child, false)
|
|
} else {
|
|
collapsed.Children[i] = nilValueNode
|
|
}
|
|
returnHasherToPool(hasher)
|
|
wg.Done()
|
|
}(i)
|
|
}
|
|
wg.Wait()
|
|
} else {
|
|
for i := 0; i < 16; i++ {
|
|
if child := n.Children[i]; child != nil {
|
|
collapsed.Children[i], cached.Children[i] = h.hash(child, false)
|
|
} else {
|
|
collapsed.Children[i] = nilValueNode
|
|
}
|
|
}
|
|
}
|
|
return collapsed, cached
|
|
}
|
|
|
|
// shortnodeToHash creates a hashNode from a shortNode. The supplied shortnode
|
|
// should have hex-type Key, which will be converted (without modification)
|
|
// into compact form for RLP encoding.
|
|
// If the rlp data is smaller than 32 bytes, `nil` is returned.
|
|
func (h *hasher) shortnodeToHash(n *shortNode, force bool) node {
|
|
h.tmp.Reset()
|
|
if err := rlp.Encode(&h.tmp, n); err != nil {
|
|
panic("encode error: " + err.Error())
|
|
}
|
|
|
|
if len(h.tmp) < 32 && !force {
|
|
return n // Nodes smaller than 32 bytes are stored inside their parent
|
|
}
|
|
return h.hashData(h.tmp)
|
|
}
|
|
|
|
// shortnodeToHash is used to creates a hashNode from a set of hashNodes, (which
|
|
// may contain nil values)
|
|
func (h *hasher) fullnodeToHash(n *fullNode, force bool) node {
|
|
h.tmp.Reset()
|
|
// Generate the RLP encoding of the node
|
|
if err := n.EncodeRLP(&h.tmp); err != nil {
|
|
panic("encode error: " + err.Error())
|
|
}
|
|
|
|
if len(h.tmp) < 32 && !force {
|
|
return n // Nodes smaller than 32 bytes are stored inside their parent
|
|
}
|
|
return h.hashData(h.tmp)
|
|
}
|
|
|
|
// hashData hashes the provided data
|
|
func (h *hasher) hashData(data []byte) hashNode {
|
|
n := make(hashNode, 32)
|
|
h.sha.Reset()
|
|
h.sha.Write(data)
|
|
h.sha.Read(n)
|
|
return n
|
|
}
|
|
|
|
// proofHash is used to construct trie proofs, and returns the 'collapsed'
|
|
// node (for later RLP encoding) aswell as the hashed node -- unless the
|
|
// node is smaller than 32 bytes, in which case it will be returned as is.
|
|
// This method does not do anything on value- or hash-nodes.
|
|
func (h *hasher) proofHash(original node) (collapsed, hashed node) {
|
|
switch n := original.(type) {
|
|
case *shortNode:
|
|
sn, _ := h.hashShortNodeChildren(n)
|
|
return sn, h.shortnodeToHash(sn, false)
|
|
case *fullNode:
|
|
fn, _ := h.hashFullNodeChildren(n)
|
|
return fn, h.fullnodeToHash(fn, false)
|
|
default:
|
|
// Value and hash nodes don't have children so they're left as were
|
|
return n, n
|
|
}
|
|
}
|