op-geth/core/tx_pool_test.go

889 lines
31 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"crypto/ecdsa"
"math/big"
"math/rand"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
)
func transaction(nonce uint64, gaslimit *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
tx, _ := types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, big.NewInt(1), nil).SignECDSA(types.HomesteadSigner{}, key)
return tx
}
func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
key, _ := crypto.GenerateKey()
newPool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
newPool.resetState()
return newPool, key
}
func deriveSender(tx *types.Transaction) (common.Address, error) {
return types.Sender(types.HomesteadSigner{}, tx)
}
// This test simulates a scenario where a new block is imported during a
// state reset and tests whether the pending state is in sync with the
// block head event that initiated the resetState().
func TestStateChangeDuringPoolReset(t *testing.T) {
var (
db, _ = ethdb.NewMemDatabase()
key, _ = crypto.GenerateKey()
address = crypto.PubkeyToAddress(key.PublicKey)
mux = new(event.TypeMux)
statedb, _ = state.New(common.Hash{}, db)
trigger = false
)
// setup pool with 2 transaction in it
statedb.SetBalance(address, new(big.Int).Mul(common.Big1, common.Ether))
tx0 := transaction(0, big.NewInt(100000), key)
tx1 := transaction(1, big.NewInt(100000), key)
// stateFunc is used multiple times to reset the pending state.
// when simulate is true it will create a state that indicates
// that tx0 and tx1 are included in the chain.
stateFunc := func() (*state.StateDB, error) {
// delay "state change" by one. The tx pool fetches the
// state multiple times and by delaying it a bit we simulate
// a state change between those fetches.
stdb := statedb
if trigger {
statedb, _ = state.New(common.Hash{}, db)
// simulate that the new head block included tx0 and tx1
statedb.SetNonce(address, 2)
statedb.SetBalance(address, new(big.Int).Mul(common.Big1, common.Ether))
trigger = false
}
return stdb, nil
}
gasLimitFunc := func() *big.Int { return big.NewInt(1000000000) }
txpool := NewTxPool(testChainConfig(), mux, stateFunc, gasLimitFunc)
txpool.resetState()
nonce := txpool.State().GetNonce(address)
if nonce != 0 {
t.Fatalf("Invalid nonce, want 0, got %d", nonce)
}
txpool.AddBatch(types.Transactions{tx0, tx1})
nonce = txpool.State().GetNonce(address)
if nonce != 2 {
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
}
// trigger state change in the background
trigger = true
txpool.resetState()
pendingTx, err := txpool.Pending()
if err != nil {
t.Fatalf("Could not fetch pending transactions: %v", err)
}
for addr, txs := range pendingTx {
t.Logf("%0x: %d\n", addr, len(txs))
}
nonce = txpool.State().GetNonce(address)
if nonce != 2 {
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
}
}
func TestInvalidTransactions(t *testing.T) {
pool, key := setupTxPool()
tx := transaction(0, big.NewInt(100), key)
if err := pool.Add(tx); err != ErrNonExistentAccount {
t.Error("expected", ErrNonExistentAccount)
}
from, _ := deriveSender(tx)
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1))
if err := pool.Add(tx); err != ErrInsufficientFunds {
t.Error("expected", ErrInsufficientFunds)
}
balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(tx.Gas(), tx.GasPrice()))
currentState.AddBalance(from, balance)
if err := pool.Add(tx); err != ErrIntrinsicGas {
t.Error("expected", ErrIntrinsicGas, "got", err)
}
currentState.SetNonce(from, 1)
currentState.AddBalance(from, big.NewInt(0xffffffffffffff))
tx = transaction(0, big.NewInt(100000), key)
if err := pool.Add(tx); err != ErrNonce {
t.Error("expected", ErrNonce)
}
tx = transaction(1, big.NewInt(100000), key)
pool.minGasPrice = big.NewInt(1000)
if err := pool.Add(tx); err != ErrCheap {
t.Error("expected", ErrCheap, "got", err)
}
pool.SetLocal(tx)
if err := pool.Add(tx); err != nil {
t.Error("expected", nil, "got", err)
}
}
func TestTransactionQueue(t *testing.T) {
pool, key := setupTxPool()
tx := transaction(0, big.NewInt(100), key)
from, _ := deriveSender(tx)
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1000))
pool.resetState()
pool.enqueueTx(tx.Hash(), tx)
pool.promoteExecutables(currentState)
if len(pool.pending) != 1 {
t.Error("expected valid txs to be 1 is", len(pool.pending))
}
tx = transaction(1, big.NewInt(100), key)
from, _ = deriveSender(tx)
currentState.SetNonce(from, 2)
pool.enqueueTx(tx.Hash(), tx)
pool.promoteExecutables(currentState)
if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok {
t.Error("expected transaction to be in tx pool")
}
if len(pool.queue) > 0 {
t.Error("expected transaction queue to be empty. is", len(pool.queue))
}
pool, key = setupTxPool()
tx1 := transaction(0, big.NewInt(100), key)
tx2 := transaction(10, big.NewInt(100), key)
tx3 := transaction(11, big.NewInt(100), key)
from, _ = deriveSender(tx1)
currentState, _ = pool.currentState()
currentState.AddBalance(from, big.NewInt(1000))
pool.resetState()
pool.enqueueTx(tx1.Hash(), tx1)
pool.enqueueTx(tx2.Hash(), tx2)
pool.enqueueTx(tx3.Hash(), tx3)
pool.promoteExecutables(currentState)
if len(pool.pending) != 1 {
t.Error("expected tx pool to be 1, got", len(pool.pending))
}
if pool.queue[from].Len() != 2 {
t.Error("expected len(queue) == 2, got", pool.queue[from].Len())
}
}
func TestRemoveTx(t *testing.T) {
pool, key := setupTxPool()
tx := transaction(0, big.NewInt(100), key)
from, _ := deriveSender(tx)
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1))
pool.enqueueTx(tx.Hash(), tx)
pool.promoteTx(from, tx.Hash(), tx)
if len(pool.queue) != 1 {
t.Error("expected queue to be 1, got", len(pool.queue))
}
if len(pool.pending) != 1 {
t.Error("expected pending to be 1, got", len(pool.pending))
}
pool.Remove(tx.Hash())
if len(pool.queue) > 0 {
t.Error("expected queue to be 0, got", len(pool.queue))
}
if len(pool.pending) > 0 {
t.Error("expected pending to be 0, got", len(pool.pending))
}
}
func TestNegativeValue(t *testing.T) {
pool, key := setupTxPool()
tx, _ := types.NewTransaction(0, common.Address{}, big.NewInt(-1), big.NewInt(100), big.NewInt(1), nil).SignECDSA(types.HomesteadSigner{}, key)
from, _ := deriveSender(tx)
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1))
if err := pool.Add(tx); err != ErrNegativeValue {
t.Error("expected", ErrNegativeValue, "got", err)
}
}
func TestTransactionChainFork(t *testing.T) {
pool, key := setupTxPool()
addr := crypto.PubkeyToAddress(key.PublicKey)
resetState := func() {
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool.currentState = func() (*state.StateDB, error) { return statedb, nil }
currentState, _ := pool.currentState()
currentState.AddBalance(addr, big.NewInt(100000000000000))
pool.resetState()
}
resetState()
tx := transaction(0, big.NewInt(100000), key)
if err := pool.add(tx); err != nil {
t.Error("didn't expect error", err)
}
pool.RemoveBatch([]*types.Transaction{tx})
// reset the pool's internal state
resetState()
if err := pool.add(tx); err != nil {
t.Error("didn't expect error", err)
}
}
func TestTransactionDoubleNonce(t *testing.T) {
pool, key := setupTxPool()
addr := crypto.PubkeyToAddress(key.PublicKey)
resetState := func() {
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool.currentState = func() (*state.StateDB, error) { return statedb, nil }
currentState, _ := pool.currentState()
currentState.AddBalance(addr, big.NewInt(100000000000000))
pool.resetState()
}
resetState()
signer := types.HomesteadSigner{}
tx1, _ := types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(100000), big.NewInt(1), nil).SignECDSA(signer, key)
tx2, _ := types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(1000000), big.NewInt(2), nil).SignECDSA(signer, key)
tx3, _ := types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(1000000), big.NewInt(1), nil).SignECDSA(signer, key)
// Add the first two transaction, ensure higher priced stays only
if err := pool.add(tx1); err != nil {
t.Error("didn't expect error", err)
}
if err := pool.add(tx2); err != nil {
t.Error("didn't expect error", err)
}
state, _ := pool.currentState()
pool.promoteExecutables(state)
if pool.pending[addr].Len() != 1 {
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
}
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
}
// Add the thid transaction and ensure it's not saved (smaller price)
if err := pool.add(tx3); err != nil {
t.Error("didn't expect error", err)
}
pool.promoteExecutables(state)
if pool.pending[addr].Len() != 1 {
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
}
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
}
// Ensure the total transaction count is correct
if len(pool.all) != 1 {
t.Error("expected 1 total transactions, got", len(pool.all))
}
}
func TestMissingNonce(t *testing.T) {
pool, key := setupTxPool()
addr := crypto.PubkeyToAddress(key.PublicKey)
currentState, _ := pool.currentState()
currentState.AddBalance(addr, big.NewInt(100000000000000))
tx := transaction(1, big.NewInt(100000), key)
if err := pool.add(tx); err != nil {
t.Error("didn't expect error", err)
}
if len(pool.pending) != 0 {
t.Error("expected 0 pending transactions, got", len(pool.pending))
}
if pool.queue[addr].Len() != 1 {
t.Error("expected 1 queued transaction, got", pool.queue[addr].Len())
}
if len(pool.all) != 1 {
t.Error("expected 1 total transactions, got", len(pool.all))
}
}
func TestNonceRecovery(t *testing.T) {
const n = 10
pool, key := setupTxPool()
addr := crypto.PubkeyToAddress(key.PublicKey)
currentState, _ := pool.currentState()
currentState.SetNonce(addr, n)
currentState.AddBalance(addr, big.NewInt(100000000000000))
pool.resetState()
tx := transaction(n, big.NewInt(100000), key)
if err := pool.Add(tx); err != nil {
t.Error(err)
}
// simulate some weird re-order of transactions and missing nonce(s)
currentState.SetNonce(addr, n-1)
pool.resetState()
if fn := pool.pendingState.GetNonce(addr); fn != n+1 {
t.Errorf("expected nonce to be %d, got %d", n+1, fn)
}
}
func TestRemovedTxEvent(t *testing.T) {
pool, key := setupTxPool()
tx := transaction(0, big.NewInt(1000000), key)
from, _ := deriveSender(tx)
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1000000000000))
pool.resetState()
pool.eventMux.Post(RemovedTransactionEvent{types.Transactions{tx}})
pool.eventMux.Post(ChainHeadEvent{nil})
if pool.pending[from].Len() != 1 {
t.Error("expected 1 pending tx, got", pool.pending[from].Len())
}
if len(pool.all) != 1 {
t.Error("expected 1 total transactions, got", len(pool.all))
}
}
// Tests that if an account runs out of funds, any pending and queued transactions
// are dropped.
func TestTransactionDropping(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000))
// Add some pending and some queued transactions
var (
tx0 = transaction(0, big.NewInt(100), key)
tx1 = transaction(1, big.NewInt(200), key)
tx10 = transaction(10, big.NewInt(100), key)
tx11 = transaction(11, big.NewInt(200), key)
)
pool.promoteTx(account, tx0.Hash(), tx0)
pool.promoteTx(account, tx1.Hash(), tx1)
pool.enqueueTx(tx10.Hash(), tx10)
pool.enqueueTx(tx11.Hash(), tx11)
// Check that pre and post validations leave the pool as is
if pool.pending[account].Len() != 2 {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
}
if pool.queue[account].Len() != 2 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
}
if len(pool.all) != 4 {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
}
pool.resetState()
if pool.pending[account].Len() != 2 {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
}
if pool.queue[account].Len() != 2 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
}
if len(pool.all) != 4 {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
}
// Reduce the balance of the account, and check that invalidated transactions are dropped
state.AddBalance(account, big.NewInt(-750))
pool.resetState()
if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
t.Errorf("funded pending transaction missing: %v", tx0)
}
if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok {
t.Errorf("out-of-fund pending transaction present: %v", tx1)
}
if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
t.Errorf("funded queued transaction missing: %v", tx10)
}
if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok {
t.Errorf("out-of-fund queued transaction present: %v", tx11)
}
if len(pool.all) != 2 {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 2)
}
}
// Tests that if a transaction is dropped from the current pending pool (e.g. out
// of fund), all consecutive (still valid, but not executable) transactions are
// postponed back into the future queue to prevent broadcasting them.
func TestTransactionPostponing(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000))
// Add a batch consecutive pending transactions for validation
txns := []*types.Transaction{}
for i := 0; i < 100; i++ {
var tx *types.Transaction
if i%2 == 0 {
tx = transaction(uint64(i), big.NewInt(100), key)
} else {
tx = transaction(uint64(i), big.NewInt(500), key)
}
pool.promoteTx(account, tx.Hash(), tx)
txns = append(txns, tx)
}
// Check that pre and post validations leave the pool as is
if pool.pending[account].Len() != len(txns) {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns))
}
if len(pool.queue) != 0 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0)
}
if len(pool.all) != len(txns) {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns))
}
pool.resetState()
if pool.pending[account].Len() != len(txns) {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns))
}
if len(pool.queue) != 0 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0)
}
if len(pool.all) != len(txns) {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns))
}
// Reduce the balance of the account, and check that transactions are reorganised
state.AddBalance(account, big.NewInt(-750))
pool.resetState()
if _, ok := pool.pending[account].txs.items[txns[0].Nonce()]; !ok {
t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0])
}
if _, ok := pool.queue[account].txs.items[txns[0].Nonce()]; ok {
t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0])
}
for i, tx := range txns[1:] {
if i%2 == 1 {
if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
}
if _, ok := pool.queue[account].txs.items[tx.Nonce()]; !ok {
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
}
} else {
if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
}
if _, ok := pool.queue[account].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
}
}
}
if len(pool.all) != len(txns)/2 {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns)/2)
}
}
// Tests that if the transaction count belonging to a single account goes above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
func TestTransactionQueueAccountLimiting(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
pool.resetState()
// Keep queuing up transactions and make sure all above a limit are dropped
for i := uint64(1); i <= maxQueuedPerAccount+5; i++ {
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
if len(pool.pending) != 0 {
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
}
if i <= maxQueuedPerAccount {
if pool.queue[account].Len() != int(i) {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i)
}
} else {
if pool.queue[account].Len() != int(maxQueuedPerAccount) {
t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), maxQueuedPerAccount)
}
}
}
if len(pool.all) != int(maxQueuedPerAccount) {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), maxQueuedPerAccount)
}
}
// Tests that if the transaction count belonging to multiple accounts go above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
func TestTransactionQueueGlobalLimiting(t *testing.T) {
// Reduce the queue limits to shorten test time
defer func(old uint64) { maxQueuedInTotal = old }(maxQueuedInTotal)
maxQueuedInTotal = maxQueuedPerAccount * 3
// Create the pool to test the limit enforcement with
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
pool.resetState()
// Create a number of test accounts and fund them
state, _ := pool.currentState()
keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
}
// Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64)
txs := make(types.Transactions, 0, 3*maxQueuedInTotal)
for len(txs) < cap(txs) {
key := keys[rand.Intn(len(keys))]
addr := crypto.PubkeyToAddress(key.PublicKey)
txs = append(txs, transaction(nonces[addr]+1, big.NewInt(100000), key))
nonces[addr]++
}
// Import the batch and verify that limits have been enforced
pool.AddBatch(txs)
queued := 0
for addr, list := range pool.queue {
if list.Len() > int(maxQueuedPerAccount) {
t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), maxQueuedPerAccount)
}
queued += list.Len()
}
if queued > int(maxQueuedInTotal) {
t.Fatalf("total transactions overflow allowance: %d > %d", queued, maxQueuedInTotal)
}
}
// Tests that if an account remains idle for a prolonged amount of time, any
// non-executable transactions queued up are dropped to prevent wasting resources
// on shuffling them around.
func TestTransactionQueueTimeLimiting(t *testing.T) {
// Reduce the queue limits to shorten test time
defer func(old time.Duration) { maxQueuedLifetime = old }(maxQueuedLifetime)
defer func(old time.Duration) { evictionInterval = old }(evictionInterval)
maxQueuedLifetime = time.Second
evictionInterval = time.Second
// Create a test account and fund it
pool, key := setupTxPool()
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
// Queue up a batch of transactions
for i := uint64(1); i <= maxQueuedPerAccount; i++ {
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
}
// Wait until at least two expiration cycles hit and make sure the transactions are gone
time.Sleep(2 * evictionInterval)
if len(pool.queue) > 0 {
t.Fatalf("old transactions remained after eviction")
}
}
// Tests that even if the transaction count belonging to a single account goes
// above some threshold, as long as the transactions are executable, they are
// accepted.
func TestTransactionPendingLimiting(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
pool.resetState()
// Keep queuing up transactions and make sure all above a limit are dropped
for i := uint64(0); i < maxQueuedPerAccount+5; i++ {
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
if pool.pending[account].Len() != int(i)+1 {
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1)
}
if len(pool.queue) != 0 {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0)
}
}
if len(pool.all) != int(maxQueuedPerAccount+5) {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), maxQueuedPerAccount+5)
}
}
// Tests that the transaction limits are enforced the same way irrelevant whether
// the transactions are added one by one or in batches.
func TestTransactionQueueLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 1) }
func TestTransactionPendingLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 0) }
func testTransactionLimitingEquivalency(t *testing.T, origin uint64) {
// Add a batch of transactions to a pool one by one
pool1, key1 := setupTxPool()
account1, _ := deriveSender(transaction(0, big.NewInt(0), key1))
state1, _ := pool1.currentState()
state1.AddBalance(account1, big.NewInt(1000000))
for i := uint64(0); i < maxQueuedPerAccount+5; i++ {
if err := pool1.Add(transaction(origin+i, big.NewInt(100000), key1)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
}
// Add a batch of transactions to a pool in one big batch
pool2, key2 := setupTxPool()
account2, _ := deriveSender(transaction(0, big.NewInt(0), key2))
state2, _ := pool2.currentState()
state2.AddBalance(account2, big.NewInt(1000000))
txns := []*types.Transaction{}
for i := uint64(0); i < maxQueuedPerAccount+5; i++ {
txns = append(txns, transaction(origin+i, big.NewInt(100000), key2))
}
pool2.AddBatch(txns)
// Ensure the batch optimization honors the same pool mechanics
if len(pool1.pending) != len(pool2.pending) {
t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending))
}
if len(pool1.queue) != len(pool2.queue) {
t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue), len(pool2.queue))
}
if len(pool1.all) != len(pool2.all) {
t.Errorf("total transaction count mismatch: one-by-one algo %d, batch algo %d", len(pool1.all), len(pool2.all))
}
}
// Tests that if the transaction count belonging to multiple accounts go above
// some hard threshold, the higher transactions are dropped to prevent DOS
// attacks.
func TestTransactionPendingGlobalLimiting(t *testing.T) {
// Reduce the queue limits to shorten test time
defer func(old uint64) { maxPendingTotal = old }(maxPendingTotal)
maxPendingTotal = minPendingPerAccount * 10
// Create the pool to test the limit enforcement with
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
pool.resetState()
// Create a number of test accounts and fund them
state, _ := pool.currentState()
keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
}
// Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64)
txs := types.Transactions{}
for _, key := range keys {
addr := crypto.PubkeyToAddress(key.PublicKey)
for j := 0; j < int(maxPendingTotal)/len(keys)*2; j++ {
txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key))
nonces[addr]++
}
}
// Import the batch and verify that limits have been enforced
pool.AddBatch(txs)
pending := 0
for _, list := range pool.pending {
pending += list.Len()
}
if pending > int(maxPendingTotal) {
t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, maxPendingTotal)
}
}
// Tests that if the transaction count belonging to multiple accounts go above
// some hard threshold, if they are under the minimum guaranteed slot count then
// the transactions are still kept.
func TestTransactionPendingMinimumAllowance(t *testing.T) {
// Reduce the queue limits to shorten test time
defer func(old uint64) { maxPendingTotal = old }(maxPendingTotal)
maxPendingTotal = 0
// Create the pool to test the limit enforcement with
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
pool.resetState()
// Create a number of test accounts and fund them
state, _ := pool.currentState()
keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
}
// Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64)
txs := types.Transactions{}
for _, key := range keys {
addr := crypto.PubkeyToAddress(key.PublicKey)
for j := 0; j < int(minPendingPerAccount)*2; j++ {
txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key))
nonces[addr]++
}
}
// Import the batch and verify that limits have been enforced
pool.AddBatch(txs)
for addr, list := range pool.pending {
if list.Len() != int(minPendingPerAccount) {
t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), minPendingPerAccount)
}
}
}
// Benchmarks the speed of validating the contents of the pending queue of the
// transaction pool.
func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) }
func BenchmarkPendingDemotion1000(b *testing.B) { benchmarkPendingDemotion(b, 1000) }
func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) }
func benchmarkPendingDemotion(b *testing.B, size int) {
// Add a batch of transactions to a pool one by one
pool, key := setupTxPool()
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
for i := 0; i < size; i++ {
tx := transaction(uint64(i), big.NewInt(100000), key)
pool.promoteTx(account, tx.Hash(), tx)
}
// Benchmark the speed of pool validation
b.ResetTimer()
for i := 0; i < b.N; i++ {
pool.demoteUnexecutables(state)
}
}
// Benchmarks the speed of scheduling the contents of the future queue of the
// transaction pool.
func BenchmarkFuturePromotion100(b *testing.B) { benchmarkFuturePromotion(b, 100) }
func BenchmarkFuturePromotion1000(b *testing.B) { benchmarkFuturePromotion(b, 1000) }
func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) }
func benchmarkFuturePromotion(b *testing.B, size int) {
// Add a batch of transactions to a pool one by one
pool, key := setupTxPool()
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
for i := 0; i < size; i++ {
tx := transaction(uint64(1+i), big.NewInt(100000), key)
pool.enqueueTx(tx.Hash(), tx)
}
// Benchmark the speed of pool validation
b.ResetTimer()
for i := 0; i < b.N; i++ {
pool.promoteExecutables(state)
}
}
// Benchmarks the speed of iterative transaction insertion.
func BenchmarkPoolInsert(b *testing.B) {
// Generate a batch of transactions to enqueue into the pool
pool, key := setupTxPool()
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
txs := make(types.Transactions, b.N)
for i := 0; i < b.N; i++ {
txs[i] = transaction(uint64(i), big.NewInt(100000), key)
}
// Benchmark importing the transactions into the queue
b.ResetTimer()
for _, tx := range txs {
pool.Add(tx)
}
}
// Benchmarks the speed of batched transaction insertion.
func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100) }
func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000) }
func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) }
func benchmarkPoolBatchInsert(b *testing.B, size int) {
// Generate a batch of transactions to enqueue into the pool
pool, key := setupTxPool()
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
batches := make([]types.Transactions, b.N)
for i := 0; i < b.N; i++ {
batches[i] = make(types.Transactions, size)
for j := 0; j < size; j++ {
batches[i][j] = transaction(uint64(size*i+j), big.NewInt(100000), key)
}
}
// Benchmark importing the transactions into the queue
b.ResetTimer()
for _, batch := range batches {
pool.AddBatch(batch)
}
}