mirror of
https://github.com/status-im/op-geth.git
synced 2025-01-15 01:04:11 +00:00
30cd5c1854
Package p2p/enode provides a generalized representation of p2p nodes which can contain arbitrary information in key/value pairs. It is also the new home for the node database. The "v4" identity scheme is also moved here from p2p/enr to remove the dependency on Ethereum crypto from that package. Record signature handling is changed significantly. The identity scheme registry is removed and acceptable schemes must be passed to any method that needs identity. This means records must now be validated explicitly after decoding. The enode API is designed to make signature handling easy and safe: most APIs around the codebase work with enode.Node, which is a wrapper around a valid record. Going from enr.Record to enode.Node requires a valid signature. * p2p/discover: port to p2p/enode This ports the discovery code to the new node representation in p2p/enode. The wire protocol is unchanged, this can be considered a refactoring change. The Kademlia table can now deal with nodes using an arbitrary identity scheme. This requires a few incompatible API changes: - Table.Lookup is not available anymore. It used to take a public key as argument because v4 protocol requires one. Its replacement is LookupRandom. - Table.Resolve takes *enode.Node instead of NodeID. This is also for v4 protocol compatibility because nodes cannot be looked up by ID alone. - Types Node and NodeID are gone. Further commits in the series will be fixes all over the the codebase to deal with those removals. * p2p: port to p2p/enode and discovery changes This adapts package p2p to the changes in p2p/discover. All uses of discover.Node and discover.NodeID are replaced by their equivalents from p2p/enode. New API is added to retrieve the enode.Node instance of a peer. The behavior of Server.Self with discovery disabled is improved. It now tries much harder to report a working IP address, falling back to 127.0.0.1 if no suitable address can be determined through other means. These changes were needed for tests of other packages later in the series. * p2p/simulations, p2p/testing: port to p2p/enode No surprises here, mostly replacements of discover.Node, discover.NodeID with their new equivalents. The 'interesting' API changes are: - testing.ProtocolSession tracks complete nodes, not just their IDs. - adapters.NodeConfig has a new method to create a complete node. These changes were needed to make swarm tests work. Note that the NodeID change makes the code incompatible with old simulation snapshots. * whisper/whisperv5, whisper/whisperv6: port to p2p/enode This port was easy because whisper uses []byte for node IDs and URL strings in the API. * eth: port to p2p/enode Again, easy to port because eth uses strings for node IDs and doesn't care about node information in any way. * les: port to p2p/enode Apart from replacing discover.NodeID with enode.ID, most changes are in the server pool code. It now deals with complete nodes instead of (Pubkey, IP, Port) triples. The database format is unchanged for now, but we should probably change it to use the node database later. * node: port to p2p/enode This change simply replaces discover.Node and discover.NodeID with their new equivalents. * swarm/network: port to p2p/enode Swarm has its own node address representation, BzzAddr, containing both an overlay address (the hash of a secp256k1 public key) and an underlay address (enode:// URL). There are no changes to the BzzAddr format in this commit, but certain operations such as creating a BzzAddr from a node ID are now impossible because node IDs aren't public keys anymore. Most swarm-related changes in the series remove uses of NewAddrFromNodeID, replacing it with NewAddr which takes a complete node as argument. ToOverlayAddr is removed because we can just use the node ID directly.
856 lines
26 KiB
Go
856 lines
26 KiB
Go
// Copyright 2016 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Package les implements the Light Ethereum Subprotocol.
|
|
package les
|
|
|
|
import (
|
|
"crypto/ecdsa"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
"math/rand"
|
|
"net"
|
|
"strconv"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/common/mclock"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/ethdb"
|
|
"github.com/ethereum/go-ethereum/log"
|
|
"github.com/ethereum/go-ethereum/p2p"
|
|
"github.com/ethereum/go-ethereum/p2p/discv5"
|
|
"github.com/ethereum/go-ethereum/p2p/enode"
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
)
|
|
|
|
const (
|
|
// After a connection has been ended or timed out, there is a waiting period
|
|
// before it can be selected for connection again.
|
|
// waiting period = base delay * (1 + random(1))
|
|
// base delay = shortRetryDelay for the first shortRetryCnt times after a
|
|
// successful connection, after that longRetryDelay is applied
|
|
shortRetryCnt = 5
|
|
shortRetryDelay = time.Second * 5
|
|
longRetryDelay = time.Minute * 10
|
|
// maxNewEntries is the maximum number of newly discovered (never connected) nodes.
|
|
// If the limit is reached, the least recently discovered one is thrown out.
|
|
maxNewEntries = 1000
|
|
// maxKnownEntries is the maximum number of known (already connected) nodes.
|
|
// If the limit is reached, the least recently connected one is thrown out.
|
|
// (not that unlike new entries, known entries are persistent)
|
|
maxKnownEntries = 1000
|
|
// target for simultaneously connected servers
|
|
targetServerCount = 5
|
|
// target for servers selected from the known table
|
|
// (we leave room for trying new ones if there is any)
|
|
targetKnownSelect = 3
|
|
// after dialTimeout, consider the server unavailable and adjust statistics
|
|
dialTimeout = time.Second * 30
|
|
// targetConnTime is the minimum expected connection duration before a server
|
|
// drops a client without any specific reason
|
|
targetConnTime = time.Minute * 10
|
|
// new entry selection weight calculation based on most recent discovery time:
|
|
// unity until discoverExpireStart, then exponential decay with discoverExpireConst
|
|
discoverExpireStart = time.Minute * 20
|
|
discoverExpireConst = time.Minute * 20
|
|
// known entry selection weight is dropped by a factor of exp(-failDropLn) after
|
|
// each unsuccessful connection (restored after a successful one)
|
|
failDropLn = 0.1
|
|
// known node connection success and quality statistics have a long term average
|
|
// and a short term value which is adjusted exponentially with a factor of
|
|
// pstatRecentAdjust with each dial/connection and also returned exponentially
|
|
// to the average with the time constant pstatReturnToMeanTC
|
|
pstatReturnToMeanTC = time.Hour
|
|
// node address selection weight is dropped by a factor of exp(-addrFailDropLn) after
|
|
// each unsuccessful connection (restored after a successful one)
|
|
addrFailDropLn = math.Ln2
|
|
// responseScoreTC and delayScoreTC are exponential decay time constants for
|
|
// calculating selection chances from response times and block delay times
|
|
responseScoreTC = time.Millisecond * 100
|
|
delayScoreTC = time.Second * 5
|
|
timeoutPow = 10
|
|
// initStatsWeight is used to initialize previously unknown peers with good
|
|
// statistics to give a chance to prove themselves
|
|
initStatsWeight = 1
|
|
)
|
|
|
|
// connReq represents a request for peer connection.
|
|
type connReq struct {
|
|
p *peer
|
|
node *enode.Node
|
|
result chan *poolEntry
|
|
}
|
|
|
|
// disconnReq represents a request for peer disconnection.
|
|
type disconnReq struct {
|
|
entry *poolEntry
|
|
stopped bool
|
|
done chan struct{}
|
|
}
|
|
|
|
// registerReq represents a request for peer registration.
|
|
type registerReq struct {
|
|
entry *poolEntry
|
|
done chan struct{}
|
|
}
|
|
|
|
// serverPool implements a pool for storing and selecting newly discovered and already
|
|
// known light server nodes. It received discovered nodes, stores statistics about
|
|
// known nodes and takes care of always having enough good quality servers connected.
|
|
type serverPool struct {
|
|
db ethdb.Database
|
|
dbKey []byte
|
|
server *p2p.Server
|
|
quit chan struct{}
|
|
wg *sync.WaitGroup
|
|
connWg sync.WaitGroup
|
|
|
|
topic discv5.Topic
|
|
|
|
discSetPeriod chan time.Duration
|
|
discNodes chan *enode.Node
|
|
discLookups chan bool
|
|
|
|
entries map[enode.ID]*poolEntry
|
|
timeout, enableRetry chan *poolEntry
|
|
adjustStats chan poolStatAdjust
|
|
|
|
connCh chan *connReq
|
|
disconnCh chan *disconnReq
|
|
registerCh chan *registerReq
|
|
|
|
knownQueue, newQueue poolEntryQueue
|
|
knownSelect, newSelect *weightedRandomSelect
|
|
knownSelected, newSelected int
|
|
fastDiscover bool
|
|
}
|
|
|
|
// newServerPool creates a new serverPool instance
|
|
func newServerPool(db ethdb.Database, quit chan struct{}, wg *sync.WaitGroup) *serverPool {
|
|
pool := &serverPool{
|
|
db: db,
|
|
quit: quit,
|
|
wg: wg,
|
|
entries: make(map[enode.ID]*poolEntry),
|
|
timeout: make(chan *poolEntry, 1),
|
|
adjustStats: make(chan poolStatAdjust, 100),
|
|
enableRetry: make(chan *poolEntry, 1),
|
|
connCh: make(chan *connReq),
|
|
disconnCh: make(chan *disconnReq),
|
|
registerCh: make(chan *registerReq),
|
|
knownSelect: newWeightedRandomSelect(),
|
|
newSelect: newWeightedRandomSelect(),
|
|
fastDiscover: true,
|
|
}
|
|
pool.knownQueue = newPoolEntryQueue(maxKnownEntries, pool.removeEntry)
|
|
pool.newQueue = newPoolEntryQueue(maxNewEntries, pool.removeEntry)
|
|
return pool
|
|
}
|
|
|
|
func (pool *serverPool) start(server *p2p.Server, topic discv5.Topic) {
|
|
pool.server = server
|
|
pool.topic = topic
|
|
pool.dbKey = append([]byte("serverPool/"), []byte(topic)...)
|
|
pool.wg.Add(1)
|
|
pool.loadNodes()
|
|
|
|
if pool.server.DiscV5 != nil {
|
|
pool.discSetPeriod = make(chan time.Duration, 1)
|
|
pool.discNodes = make(chan *enode.Node, 100)
|
|
pool.discLookups = make(chan bool, 100)
|
|
go pool.discoverNodes()
|
|
}
|
|
pool.checkDial()
|
|
go pool.eventLoop()
|
|
}
|
|
|
|
// discoverNodes wraps SearchTopic, converting result nodes to enode.Node.
|
|
func (pool *serverPool) discoverNodes() {
|
|
ch := make(chan *discv5.Node)
|
|
go func() {
|
|
pool.server.DiscV5.SearchTopic(pool.topic, pool.discSetPeriod, ch, pool.discLookups)
|
|
close(ch)
|
|
}()
|
|
for n := range ch {
|
|
pubkey, err := decodePubkey64(n.ID[:])
|
|
if err != nil {
|
|
continue
|
|
}
|
|
pool.discNodes <- enode.NewV4(pubkey, n.IP, int(n.TCP), int(n.UDP))
|
|
}
|
|
}
|
|
|
|
// connect should be called upon any incoming connection. If the connection has been
|
|
// dialed by the server pool recently, the appropriate pool entry is returned.
|
|
// Otherwise, the connection should be rejected.
|
|
// Note that whenever a connection has been accepted and a pool entry has been returned,
|
|
// disconnect should also always be called.
|
|
func (pool *serverPool) connect(p *peer, node *enode.Node) *poolEntry {
|
|
log.Debug("Connect new entry", "enode", p.id)
|
|
req := &connReq{p: p, node: node, result: make(chan *poolEntry, 1)}
|
|
select {
|
|
case pool.connCh <- req:
|
|
case <-pool.quit:
|
|
return nil
|
|
}
|
|
return <-req.result
|
|
}
|
|
|
|
// registered should be called after a successful handshake
|
|
func (pool *serverPool) registered(entry *poolEntry) {
|
|
log.Debug("Registered new entry", "enode", entry.node.ID())
|
|
req := ®isterReq{entry: entry, done: make(chan struct{})}
|
|
select {
|
|
case pool.registerCh <- req:
|
|
case <-pool.quit:
|
|
return
|
|
}
|
|
<-req.done
|
|
}
|
|
|
|
// disconnect should be called when ending a connection. Service quality statistics
|
|
// can be updated optionally (not updated if no registration happened, in this case
|
|
// only connection statistics are updated, just like in case of timeout)
|
|
func (pool *serverPool) disconnect(entry *poolEntry) {
|
|
stopped := false
|
|
select {
|
|
case <-pool.quit:
|
|
stopped = true
|
|
default:
|
|
}
|
|
log.Debug("Disconnected old entry", "enode", entry.node.ID())
|
|
req := &disconnReq{entry: entry, stopped: stopped, done: make(chan struct{})}
|
|
|
|
// Block until disconnection request is served.
|
|
pool.disconnCh <- req
|
|
<-req.done
|
|
}
|
|
|
|
const (
|
|
pseBlockDelay = iota
|
|
pseResponseTime
|
|
pseResponseTimeout
|
|
)
|
|
|
|
// poolStatAdjust records are sent to adjust peer block delay/response time statistics
|
|
type poolStatAdjust struct {
|
|
adjustType int
|
|
entry *poolEntry
|
|
time time.Duration
|
|
}
|
|
|
|
// adjustBlockDelay adjusts the block announce delay statistics of a node
|
|
func (pool *serverPool) adjustBlockDelay(entry *poolEntry, time time.Duration) {
|
|
if entry == nil {
|
|
return
|
|
}
|
|
pool.adjustStats <- poolStatAdjust{pseBlockDelay, entry, time}
|
|
}
|
|
|
|
// adjustResponseTime adjusts the request response time statistics of a node
|
|
func (pool *serverPool) adjustResponseTime(entry *poolEntry, time time.Duration, timeout bool) {
|
|
if entry == nil {
|
|
return
|
|
}
|
|
if timeout {
|
|
pool.adjustStats <- poolStatAdjust{pseResponseTimeout, entry, time}
|
|
} else {
|
|
pool.adjustStats <- poolStatAdjust{pseResponseTime, entry, time}
|
|
}
|
|
}
|
|
|
|
// eventLoop handles pool events and mutex locking for all internal functions
|
|
func (pool *serverPool) eventLoop() {
|
|
lookupCnt := 0
|
|
var convTime mclock.AbsTime
|
|
if pool.discSetPeriod != nil {
|
|
pool.discSetPeriod <- time.Millisecond * 100
|
|
}
|
|
|
|
// disconnect updates service quality statistics depending on the connection time
|
|
// and disconnection initiator.
|
|
disconnect := func(req *disconnReq, stopped bool) {
|
|
// Handle peer disconnection requests.
|
|
entry := req.entry
|
|
if entry.state == psRegistered {
|
|
connAdjust := float64(mclock.Now()-entry.regTime) / float64(targetConnTime)
|
|
if connAdjust > 1 {
|
|
connAdjust = 1
|
|
}
|
|
if stopped {
|
|
// disconnect requested by ourselves.
|
|
entry.connectStats.add(1, connAdjust)
|
|
} else {
|
|
// disconnect requested by server side.
|
|
entry.connectStats.add(connAdjust, 1)
|
|
}
|
|
}
|
|
entry.state = psNotConnected
|
|
|
|
if entry.knownSelected {
|
|
pool.knownSelected--
|
|
} else {
|
|
pool.newSelected--
|
|
}
|
|
pool.setRetryDial(entry)
|
|
pool.connWg.Done()
|
|
close(req.done)
|
|
}
|
|
|
|
for {
|
|
select {
|
|
case entry := <-pool.timeout:
|
|
if !entry.removed {
|
|
pool.checkDialTimeout(entry)
|
|
}
|
|
|
|
case entry := <-pool.enableRetry:
|
|
if !entry.removed {
|
|
entry.delayedRetry = false
|
|
pool.updateCheckDial(entry)
|
|
}
|
|
|
|
case adj := <-pool.adjustStats:
|
|
switch adj.adjustType {
|
|
case pseBlockDelay:
|
|
adj.entry.delayStats.add(float64(adj.time), 1)
|
|
case pseResponseTime:
|
|
adj.entry.responseStats.add(float64(adj.time), 1)
|
|
adj.entry.timeoutStats.add(0, 1)
|
|
case pseResponseTimeout:
|
|
adj.entry.timeoutStats.add(1, 1)
|
|
}
|
|
|
|
case node := <-pool.discNodes:
|
|
entry := pool.findOrNewNode(node)
|
|
pool.updateCheckDial(entry)
|
|
|
|
case conv := <-pool.discLookups:
|
|
if conv {
|
|
if lookupCnt == 0 {
|
|
convTime = mclock.Now()
|
|
}
|
|
lookupCnt++
|
|
if pool.fastDiscover && (lookupCnt == 50 || time.Duration(mclock.Now()-convTime) > time.Minute) {
|
|
pool.fastDiscover = false
|
|
if pool.discSetPeriod != nil {
|
|
pool.discSetPeriod <- time.Minute
|
|
}
|
|
}
|
|
}
|
|
|
|
case req := <-pool.connCh:
|
|
// Handle peer connection requests.
|
|
entry := pool.entries[req.p.ID()]
|
|
if entry == nil {
|
|
entry = pool.findOrNewNode(req.node)
|
|
}
|
|
if entry.state == psConnected || entry.state == psRegistered {
|
|
req.result <- nil
|
|
continue
|
|
}
|
|
pool.connWg.Add(1)
|
|
entry.peer = req.p
|
|
entry.state = psConnected
|
|
addr := &poolEntryAddress{
|
|
ip: req.node.IP(),
|
|
port: uint16(req.node.TCP()),
|
|
lastSeen: mclock.Now(),
|
|
}
|
|
entry.lastConnected = addr
|
|
entry.addr = make(map[string]*poolEntryAddress)
|
|
entry.addr[addr.strKey()] = addr
|
|
entry.addrSelect = *newWeightedRandomSelect()
|
|
entry.addrSelect.update(addr)
|
|
req.result <- entry
|
|
|
|
case req := <-pool.registerCh:
|
|
// Handle peer registration requests.
|
|
entry := req.entry
|
|
entry.state = psRegistered
|
|
entry.regTime = mclock.Now()
|
|
if !entry.known {
|
|
pool.newQueue.remove(entry)
|
|
entry.known = true
|
|
}
|
|
pool.knownQueue.setLatest(entry)
|
|
entry.shortRetry = shortRetryCnt
|
|
close(req.done)
|
|
|
|
case req := <-pool.disconnCh:
|
|
// Handle peer disconnection requests.
|
|
disconnect(req, req.stopped)
|
|
|
|
case <-pool.quit:
|
|
if pool.discSetPeriod != nil {
|
|
close(pool.discSetPeriod)
|
|
}
|
|
|
|
// Spawn a goroutine to close the disconnCh after all connections are disconnected.
|
|
go func() {
|
|
pool.connWg.Wait()
|
|
close(pool.disconnCh)
|
|
}()
|
|
|
|
// Handle all remaining disconnection requests before exit.
|
|
for req := range pool.disconnCh {
|
|
disconnect(req, true)
|
|
}
|
|
pool.saveNodes()
|
|
pool.wg.Done()
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
func (pool *serverPool) findOrNewNode(node *enode.Node) *poolEntry {
|
|
now := mclock.Now()
|
|
entry := pool.entries[node.ID()]
|
|
if entry == nil {
|
|
log.Debug("Discovered new entry", "id", node.ID())
|
|
entry = &poolEntry{
|
|
node: node,
|
|
addr: make(map[string]*poolEntryAddress),
|
|
addrSelect: *newWeightedRandomSelect(),
|
|
shortRetry: shortRetryCnt,
|
|
}
|
|
pool.entries[node.ID()] = entry
|
|
// initialize previously unknown peers with good statistics to give a chance to prove themselves
|
|
entry.connectStats.add(1, initStatsWeight)
|
|
entry.delayStats.add(0, initStatsWeight)
|
|
entry.responseStats.add(0, initStatsWeight)
|
|
entry.timeoutStats.add(0, initStatsWeight)
|
|
}
|
|
entry.lastDiscovered = now
|
|
addr := &poolEntryAddress{ip: node.IP(), port: uint16(node.TCP())}
|
|
if a, ok := entry.addr[addr.strKey()]; ok {
|
|
addr = a
|
|
} else {
|
|
entry.addr[addr.strKey()] = addr
|
|
}
|
|
addr.lastSeen = now
|
|
entry.addrSelect.update(addr)
|
|
if !entry.known {
|
|
pool.newQueue.setLatest(entry)
|
|
}
|
|
return entry
|
|
}
|
|
|
|
// loadNodes loads known nodes and their statistics from the database
|
|
func (pool *serverPool) loadNodes() {
|
|
enc, err := pool.db.Get(pool.dbKey)
|
|
if err != nil {
|
|
return
|
|
}
|
|
var list []*poolEntry
|
|
err = rlp.DecodeBytes(enc, &list)
|
|
if err != nil {
|
|
log.Debug("Failed to decode node list", "err", err)
|
|
return
|
|
}
|
|
for _, e := range list {
|
|
log.Debug("Loaded server stats", "id", e.node.ID(), "fails", e.lastConnected.fails,
|
|
"conn", fmt.Sprintf("%v/%v", e.connectStats.avg, e.connectStats.weight),
|
|
"delay", fmt.Sprintf("%v/%v", time.Duration(e.delayStats.avg), e.delayStats.weight),
|
|
"response", fmt.Sprintf("%v/%v", time.Duration(e.responseStats.avg), e.responseStats.weight),
|
|
"timeout", fmt.Sprintf("%v/%v", e.timeoutStats.avg, e.timeoutStats.weight))
|
|
pool.entries[e.node.ID()] = e
|
|
pool.knownQueue.setLatest(e)
|
|
pool.knownSelect.update((*knownEntry)(e))
|
|
}
|
|
}
|
|
|
|
// saveNodes saves known nodes and their statistics into the database. Nodes are
|
|
// ordered from least to most recently connected.
|
|
func (pool *serverPool) saveNodes() {
|
|
list := make([]*poolEntry, len(pool.knownQueue.queue))
|
|
for i := range list {
|
|
list[i] = pool.knownQueue.fetchOldest()
|
|
}
|
|
enc, err := rlp.EncodeToBytes(list)
|
|
if err == nil {
|
|
pool.db.Put(pool.dbKey, enc)
|
|
}
|
|
}
|
|
|
|
// removeEntry removes a pool entry when the entry count limit is reached.
|
|
// Note that it is called by the new/known queues from which the entry has already
|
|
// been removed so removing it from the queues is not necessary.
|
|
func (pool *serverPool) removeEntry(entry *poolEntry) {
|
|
pool.newSelect.remove((*discoveredEntry)(entry))
|
|
pool.knownSelect.remove((*knownEntry)(entry))
|
|
entry.removed = true
|
|
delete(pool.entries, entry.node.ID())
|
|
}
|
|
|
|
// setRetryDial starts the timer which will enable dialing a certain node again
|
|
func (pool *serverPool) setRetryDial(entry *poolEntry) {
|
|
delay := longRetryDelay
|
|
if entry.shortRetry > 0 {
|
|
entry.shortRetry--
|
|
delay = shortRetryDelay
|
|
}
|
|
delay += time.Duration(rand.Int63n(int64(delay) + 1))
|
|
entry.delayedRetry = true
|
|
go func() {
|
|
select {
|
|
case <-pool.quit:
|
|
case <-time.After(delay):
|
|
select {
|
|
case <-pool.quit:
|
|
case pool.enableRetry <- entry:
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
|
|
// updateCheckDial is called when an entry can potentially be dialed again. It updates
|
|
// its selection weights and checks if new dials can/should be made.
|
|
func (pool *serverPool) updateCheckDial(entry *poolEntry) {
|
|
pool.newSelect.update((*discoveredEntry)(entry))
|
|
pool.knownSelect.update((*knownEntry)(entry))
|
|
pool.checkDial()
|
|
}
|
|
|
|
// checkDial checks if new dials can/should be made. It tries to select servers both
|
|
// based on good statistics and recent discovery.
|
|
func (pool *serverPool) checkDial() {
|
|
fillWithKnownSelects := !pool.fastDiscover
|
|
for pool.knownSelected < targetKnownSelect {
|
|
entry := pool.knownSelect.choose()
|
|
if entry == nil {
|
|
fillWithKnownSelects = false
|
|
break
|
|
}
|
|
pool.dial((*poolEntry)(entry.(*knownEntry)), true)
|
|
}
|
|
for pool.knownSelected+pool.newSelected < targetServerCount {
|
|
entry := pool.newSelect.choose()
|
|
if entry == nil {
|
|
break
|
|
}
|
|
pool.dial((*poolEntry)(entry.(*discoveredEntry)), false)
|
|
}
|
|
if fillWithKnownSelects {
|
|
// no more newly discovered nodes to select and since fast discover period
|
|
// is over, we probably won't find more in the near future so select more
|
|
// known entries if possible
|
|
for pool.knownSelected < targetServerCount {
|
|
entry := pool.knownSelect.choose()
|
|
if entry == nil {
|
|
break
|
|
}
|
|
pool.dial((*poolEntry)(entry.(*knownEntry)), true)
|
|
}
|
|
}
|
|
}
|
|
|
|
// dial initiates a new connection
|
|
func (pool *serverPool) dial(entry *poolEntry, knownSelected bool) {
|
|
if pool.server == nil || entry.state != psNotConnected {
|
|
return
|
|
}
|
|
entry.state = psDialed
|
|
entry.knownSelected = knownSelected
|
|
if knownSelected {
|
|
pool.knownSelected++
|
|
} else {
|
|
pool.newSelected++
|
|
}
|
|
addr := entry.addrSelect.choose().(*poolEntryAddress)
|
|
log.Debug("Dialing new peer", "lesaddr", entry.node.ID().String()+"@"+addr.strKey(), "set", len(entry.addr), "known", knownSelected)
|
|
entry.dialed = addr
|
|
go func() {
|
|
pool.server.AddPeer(entry.node)
|
|
select {
|
|
case <-pool.quit:
|
|
case <-time.After(dialTimeout):
|
|
select {
|
|
case <-pool.quit:
|
|
case pool.timeout <- entry:
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
|
|
// checkDialTimeout checks if the node is still in dialed state and if so, resets it
|
|
// and adjusts connection statistics accordingly.
|
|
func (pool *serverPool) checkDialTimeout(entry *poolEntry) {
|
|
if entry.state != psDialed {
|
|
return
|
|
}
|
|
log.Debug("Dial timeout", "lesaddr", entry.node.ID().String()+"@"+entry.dialed.strKey())
|
|
entry.state = psNotConnected
|
|
if entry.knownSelected {
|
|
pool.knownSelected--
|
|
} else {
|
|
pool.newSelected--
|
|
}
|
|
entry.connectStats.add(0, 1)
|
|
entry.dialed.fails++
|
|
pool.setRetryDial(entry)
|
|
}
|
|
|
|
const (
|
|
psNotConnected = iota
|
|
psDialed
|
|
psConnected
|
|
psRegistered
|
|
)
|
|
|
|
// poolEntry represents a server node and stores its current state and statistics.
|
|
type poolEntry struct {
|
|
peer *peer
|
|
pubkey [64]byte // secp256k1 key of the node
|
|
addr map[string]*poolEntryAddress
|
|
node *enode.Node
|
|
lastConnected, dialed *poolEntryAddress
|
|
addrSelect weightedRandomSelect
|
|
|
|
lastDiscovered mclock.AbsTime
|
|
known, knownSelected bool
|
|
connectStats, delayStats poolStats
|
|
responseStats, timeoutStats poolStats
|
|
state int
|
|
regTime mclock.AbsTime
|
|
queueIdx int
|
|
removed bool
|
|
|
|
delayedRetry bool
|
|
shortRetry int
|
|
}
|
|
|
|
// poolEntryEnc is the RLP encoding of poolEntry.
|
|
type poolEntryEnc struct {
|
|
Pubkey []byte
|
|
IP net.IP
|
|
Port uint16
|
|
Fails uint
|
|
CStat, DStat, RStat, TStat poolStats
|
|
}
|
|
|
|
func (e *poolEntry) EncodeRLP(w io.Writer) error {
|
|
return rlp.Encode(w, &poolEntryEnc{
|
|
Pubkey: encodePubkey64(e.node.Pubkey()),
|
|
IP: e.lastConnected.ip,
|
|
Port: e.lastConnected.port,
|
|
Fails: e.lastConnected.fails,
|
|
CStat: e.connectStats,
|
|
DStat: e.delayStats,
|
|
RStat: e.responseStats,
|
|
TStat: e.timeoutStats,
|
|
})
|
|
}
|
|
|
|
func (e *poolEntry) DecodeRLP(s *rlp.Stream) error {
|
|
var entry poolEntryEnc
|
|
if err := s.Decode(&entry); err != nil {
|
|
return err
|
|
}
|
|
pubkey, err := decodePubkey64(entry.Pubkey)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
addr := &poolEntryAddress{ip: entry.IP, port: entry.Port, fails: entry.Fails, lastSeen: mclock.Now()}
|
|
e.node = enode.NewV4(pubkey, entry.IP, int(entry.Port), int(entry.Port))
|
|
e.addr = make(map[string]*poolEntryAddress)
|
|
e.addr[addr.strKey()] = addr
|
|
e.addrSelect = *newWeightedRandomSelect()
|
|
e.addrSelect.update(addr)
|
|
e.lastConnected = addr
|
|
e.connectStats = entry.CStat
|
|
e.delayStats = entry.DStat
|
|
e.responseStats = entry.RStat
|
|
e.timeoutStats = entry.TStat
|
|
e.shortRetry = shortRetryCnt
|
|
e.known = true
|
|
return nil
|
|
}
|
|
|
|
func encodePubkey64(pub *ecdsa.PublicKey) []byte {
|
|
return crypto.FromECDSAPub(pub)[:1]
|
|
}
|
|
|
|
func decodePubkey64(b []byte) (*ecdsa.PublicKey, error) {
|
|
return crypto.UnmarshalPubkey(append([]byte{0x04}, b...))
|
|
}
|
|
|
|
// discoveredEntry implements wrsItem
|
|
type discoveredEntry poolEntry
|
|
|
|
// Weight calculates random selection weight for newly discovered entries
|
|
func (e *discoveredEntry) Weight() int64 {
|
|
if e.state != psNotConnected || e.delayedRetry {
|
|
return 0
|
|
}
|
|
t := time.Duration(mclock.Now() - e.lastDiscovered)
|
|
if t <= discoverExpireStart {
|
|
return 1000000000
|
|
}
|
|
return int64(1000000000 * math.Exp(-float64(t-discoverExpireStart)/float64(discoverExpireConst)))
|
|
}
|
|
|
|
// knownEntry implements wrsItem
|
|
type knownEntry poolEntry
|
|
|
|
// Weight calculates random selection weight for known entries
|
|
func (e *knownEntry) Weight() int64 {
|
|
if e.state != psNotConnected || !e.known || e.delayedRetry {
|
|
return 0
|
|
}
|
|
return int64(1000000000 * e.connectStats.recentAvg() * math.Exp(-float64(e.lastConnected.fails)*failDropLn-e.responseStats.recentAvg()/float64(responseScoreTC)-e.delayStats.recentAvg()/float64(delayScoreTC)) * math.Pow(1-e.timeoutStats.recentAvg(), timeoutPow))
|
|
}
|
|
|
|
// poolEntryAddress is a separate object because currently it is necessary to remember
|
|
// multiple potential network addresses for a pool entry. This will be removed after
|
|
// the final implementation of v5 discovery which will retrieve signed and serial
|
|
// numbered advertisements, making it clear which IP/port is the latest one.
|
|
type poolEntryAddress struct {
|
|
ip net.IP
|
|
port uint16
|
|
lastSeen mclock.AbsTime // last time it was discovered, connected or loaded from db
|
|
fails uint // connection failures since last successful connection (persistent)
|
|
}
|
|
|
|
func (a *poolEntryAddress) Weight() int64 {
|
|
t := time.Duration(mclock.Now() - a.lastSeen)
|
|
return int64(1000000*math.Exp(-float64(t)/float64(discoverExpireConst)-float64(a.fails)*addrFailDropLn)) + 1
|
|
}
|
|
|
|
func (a *poolEntryAddress) strKey() string {
|
|
return a.ip.String() + ":" + strconv.Itoa(int(a.port))
|
|
}
|
|
|
|
// poolStats implement statistics for a certain quantity with a long term average
|
|
// and a short term value which is adjusted exponentially with a factor of
|
|
// pstatRecentAdjust with each update and also returned exponentially to the
|
|
// average with the time constant pstatReturnToMeanTC
|
|
type poolStats struct {
|
|
sum, weight, avg, recent float64
|
|
lastRecalc mclock.AbsTime
|
|
}
|
|
|
|
// init initializes stats with a long term sum/update count pair retrieved from the database
|
|
func (s *poolStats) init(sum, weight float64) {
|
|
s.sum = sum
|
|
s.weight = weight
|
|
var avg float64
|
|
if weight > 0 {
|
|
avg = s.sum / weight
|
|
}
|
|
s.avg = avg
|
|
s.recent = avg
|
|
s.lastRecalc = mclock.Now()
|
|
}
|
|
|
|
// recalc recalculates recent value return-to-mean and long term average
|
|
func (s *poolStats) recalc() {
|
|
now := mclock.Now()
|
|
s.recent = s.avg + (s.recent-s.avg)*math.Exp(-float64(now-s.lastRecalc)/float64(pstatReturnToMeanTC))
|
|
if s.sum == 0 {
|
|
s.avg = 0
|
|
} else {
|
|
if s.sum > s.weight*1e30 {
|
|
s.avg = 1e30
|
|
} else {
|
|
s.avg = s.sum / s.weight
|
|
}
|
|
}
|
|
s.lastRecalc = now
|
|
}
|
|
|
|
// add updates the stats with a new value
|
|
func (s *poolStats) add(value, weight float64) {
|
|
s.weight += weight
|
|
s.sum += value * weight
|
|
s.recalc()
|
|
}
|
|
|
|
// recentAvg returns the short-term adjusted average
|
|
func (s *poolStats) recentAvg() float64 {
|
|
s.recalc()
|
|
return s.recent
|
|
}
|
|
|
|
func (s *poolStats) EncodeRLP(w io.Writer) error {
|
|
return rlp.Encode(w, []interface{}{math.Float64bits(s.sum), math.Float64bits(s.weight)})
|
|
}
|
|
|
|
func (s *poolStats) DecodeRLP(st *rlp.Stream) error {
|
|
var stats struct {
|
|
SumUint, WeightUint uint64
|
|
}
|
|
if err := st.Decode(&stats); err != nil {
|
|
return err
|
|
}
|
|
s.init(math.Float64frombits(stats.SumUint), math.Float64frombits(stats.WeightUint))
|
|
return nil
|
|
}
|
|
|
|
// poolEntryQueue keeps track of its least recently accessed entries and removes
|
|
// them when the number of entries reaches the limit
|
|
type poolEntryQueue struct {
|
|
queue map[int]*poolEntry // known nodes indexed by their latest lastConnCnt value
|
|
newPtr, oldPtr, maxCnt int
|
|
removeFromPool func(*poolEntry)
|
|
}
|
|
|
|
// newPoolEntryQueue returns a new poolEntryQueue
|
|
func newPoolEntryQueue(maxCnt int, removeFromPool func(*poolEntry)) poolEntryQueue {
|
|
return poolEntryQueue{queue: make(map[int]*poolEntry), maxCnt: maxCnt, removeFromPool: removeFromPool}
|
|
}
|
|
|
|
// fetchOldest returns and removes the least recently accessed entry
|
|
func (q *poolEntryQueue) fetchOldest() *poolEntry {
|
|
if len(q.queue) == 0 {
|
|
return nil
|
|
}
|
|
for {
|
|
if e := q.queue[q.oldPtr]; e != nil {
|
|
delete(q.queue, q.oldPtr)
|
|
q.oldPtr++
|
|
return e
|
|
}
|
|
q.oldPtr++
|
|
}
|
|
}
|
|
|
|
// remove removes an entry from the queue
|
|
func (q *poolEntryQueue) remove(entry *poolEntry) {
|
|
if q.queue[entry.queueIdx] == entry {
|
|
delete(q.queue, entry.queueIdx)
|
|
}
|
|
}
|
|
|
|
// setLatest adds or updates a recently accessed entry. It also checks if an old entry
|
|
// needs to be removed and removes it from the parent pool too with a callback function.
|
|
func (q *poolEntryQueue) setLatest(entry *poolEntry) {
|
|
if q.queue[entry.queueIdx] == entry {
|
|
delete(q.queue, entry.queueIdx)
|
|
} else {
|
|
if len(q.queue) == q.maxCnt {
|
|
e := q.fetchOldest()
|
|
q.remove(e)
|
|
q.removeFromPool(e)
|
|
}
|
|
}
|
|
entry.queueIdx = q.newPtr
|
|
q.queue[entry.queueIdx] = entry
|
|
q.newPtr++
|
|
}
|