op-geth/p2p/server.go
Lewis Marshall 9feec51e2d p2p: add network simulation framework (#14982)
This commit introduces a network simulation framework which
can be used to run simulated networks of devp2p nodes. The
intention is to use this for testing protocols, performing
benchmarks and visualising emergent network behaviour.
2017-09-25 10:08:07 +02:00

866 lines
25 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package p2p implements the Ethereum p2p network protocols.
package p2p
import (
"crypto/ecdsa"
"errors"
"fmt"
"net"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/p2p/discv5"
"github.com/ethereum/go-ethereum/p2p/nat"
"github.com/ethereum/go-ethereum/p2p/netutil"
)
const (
defaultDialTimeout = 15 * time.Second
refreshPeersInterval = 30 * time.Second
staticPeerCheckInterval = 15 * time.Second
// Maximum number of concurrently handshaking inbound connections.
maxAcceptConns = 50
// Maximum number of concurrently dialing outbound connections.
maxActiveDialTasks = 16
// Maximum time allowed for reading a complete message.
// This is effectively the amount of time a connection can be idle.
frameReadTimeout = 30 * time.Second
// Maximum amount of time allowed for writing a complete message.
frameWriteTimeout = 20 * time.Second
)
var errServerStopped = errors.New("server stopped")
// Config holds Server options.
type Config struct {
// This field must be set to a valid secp256k1 private key.
PrivateKey *ecdsa.PrivateKey `toml:"-"`
// MaxPeers is the maximum number of peers that can be
// connected. It must be greater than zero.
MaxPeers int
// MaxPendingPeers is the maximum number of peers that can be pending in the
// handshake phase, counted separately for inbound and outbound connections.
// Zero defaults to preset values.
MaxPendingPeers int `toml:",omitempty"`
// NoDiscovery can be used to disable the peer discovery mechanism.
// Disabling is useful for protocol debugging (manual topology).
NoDiscovery bool
// DiscoveryV5 specifies whether the the new topic-discovery based V5 discovery
// protocol should be started or not.
DiscoveryV5 bool `toml:",omitempty"`
// Listener address for the V5 discovery protocol UDP traffic.
DiscoveryV5Addr string `toml:",omitempty"`
// Name sets the node name of this server.
// Use common.MakeName to create a name that follows existing conventions.
Name string `toml:"-"`
// BootstrapNodes are used to establish connectivity
// with the rest of the network.
BootstrapNodes []*discover.Node
// BootstrapNodesV5 are used to establish connectivity
// with the rest of the network using the V5 discovery
// protocol.
BootstrapNodesV5 []*discv5.Node `toml:",omitempty"`
// Static nodes are used as pre-configured connections which are always
// maintained and re-connected on disconnects.
StaticNodes []*discover.Node
// Trusted nodes are used as pre-configured connections which are always
// allowed to connect, even above the peer limit.
TrustedNodes []*discover.Node
// Connectivity can be restricted to certain IP networks.
// If this option is set to a non-nil value, only hosts which match one of the
// IP networks contained in the list are considered.
NetRestrict *netutil.Netlist `toml:",omitempty"`
// NodeDatabase is the path to the database containing the previously seen
// live nodes in the network.
NodeDatabase string `toml:",omitempty"`
// Protocols should contain the protocols supported
// by the server. Matching protocols are launched for
// each peer.
Protocols []Protocol `toml:"-"`
// If ListenAddr is set to a non-nil address, the server
// will listen for incoming connections.
//
// If the port is zero, the operating system will pick a port. The
// ListenAddr field will be updated with the actual address when
// the server is started.
ListenAddr string
// If set to a non-nil value, the given NAT port mapper
// is used to make the listening port available to the
// Internet.
NAT nat.Interface `toml:",omitempty"`
// If Dialer is set to a non-nil value, the given Dialer
// is used to dial outbound peer connections.
Dialer NodeDialer `toml:"-"`
// If NoDial is true, the server will not dial any peers.
NoDial bool `toml:",omitempty"`
// If EnableMsgEvents is set then the server will emit PeerEvents
// whenever a message is sent to or received from a peer
EnableMsgEvents bool
}
// Server manages all peer connections.
type Server struct {
// Config fields may not be modified while the server is running.
Config
// Hooks for testing. These are useful because we can inhibit
// the whole protocol stack.
newTransport func(net.Conn) transport
newPeerHook func(*Peer)
lock sync.Mutex // protects running
running bool
ntab discoverTable
listener net.Listener
ourHandshake *protoHandshake
lastLookup time.Time
DiscV5 *discv5.Network
// These are for Peers, PeerCount (and nothing else).
peerOp chan peerOpFunc
peerOpDone chan struct{}
quit chan struct{}
addstatic chan *discover.Node
removestatic chan *discover.Node
posthandshake chan *conn
addpeer chan *conn
delpeer chan peerDrop
loopWG sync.WaitGroup // loop, listenLoop
peerFeed event.Feed
}
type peerOpFunc func(map[discover.NodeID]*Peer)
type peerDrop struct {
*Peer
err error
requested bool // true if signaled by the peer
}
type connFlag int
const (
dynDialedConn connFlag = 1 << iota
staticDialedConn
inboundConn
trustedConn
)
// conn wraps a network connection with information gathered
// during the two handshakes.
type conn struct {
fd net.Conn
transport
flags connFlag
cont chan error // The run loop uses cont to signal errors to SetupConn.
id discover.NodeID // valid after the encryption handshake
caps []Cap // valid after the protocol handshake
name string // valid after the protocol handshake
}
type transport interface {
// The two handshakes.
doEncHandshake(prv *ecdsa.PrivateKey, dialDest *discover.Node) (discover.NodeID, error)
doProtoHandshake(our *protoHandshake) (*protoHandshake, error)
// The MsgReadWriter can only be used after the encryption
// handshake has completed. The code uses conn.id to track this
// by setting it to a non-nil value after the encryption handshake.
MsgReadWriter
// transports must provide Close because we use MsgPipe in some of
// the tests. Closing the actual network connection doesn't do
// anything in those tests because NsgPipe doesn't use it.
close(err error)
}
func (c *conn) String() string {
s := c.flags.String()
if (c.id != discover.NodeID{}) {
s += " " + c.id.String()
}
s += " " + c.fd.RemoteAddr().String()
return s
}
func (f connFlag) String() string {
s := ""
if f&trustedConn != 0 {
s += "-trusted"
}
if f&dynDialedConn != 0 {
s += "-dyndial"
}
if f&staticDialedConn != 0 {
s += "-staticdial"
}
if f&inboundConn != 0 {
s += "-inbound"
}
if s != "" {
s = s[1:]
}
return s
}
func (c *conn) is(f connFlag) bool {
return c.flags&f != 0
}
// Peers returns all connected peers.
func (srv *Server) Peers() []*Peer {
var ps []*Peer
select {
// Note: We'd love to put this function into a variable but
// that seems to cause a weird compiler error in some
// environments.
case srv.peerOp <- func(peers map[discover.NodeID]*Peer) {
for _, p := range peers {
ps = append(ps, p)
}
}:
<-srv.peerOpDone
case <-srv.quit:
}
return ps
}
// PeerCount returns the number of connected peers.
func (srv *Server) PeerCount() int {
var count int
select {
case srv.peerOp <- func(ps map[discover.NodeID]*Peer) { count = len(ps) }:
<-srv.peerOpDone
case <-srv.quit:
}
return count
}
// AddPeer connects to the given node and maintains the connection until the
// server is shut down. If the connection fails for any reason, the server will
// attempt to reconnect the peer.
func (srv *Server) AddPeer(node *discover.Node) {
select {
case srv.addstatic <- node:
case <-srv.quit:
}
}
// RemovePeer disconnects from the given node
func (srv *Server) RemovePeer(node *discover.Node) {
select {
case srv.removestatic <- node:
case <-srv.quit:
}
}
// SubscribePeers subscribes the given channel to peer events
func (srv *Server) SubscribeEvents(ch chan *PeerEvent) event.Subscription {
return srv.peerFeed.Subscribe(ch)
}
// Self returns the local node's endpoint information.
func (srv *Server) Self() *discover.Node {
srv.lock.Lock()
defer srv.lock.Unlock()
if !srv.running {
return &discover.Node{IP: net.ParseIP("0.0.0.0")}
}
return srv.makeSelf(srv.listener, srv.ntab)
}
func (srv *Server) makeSelf(listener net.Listener, ntab discoverTable) *discover.Node {
// If the server's not running, return an empty node.
// If the node is running but discovery is off, manually assemble the node infos.
if ntab == nil {
// Inbound connections disabled, use zero address.
if listener == nil {
return &discover.Node{IP: net.ParseIP("0.0.0.0"), ID: discover.PubkeyID(&srv.PrivateKey.PublicKey)}
}
// Otherwise inject the listener address too
addr := listener.Addr().(*net.TCPAddr)
return &discover.Node{
ID: discover.PubkeyID(&srv.PrivateKey.PublicKey),
IP: addr.IP,
TCP: uint16(addr.Port),
}
}
// Otherwise return the discovery node.
return ntab.Self()
}
// Stop terminates the server and all active peer connections.
// It blocks until all active connections have been closed.
func (srv *Server) Stop() {
srv.lock.Lock()
defer srv.lock.Unlock()
if !srv.running {
return
}
srv.running = false
if srv.listener != nil {
// this unblocks listener Accept
srv.listener.Close()
}
close(srv.quit)
srv.loopWG.Wait()
}
// Start starts running the server.
// Servers can not be re-used after stopping.
func (srv *Server) Start() (err error) {
srv.lock.Lock()
defer srv.lock.Unlock()
if srv.running {
return errors.New("server already running")
}
srv.running = true
log.Info("Starting P2P networking")
// static fields
if srv.PrivateKey == nil {
return fmt.Errorf("Server.PrivateKey must be set to a non-nil key")
}
if srv.newTransport == nil {
srv.newTransport = newRLPX
}
if srv.Dialer == nil {
srv.Dialer = TCPDialer{&net.Dialer{Timeout: defaultDialTimeout}}
}
srv.quit = make(chan struct{})
srv.addpeer = make(chan *conn)
srv.delpeer = make(chan peerDrop)
srv.posthandshake = make(chan *conn)
srv.addstatic = make(chan *discover.Node)
srv.removestatic = make(chan *discover.Node)
srv.peerOp = make(chan peerOpFunc)
srv.peerOpDone = make(chan struct{})
// node table
if !srv.NoDiscovery {
ntab, err := discover.ListenUDP(srv.PrivateKey, srv.ListenAddr, srv.NAT, srv.NodeDatabase, srv.NetRestrict)
if err != nil {
return err
}
if err := ntab.SetFallbackNodes(srv.BootstrapNodes); err != nil {
return err
}
srv.ntab = ntab
}
if srv.DiscoveryV5 {
ntab, err := discv5.ListenUDP(srv.PrivateKey, srv.DiscoveryV5Addr, srv.NAT, "", srv.NetRestrict) //srv.NodeDatabase)
if err != nil {
return err
}
if err := ntab.SetFallbackNodes(srv.BootstrapNodesV5); err != nil {
return err
}
srv.DiscV5 = ntab
}
dynPeers := (srv.MaxPeers + 1) / 2
if srv.NoDiscovery {
dynPeers = 0
}
dialer := newDialState(srv.StaticNodes, srv.BootstrapNodes, srv.ntab, dynPeers, srv.NetRestrict)
// handshake
srv.ourHandshake = &protoHandshake{Version: baseProtocolVersion, Name: srv.Name, ID: discover.PubkeyID(&srv.PrivateKey.PublicKey)}
for _, p := range srv.Protocols {
srv.ourHandshake.Caps = append(srv.ourHandshake.Caps, p.cap())
}
// listen/dial
if srv.ListenAddr != "" {
if err := srv.startListening(); err != nil {
return err
}
}
if srv.NoDial && srv.ListenAddr == "" {
log.Warn("P2P server will be useless, neither dialing nor listening")
}
srv.loopWG.Add(1)
go srv.run(dialer)
srv.running = true
return nil
}
func (srv *Server) startListening() error {
// Launch the TCP listener.
listener, err := net.Listen("tcp", srv.ListenAddr)
if err != nil {
return err
}
laddr := listener.Addr().(*net.TCPAddr)
srv.ListenAddr = laddr.String()
srv.listener = listener
srv.loopWG.Add(1)
go srv.listenLoop()
// Map the TCP listening port if NAT is configured.
if !laddr.IP.IsLoopback() && srv.NAT != nil {
srv.loopWG.Add(1)
go func() {
nat.Map(srv.NAT, srv.quit, "tcp", laddr.Port, laddr.Port, "ethereum p2p")
srv.loopWG.Done()
}()
}
return nil
}
type dialer interface {
newTasks(running int, peers map[discover.NodeID]*Peer, now time.Time) []task
taskDone(task, time.Time)
addStatic(*discover.Node)
removeStatic(*discover.Node)
}
func (srv *Server) run(dialstate dialer) {
defer srv.loopWG.Done()
var (
peers = make(map[discover.NodeID]*Peer)
trusted = make(map[discover.NodeID]bool, len(srv.TrustedNodes))
taskdone = make(chan task, maxActiveDialTasks)
runningTasks []task
queuedTasks []task // tasks that can't run yet
)
// Put trusted nodes into a map to speed up checks.
// Trusted peers are loaded on startup and cannot be
// modified while the server is running.
for _, n := range srv.TrustedNodes {
trusted[n.ID] = true
}
// removes t from runningTasks
delTask := func(t task) {
for i := range runningTasks {
if runningTasks[i] == t {
runningTasks = append(runningTasks[:i], runningTasks[i+1:]...)
break
}
}
}
// starts until max number of active tasks is satisfied
startTasks := func(ts []task) (rest []task) {
i := 0
for ; len(runningTasks) < maxActiveDialTasks && i < len(ts); i++ {
t := ts[i]
log.Trace("New dial task", "task", t)
go func() { t.Do(srv); taskdone <- t }()
runningTasks = append(runningTasks, t)
}
return ts[i:]
}
scheduleTasks := func() {
// Start from queue first.
queuedTasks = append(queuedTasks[:0], startTasks(queuedTasks)...)
// Query dialer for new tasks and start as many as possible now.
if len(runningTasks) < maxActiveDialTasks {
nt := dialstate.newTasks(len(runningTasks)+len(queuedTasks), peers, time.Now())
queuedTasks = append(queuedTasks, startTasks(nt)...)
}
}
running:
for {
scheduleTasks()
select {
case <-srv.quit:
// The server was stopped. Run the cleanup logic.
break running
case n := <-srv.addstatic:
// This channel is used by AddPeer to add to the
// ephemeral static peer list. Add it to the dialer,
// it will keep the node connected.
log.Debug("Adding static node", "node", n)
dialstate.addStatic(n)
case n := <-srv.removestatic:
// This channel is used by RemovePeer to send a
// disconnect request to a peer and begin the
// stop keeping the node connected
log.Debug("Removing static node", "node", n)
dialstate.removeStatic(n)
if p, ok := peers[n.ID]; ok {
p.Disconnect(DiscRequested)
}
case op := <-srv.peerOp:
// This channel is used by Peers and PeerCount.
op(peers)
srv.peerOpDone <- struct{}{}
case t := <-taskdone:
// A task got done. Tell dialstate about it so it
// can update its state and remove it from the active
// tasks list.
log.Trace("Dial task done", "task", t)
dialstate.taskDone(t, time.Now())
delTask(t)
case c := <-srv.posthandshake:
// A connection has passed the encryption handshake so
// the remote identity is known (but hasn't been verified yet).
if trusted[c.id] {
// Ensure that the trusted flag is set before checking against MaxPeers.
c.flags |= trustedConn
}
// TODO: track in-progress inbound node IDs (pre-Peer) to avoid dialing them.
select {
case c.cont <- srv.encHandshakeChecks(peers, c):
case <-srv.quit:
break running
}
case c := <-srv.addpeer:
// At this point the connection is past the protocol handshake.
// Its capabilities are known and the remote identity is verified.
err := srv.protoHandshakeChecks(peers, c)
if err == nil {
// The handshakes are done and it passed all checks.
p := newPeer(c, srv.Protocols)
// If message events are enabled, pass the peerFeed
// to the peer
if srv.EnableMsgEvents {
p.events = &srv.peerFeed
}
name := truncateName(c.name)
log.Debug("Adding p2p peer", "id", c.id, "name", name, "addr", c.fd.RemoteAddr(), "peers", len(peers)+1)
peers[c.id] = p
go srv.runPeer(p)
}
// The dialer logic relies on the assumption that
// dial tasks complete after the peer has been added or
// discarded. Unblock the task last.
select {
case c.cont <- err:
case <-srv.quit:
break running
}
case pd := <-srv.delpeer:
// A peer disconnected.
d := common.PrettyDuration(mclock.Now() - pd.created)
pd.log.Debug("Removing p2p peer", "duration", d, "peers", len(peers)-1, "req", pd.requested, "err", pd.err)
delete(peers, pd.ID())
}
}
log.Trace("P2P networking is spinning down")
// Terminate discovery. If there is a running lookup it will terminate soon.
if srv.ntab != nil {
srv.ntab.Close()
}
if srv.DiscV5 != nil {
srv.DiscV5.Close()
}
// Disconnect all peers.
for _, p := range peers {
p.Disconnect(DiscQuitting)
}
// Wait for peers to shut down. Pending connections and tasks are
// not handled here and will terminate soon-ish because srv.quit
// is closed.
for len(peers) > 0 {
p := <-srv.delpeer
p.log.Trace("<-delpeer (spindown)", "remainingTasks", len(runningTasks))
delete(peers, p.ID())
}
}
func (srv *Server) protoHandshakeChecks(peers map[discover.NodeID]*Peer, c *conn) error {
// Drop connections with no matching protocols.
if len(srv.Protocols) > 0 && countMatchingProtocols(srv.Protocols, c.caps) == 0 {
return DiscUselessPeer
}
// Repeat the encryption handshake checks because the
// peer set might have changed between the handshakes.
return srv.encHandshakeChecks(peers, c)
}
func (srv *Server) encHandshakeChecks(peers map[discover.NodeID]*Peer, c *conn) error {
switch {
case !c.is(trustedConn|staticDialedConn) && len(peers) >= srv.MaxPeers:
return DiscTooManyPeers
case peers[c.id] != nil:
return DiscAlreadyConnected
case c.id == srv.Self().ID:
return DiscSelf
default:
return nil
}
}
type tempError interface {
Temporary() bool
}
// listenLoop runs in its own goroutine and accepts
// inbound connections.
func (srv *Server) listenLoop() {
defer srv.loopWG.Done()
log.Info("RLPx listener up", "self", srv.makeSelf(srv.listener, srv.ntab))
// This channel acts as a semaphore limiting
// active inbound connections that are lingering pre-handshake.
// If all slots are taken, no further connections are accepted.
tokens := maxAcceptConns
if srv.MaxPendingPeers > 0 {
tokens = srv.MaxPendingPeers
}
slots := make(chan struct{}, tokens)
for i := 0; i < tokens; i++ {
slots <- struct{}{}
}
for {
// Wait for a handshake slot before accepting.
<-slots
var (
fd net.Conn
err error
)
for {
fd, err = srv.listener.Accept()
if tempErr, ok := err.(tempError); ok && tempErr.Temporary() {
log.Debug("Temporary read error", "err", err)
continue
} else if err != nil {
log.Debug("Read error", "err", err)
return
}
break
}
// Reject connections that do not match NetRestrict.
if srv.NetRestrict != nil {
if tcp, ok := fd.RemoteAddr().(*net.TCPAddr); ok && !srv.NetRestrict.Contains(tcp.IP) {
log.Debug("Rejected conn (not whitelisted in NetRestrict)", "addr", fd.RemoteAddr())
fd.Close()
slots <- struct{}{}
continue
}
}
fd = newMeteredConn(fd, true)
log.Trace("Accepted connection", "addr", fd.RemoteAddr())
// Spawn the handler. It will give the slot back when the connection
// has been established.
go func() {
srv.SetupConn(fd, inboundConn, nil)
slots <- struct{}{}
}()
}
}
// SetupConn runs the handshakes and attempts to add the connection
// as a peer. It returns when the connection has been added as a peer
// or the handshakes have failed.
func (srv *Server) SetupConn(fd net.Conn, flags connFlag, dialDest *discover.Node) {
// Prevent leftover pending conns from entering the handshake.
srv.lock.Lock()
running := srv.running
srv.lock.Unlock()
c := &conn{fd: fd, transport: srv.newTransport(fd), flags: flags, cont: make(chan error)}
if !running {
c.close(errServerStopped)
return
}
// Run the encryption handshake.
var err error
if c.id, err = c.doEncHandshake(srv.PrivateKey, dialDest); err != nil {
log.Trace("Failed RLPx handshake", "addr", c.fd.RemoteAddr(), "conn", c.flags, "err", err)
c.close(err)
return
}
clog := log.New("id", c.id, "addr", c.fd.RemoteAddr(), "conn", c.flags)
// For dialed connections, check that the remote public key matches.
if dialDest != nil && c.id != dialDest.ID {
c.close(DiscUnexpectedIdentity)
clog.Trace("Dialed identity mismatch", "want", c, dialDest.ID)
return
}
if err := srv.checkpoint(c, srv.posthandshake); err != nil {
clog.Trace("Rejected peer before protocol handshake", "err", err)
c.close(err)
return
}
// Run the protocol handshake
phs, err := c.doProtoHandshake(srv.ourHandshake)
if err != nil {
clog.Trace("Failed proto handshake", "err", err)
c.close(err)
return
}
if phs.ID != c.id {
clog.Trace("Wrong devp2p handshake identity", "err", phs.ID)
c.close(DiscUnexpectedIdentity)
return
}
c.caps, c.name = phs.Caps, phs.Name
if err := srv.checkpoint(c, srv.addpeer); err != nil {
clog.Trace("Rejected peer", "err", err)
c.close(err)
return
}
// If the checks completed successfully, runPeer has now been
// launched by run.
}
func truncateName(s string) string {
if len(s) > 20 {
return s[:20] + "..."
}
return s
}
// checkpoint sends the conn to run, which performs the
// post-handshake checks for the stage (posthandshake, addpeer).
func (srv *Server) checkpoint(c *conn, stage chan<- *conn) error {
select {
case stage <- c:
case <-srv.quit:
return errServerStopped
}
select {
case err := <-c.cont:
return err
case <-srv.quit:
return errServerStopped
}
}
// runPeer runs in its own goroutine for each peer.
// it waits until the Peer logic returns and removes
// the peer.
func (srv *Server) runPeer(p *Peer) {
if srv.newPeerHook != nil {
srv.newPeerHook(p)
}
// broadcast peer add
srv.peerFeed.Send(&PeerEvent{
Type: PeerEventTypeAdd,
Peer: p.ID(),
})
// run the protocol
remoteRequested, err := p.run()
// broadcast peer drop
srv.peerFeed.Send(&PeerEvent{
Type: PeerEventTypeDrop,
Peer: p.ID(),
Error: err.Error(),
})
// Note: run waits for existing peers to be sent on srv.delpeer
// before returning, so this send should not select on srv.quit.
srv.delpeer <- peerDrop{p, err, remoteRequested}
}
// NodeInfo represents a short summary of the information known about the host.
type NodeInfo struct {
ID string `json:"id"` // Unique node identifier (also the encryption key)
Name string `json:"name"` // Name of the node, including client type, version, OS, custom data
Enode string `json:"enode"` // Enode URL for adding this peer from remote peers
IP string `json:"ip"` // IP address of the node
Ports struct {
Discovery int `json:"discovery"` // UDP listening port for discovery protocol
Listener int `json:"listener"` // TCP listening port for RLPx
} `json:"ports"`
ListenAddr string `json:"listenAddr"`
Protocols map[string]interface{} `json:"protocols"`
}
// NodeInfo gathers and returns a collection of metadata known about the host.
func (srv *Server) NodeInfo() *NodeInfo {
node := srv.Self()
// Gather and assemble the generic node infos
info := &NodeInfo{
Name: srv.Name,
Enode: node.String(),
ID: node.ID.String(),
IP: node.IP.String(),
ListenAddr: srv.ListenAddr,
Protocols: make(map[string]interface{}),
}
info.Ports.Discovery = int(node.UDP)
info.Ports.Listener = int(node.TCP)
// Gather all the running protocol infos (only once per protocol type)
for _, proto := range srv.Protocols {
if _, ok := info.Protocols[proto.Name]; !ok {
nodeInfo := interface{}("unknown")
if query := proto.NodeInfo; query != nil {
nodeInfo = proto.NodeInfo()
}
info.Protocols[proto.Name] = nodeInfo
}
}
return info
}
// PeersInfo returns an array of metadata objects describing connected peers.
func (srv *Server) PeersInfo() []*PeerInfo {
// Gather all the generic and sub-protocol specific infos
infos := make([]*PeerInfo, 0, srv.PeerCount())
for _, peer := range srv.Peers() {
if peer != nil {
infos = append(infos, peer.Info())
}
}
// Sort the result array alphabetically by node identifier
for i := 0; i < len(infos); i++ {
for j := i + 1; j < len(infos); j++ {
if infos[i].ID > infos[j].ID {
infos[i], infos[j] = infos[j], infos[i]
}
}
}
return infos
}