op-geth/crypto/secp256k1/secp256_test.go
Felix Lange 1b29aed128 crypto/secp256k1: verify recovery ID before calling libsecp256k1
The C library treats the recovery ID as trusted input and crashes
the process for invalid values, so it needs to be verified before
calling into C. This will inhibit the crash in #1983.

Also remove VerifySignature because we don't use it.
2015-11-17 09:51:59 +01:00

239 lines
6.8 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package secp256k1
import (
"bytes"
"encoding/hex"
"testing"
"github.com/ethereum/go-ethereum/crypto/randentropy"
)
const TestCount = 10000
func TestPrivkeyGenerate(t *testing.T) {
_, seckey := GenerateKeyPair()
if err := VerifySeckeyValidity(seckey); err != nil {
t.Errorf("seckey not valid: %s", err)
}
}
func TestSignatureValidity(t *testing.T) {
pubkey, seckey := GenerateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
sig, err := Sign(msg, seckey)
if err != nil {
t.Errorf("signature error: %s", err)
}
compactSigCheck(t, sig)
if len(pubkey) != 65 {
t.Errorf("pubkey length mismatch: want: 65 have: %d", len(pubkey))
}
if len(seckey) != 32 {
t.Errorf("seckey length mismatch: want: 32 have: %d", len(seckey))
}
if len(sig) != 65 {
t.Errorf("sig length mismatch: want: 65 have: %d", len(sig))
}
recid := int(sig[64])
if recid > 4 || recid < 0 {
t.Errorf("sig recid mismatch: want: within 0 to 4 have: %d", int(sig[64]))
}
}
func TestInvalidRecoveryID(t *testing.T) {
_, seckey := GenerateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
sig, _ := Sign(msg, seckey)
sig[64] = 99
_, err := RecoverPubkey(msg, sig)
if err != ErrInvalidRecoveryID {
t.Fatalf("got %q, want %q", err, ErrInvalidRecoveryID)
}
}
func TestSignAndRecover(t *testing.T) {
pubkey1, seckey := GenerateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
sig, err := Sign(msg, seckey)
if err != nil {
t.Errorf("signature error: %s", err)
}
pubkey2, err := RecoverPubkey(msg, sig)
if err != nil {
t.Errorf("recover error: %s", err)
}
if !bytes.Equal(pubkey1, pubkey2) {
t.Errorf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2)
}
}
func TestRandomMessagesWithSameKey(t *testing.T) {
pubkey, seckey := GenerateKeyPair()
keys := func() ([]byte, []byte) {
// Sign function zeroes the privkey so we need a new one in each call
newkey := make([]byte, len(seckey))
copy(newkey, seckey)
return pubkey, newkey
}
signAndRecoverWithRandomMessages(t, keys)
}
func TestRandomMessagesWithRandomKeys(t *testing.T) {
keys := func() ([]byte, []byte) {
pubkey, seckey := GenerateKeyPair()
return pubkey, seckey
}
signAndRecoverWithRandomMessages(t, keys)
}
func signAndRecoverWithRandomMessages(t *testing.T, keys func() ([]byte, []byte)) {
for i := 0; i < TestCount; i++ {
pubkey1, seckey := keys()
msg := randentropy.GetEntropyCSPRNG(32)
sig, err := Sign(msg, seckey)
if err != nil {
t.Fatalf("signature error: %s", err)
}
if sig == nil {
t.Fatal("signature is nil")
}
compactSigCheck(t, sig)
// TODO: why do we flip around the recovery id?
sig[len(sig)-1] %= 4
pubkey2, err := RecoverPubkey(msg, sig)
if err != nil {
t.Fatalf("recover error: %s", err)
}
if pubkey2 == nil {
t.Error("pubkey is nil")
}
if !bytes.Equal(pubkey1, pubkey2) {
t.Fatalf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2)
}
}
}
func TestRecoveryOfRandomSignature(t *testing.T) {
pubkey1, seckey := GenerateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
sig, err := Sign(msg, seckey)
if err != nil {
t.Errorf("signature error: %s", err)
}
for i := 0; i < TestCount; i++ {
sig = randSig()
pubkey2, _ := RecoverPubkey(msg, sig)
// recovery can sometimes work, but if so should always give wrong pubkey
if bytes.Equal(pubkey1, pubkey2) {
t.Fatalf("iteration: %d: pubkey mismatch: do NOT want %x: ", i, pubkey2)
}
}
}
func randSig() []byte {
sig := randentropy.GetEntropyCSPRNG(65)
sig[32] &= 0x70
sig[64] %= 4
return sig
}
func TestRandomMessagesAgainstValidSig(t *testing.T) {
pubkey1, seckey := GenerateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
sig, _ := Sign(msg, seckey)
for i := 0; i < TestCount; i++ {
msg = randentropy.GetEntropyCSPRNG(32)
pubkey2, _ := RecoverPubkey(msg, sig)
// recovery can sometimes work, but if so should always give wrong pubkey
if bytes.Equal(pubkey1, pubkey2) {
t.Fatalf("iteration: %d: pubkey mismatch: do NOT want %x: ", i, pubkey2)
}
}
}
func TestZeroPrivkey(t *testing.T) {
zeroedBytes := make([]byte, 32)
err := VerifySeckeyValidity(zeroedBytes)
if err == nil {
t.Errorf("zeroed bytes should have returned error")
}
}
// Useful when the underlying libsecp256k1 API changes to quickly
// check only recover function without use of signature function
func TestRecoverSanity(t *testing.T) {
msg, _ := hex.DecodeString("ce0677bb30baa8cf067c88db9811f4333d131bf8bcf12fe7065d211dce971008")
sig, _ := hex.DecodeString("90f27b8b488db00b00606796d2987f6a5f59ae62ea05effe84fef5b8b0e549984a691139ad57a3f0b906637673aa2f63d1f55cb1a69199d4009eea23ceaddc9301")
pubkey1, _ := hex.DecodeString("04e32df42865e97135acfb65f3bae71bdc86f4d49150ad6a440b6f15878109880a0a2b2667f7e725ceea70c673093bf67663e0312623c8e091b13cf2c0f11ef652")
pubkey2, err := RecoverPubkey(msg, sig)
if err != nil {
t.Fatalf("recover error: %s", err)
}
if !bytes.Equal(pubkey1, pubkey2) {
t.Errorf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2)
}
}
// tests for malleability
// highest bit of signature ECDSA s value must be 0, in the 33th byte
func compactSigCheck(t *testing.T, sig []byte) {
var b int = int(sig[32])
if b < 0 {
t.Errorf("highest bit is negative: %d", b)
}
if ((b >> 7) == 1) != ((b & 0x80) == 0x80) {
t.Errorf("highest bit: %d bit >> 7: %d", b, b>>7)
}
if (b & 0x80) == 0x80 {
t.Errorf("highest bit: %d bit & 0x80: %d", b, b&0x80)
}
}
// godep go test -v -run=XXX -bench=BenchmarkSignRandomInputEachRound
// add -benchtime=10s to benchmark longer for more accurate average
func BenchmarkSignRandomInputEachRound(b *testing.B) {
for i := 0; i < b.N; i++ {
b.StopTimer()
_, seckey := GenerateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
b.StartTimer()
if _, err := Sign(msg, seckey); err != nil {
b.Fatal(err)
}
}
}
//godep go test -v -run=XXX -bench=BenchmarkRecoverRandomInputEachRound
func BenchmarkRecoverRandomInputEachRound(b *testing.B) {
for i := 0; i < b.N; i++ {
b.StopTimer()
_, seckey := GenerateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
sig, _ := Sign(msg, seckey)
b.StartTimer()
if _, err := RecoverPubkey(msg, sig); err != nil {
b.Fatal(err)
}
}
}