mirror of https://github.com/status-im/op-geth.git
157 lines
2.8 KiB
Go
157 lines
2.8 KiB
Go
package bn256
|
|
|
|
// For details of the algorithms used, see "Multiplication and Squaring on
|
|
// Pairing-Friendly Fields, Devegili et al.
|
|
// http://eprint.iacr.org/2006/471.pdf.
|
|
|
|
// gfP2 implements a field of size p² as a quadratic extension of the base field
|
|
// where i²=-1.
|
|
type gfP2 struct {
|
|
x, y gfP // value is xi+y.
|
|
}
|
|
|
|
func gfP2Decode(in *gfP2) *gfP2 {
|
|
out := &gfP2{}
|
|
montDecode(&out.x, &in.x)
|
|
montDecode(&out.y, &in.y)
|
|
return out
|
|
}
|
|
|
|
func (e *gfP2) String() string {
|
|
return "(" + e.x.String() + ", " + e.y.String() + ")"
|
|
}
|
|
|
|
func (e *gfP2) Set(a *gfP2) *gfP2 {
|
|
e.x.Set(&a.x)
|
|
e.y.Set(&a.y)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP2) SetZero() *gfP2 {
|
|
e.x = gfP{0}
|
|
e.y = gfP{0}
|
|
return e
|
|
}
|
|
|
|
func (e *gfP2) SetOne() *gfP2 {
|
|
e.x = gfP{0}
|
|
e.y = *newGFp(1)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP2) IsZero() bool {
|
|
zero := gfP{0}
|
|
return e.x == zero && e.y == zero
|
|
}
|
|
|
|
func (e *gfP2) IsOne() bool {
|
|
zero, one := gfP{0}, *newGFp(1)
|
|
return e.x == zero && e.y == one
|
|
}
|
|
|
|
func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
|
|
e.y.Set(&a.y)
|
|
gfpNeg(&e.x, &a.x)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP2) Neg(a *gfP2) *gfP2 {
|
|
gfpNeg(&e.x, &a.x)
|
|
gfpNeg(&e.y, &a.y)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP2) Add(a, b *gfP2) *gfP2 {
|
|
gfpAdd(&e.x, &a.x, &b.x)
|
|
gfpAdd(&e.y, &a.y, &b.y)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
|
|
gfpSub(&e.x, &a.x, &b.x)
|
|
gfpSub(&e.y, &a.y, &b.y)
|
|
return e
|
|
}
|
|
|
|
// See "Multiplication and Squaring in Pairing-Friendly Fields",
|
|
// http://eprint.iacr.org/2006/471.pdf
|
|
func (e *gfP2) Mul(a, b *gfP2) *gfP2 {
|
|
tx, t := &gfP{}, &gfP{}
|
|
gfpMul(tx, &a.x, &b.y)
|
|
gfpMul(t, &b.x, &a.y)
|
|
gfpAdd(tx, tx, t)
|
|
|
|
ty := &gfP{}
|
|
gfpMul(ty, &a.y, &b.y)
|
|
gfpMul(t, &a.x, &b.x)
|
|
gfpSub(ty, ty, t)
|
|
|
|
e.x.Set(tx)
|
|
e.y.Set(ty)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP2) MulScalar(a *gfP2, b *gfP) *gfP2 {
|
|
gfpMul(&e.x, &a.x, b)
|
|
gfpMul(&e.y, &a.y, b)
|
|
return e
|
|
}
|
|
|
|
// MulXi sets e=ξa where ξ=i+9 and then returns e.
|
|
func (e *gfP2) MulXi(a *gfP2) *gfP2 {
|
|
// (xi+y)(i+9) = (9x+y)i+(9y-x)
|
|
tx := &gfP{}
|
|
gfpAdd(tx, &a.x, &a.x)
|
|
gfpAdd(tx, tx, tx)
|
|
gfpAdd(tx, tx, tx)
|
|
gfpAdd(tx, tx, &a.x)
|
|
|
|
gfpAdd(tx, tx, &a.y)
|
|
|
|
ty := &gfP{}
|
|
gfpAdd(ty, &a.y, &a.y)
|
|
gfpAdd(ty, ty, ty)
|
|
gfpAdd(ty, ty, ty)
|
|
gfpAdd(ty, ty, &a.y)
|
|
|
|
gfpSub(ty, ty, &a.x)
|
|
|
|
e.x.Set(tx)
|
|
e.y.Set(ty)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP2) Square(a *gfP2) *gfP2 {
|
|
// Complex squaring algorithm:
|
|
// (xi+y)² = (x+y)(y-x) + 2*i*x*y
|
|
tx, ty := &gfP{}, &gfP{}
|
|
gfpSub(tx, &a.y, &a.x)
|
|
gfpAdd(ty, &a.x, &a.y)
|
|
gfpMul(ty, tx, ty)
|
|
|
|
gfpMul(tx, &a.x, &a.y)
|
|
gfpAdd(tx, tx, tx)
|
|
|
|
e.x.Set(tx)
|
|
e.y.Set(ty)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP2) Invert(a *gfP2) *gfP2 {
|
|
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
|
|
// ftp://136.206.11.249/pub/crypto/pairings.pdf
|
|
t1, t2 := &gfP{}, &gfP{}
|
|
gfpMul(t1, &a.x, &a.x)
|
|
gfpMul(t2, &a.y, &a.y)
|
|
gfpAdd(t1, t1, t2)
|
|
|
|
inv := &gfP{}
|
|
inv.Invert(t1)
|
|
|
|
gfpNeg(t1, &a.x)
|
|
|
|
gfpMul(&e.x, t1, inv)
|
|
gfpMul(&e.y, &a.y, inv)
|
|
return e
|
|
}
|