// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package eth import ( "math/rand" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/eth/downloader" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/p2p/enode" ) const ( forceSyncCycle = 10 * time.Second // Time interval to force syncs, even if few peers are available minDesiredPeerCount = 5 // Amount of peers desired to start syncing // This is the target size for the packs of transactions sent by txsyncLoop. // A pack can get larger than this if a single transactions exceeds this size. txsyncPackSize = 100 * 1024 ) type txsync struct { p *peer txs []*types.Transaction } // syncTransactions starts sending all currently pending transactions to the given peer. func (pm *ProtocolManager) syncTransactions(p *peer) { // Assemble the set of transaction to broadcast or announce to the remote // peer. Fun fact, this is quite an expensive operation as it needs to sort // the transactions if the sorting is not cached yet. However, with a random // order, insertions could overflow the non-executable queues and get dropped. // // TODO(karalabe): Figure out if we could get away with random order somehow var txs types.Transactions pending, _ := pm.txpool.Pending() for _, batch := range pending { txs = append(txs, batch...) } if len(txs) == 0 { return } // The eth/65 protocol introduces proper transaction announcements, so instead // of dripping transactions across multiple peers, just send the entire list as // an announcement and let the remote side decide what they need (likely nothing). if p.version >= eth65 { hashes := make([]common.Hash, len(txs)) for i, tx := range txs { hashes[i] = tx.Hash() } p.AsyncSendPooledTransactionHashes(hashes) return } // Out of luck, peer is running legacy protocols, drop the txs over select { case pm.txsyncCh <- &txsync{p: p, txs: txs}: case <-pm.quitSync: } } // txsyncLoop64 takes care of the initial transaction sync for each new // connection. When a new peer appears, we relay all currently pending // transactions. In order to minimise egress bandwidth usage, we send // the transactions in small packs to one peer at a time. func (pm *ProtocolManager) txsyncLoop64() { var ( pending = make(map[enode.ID]*txsync) sending = false // whether a send is active pack = new(txsync) // the pack that is being sent done = make(chan error, 1) // result of the send ) // send starts a sending a pack of transactions from the sync. send := func(s *txsync) { if s.p.version >= eth65 { panic("initial transaction syncer running on eth/65+") } // Fill pack with transactions up to the target size. size := common.StorageSize(0) pack.p = s.p pack.txs = pack.txs[:0] for i := 0; i < len(s.txs) && size < txsyncPackSize; i++ { pack.txs = append(pack.txs, s.txs[i]) size += s.txs[i].Size() } // Remove the transactions that will be sent. s.txs = s.txs[:copy(s.txs, s.txs[len(pack.txs):])] if len(s.txs) == 0 { delete(pending, s.p.ID()) } // Send the pack in the background. s.p.Log().Trace("Sending batch of transactions", "count", len(pack.txs), "bytes", size) sending = true go func() { done <- pack.p.SendTransactions64(pack.txs) }() } // pick chooses the next pending sync. pick := func() *txsync { if len(pending) == 0 { return nil } n := rand.Intn(len(pending)) + 1 for _, s := range pending { if n--; n == 0 { return s } } return nil } for { select { case s := <-pm.txsyncCh: pending[s.p.ID()] = s if !sending { send(s) } case err := <-done: sending = false // Stop tracking peers that cause send failures. if err != nil { pack.p.Log().Debug("Transaction send failed", "err", err) delete(pending, pack.p.ID()) } // Schedule the next send. if s := pick(); s != nil { send(s) } case <-pm.quitSync: return } } } // syncer is responsible for periodically synchronising with the network, both // downloading hashes and blocks as well as handling the announcement handler. func (pm *ProtocolManager) syncer() { // Start and ensure cleanup of sync mechanisms pm.blockFetcher.Start() pm.txFetcher.Start() defer pm.blockFetcher.Stop() defer pm.txFetcher.Stop() defer pm.downloader.Terminate() // Wait for different events to fire synchronisation operations forceSync := time.NewTicker(forceSyncCycle) defer forceSync.Stop() for { select { case <-pm.newPeerCh: // Make sure we have peers to select from, then sync if pm.peers.Len() < minDesiredPeerCount { break } go pm.synchronise(pm.peers.BestPeer()) case <-forceSync.C: // Force a sync even if not enough peers are present go pm.synchronise(pm.peers.BestPeer()) case <-pm.noMorePeers: return } } } // synchronise tries to sync up our local block chain with a remote peer. func (pm *ProtocolManager) synchronise(peer *peer) { // Short circuit if no peers are available if peer == nil { return } // Make sure the peer's TD is higher than our own currentHeader := pm.blockchain.CurrentHeader() td := pm.blockchain.GetTd(currentHeader.Hash(), currentHeader.Number.Uint64()) pHead, pTd := peer.Head() if pTd.Cmp(td) <= 0 { return } // Otherwise try to sync with the downloader mode := downloader.FullSync if atomic.LoadUint32(&pm.fastSync) == 1 { // Fast sync was explicitly requested, and explicitly granted mode = downloader.FastSync } if mode == downloader.FastSync { // Make sure the peer's total difficulty we are synchronizing is higher. if pm.blockchain.GetTdByHash(pm.blockchain.CurrentFastBlock().Hash()).Cmp(pTd) >= 0 { return } } // Run the sync cycle, and disable fast sync if we've went past the pivot block if err := pm.downloader.Synchronise(peer.id, pHead, pTd, mode); err != nil { return } if atomic.LoadUint32(&pm.fastSync) == 1 { log.Info("Fast sync complete, auto disabling") atomic.StoreUint32(&pm.fastSync, 0) } // If we've successfully finished a sync cycle and passed any required checkpoint, // enable accepting transactions from the network. head := pm.blockchain.CurrentBlock() if head.NumberU64() >= pm.checkpointNumber { // Checkpoint passed, sanity check the timestamp to have a fallback mechanism // for non-checkpointed (number = 0) private networks. if head.Time() >= uint64(time.Now().AddDate(0, -1, 0).Unix()) { atomic.StoreUint32(&pm.acceptTxs, 1) } } if head.NumberU64() > 0 { // We've completed a sync cycle, notify all peers of new state. This path is // essential in star-topology networks where a gateway node needs to notify // all its out-of-date peers of the availability of a new block. This failure // scenario will most often crop up in private and hackathon networks with // degenerate connectivity, but it should be healthy for the mainnet too to // more reliably update peers or the local TD state. go pm.BroadcastBlock(head, false) } }