mirror of https://github.com/status-im/op-geth.git
core/vm, crypto/bn256: switch over to cloudflare library (#16203)
* core/vm, crypto/bn256: switch over to cloudflare library * crypto/bn256: unmarshal constraint + start pure go impl * crypto/bn256: combo cloudflare and google lib * travis: drop 386 test job
This commit is contained in:
parent
223fe3f26e
commit
bd6879ac51
|
@ -251,26 +251,12 @@ func (c *bigModExp) Run(input []byte) ([]byte, error) {
|
|||
return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
|
||||
}
|
||||
|
||||
var (
|
||||
// errNotOnCurve is returned if a point being unmarshalled as a bn256 elliptic
|
||||
// curve point is not on the curve.
|
||||
errNotOnCurve = errors.New("point not on elliptic curve")
|
||||
|
||||
// errInvalidCurvePoint is returned if a point being unmarshalled as a bn256
|
||||
// elliptic curve point is invalid.
|
||||
errInvalidCurvePoint = errors.New("invalid elliptic curve point")
|
||||
)
|
||||
|
||||
// newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
|
||||
// returning it, or an error if the point is invalid.
|
||||
func newCurvePoint(blob []byte) (*bn256.G1, error) {
|
||||
p, onCurve := new(bn256.G1).Unmarshal(blob)
|
||||
if !onCurve {
|
||||
return nil, errNotOnCurve
|
||||
}
|
||||
gx, gy, _, _ := p.CurvePoints()
|
||||
if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 {
|
||||
return nil, errInvalidCurvePoint
|
||||
p := new(bn256.G1)
|
||||
if _, err := p.Unmarshal(blob); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return p, nil
|
||||
}
|
||||
|
@ -278,14 +264,9 @@ func newCurvePoint(blob []byte) (*bn256.G1, error) {
|
|||
// newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
|
||||
// returning it, or an error if the point is invalid.
|
||||
func newTwistPoint(blob []byte) (*bn256.G2, error) {
|
||||
p, onCurve := new(bn256.G2).Unmarshal(blob)
|
||||
if !onCurve {
|
||||
return nil, errNotOnCurve
|
||||
}
|
||||
x2, y2, _, _ := p.CurvePoints()
|
||||
if x2.Real().Cmp(bn256.P) >= 0 || x2.Imag().Cmp(bn256.P) >= 0 ||
|
||||
y2.Real().Cmp(bn256.P) >= 0 || y2.Imag().Cmp(bn256.P) >= 0 {
|
||||
return nil, errInvalidCurvePoint
|
||||
p := new(bn256.G2)
|
||||
if _, err := p.Unmarshal(blob); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return p, nil
|
||||
}
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
// Copyright 2018 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
// +build amd64,!appengine,!gccgo
|
||||
|
||||
// Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
|
||||
"github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
|
||||
)
|
||||
|
||||
// G1 is an abstract cyclic group. The zero value is suitable for use as the
|
||||
// output of an operation, but cannot be used as an input.
|
||||
type G1 struct {
|
||||
bn256.G1
|
||||
}
|
||||
|
||||
// Add sets e to a+b and then returns e.
|
||||
func (e *G1) Add(a, b *G1) *G1 {
|
||||
e.G1.Add(&a.G1, &b.G1)
|
||||
return e
|
||||
}
|
||||
|
||||
// ScalarMult sets e to a*k and then returns e.
|
||||
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
|
||||
e.G1.ScalarMult(&a.G1, k)
|
||||
return e
|
||||
}
|
||||
|
||||
// G2 is an abstract cyclic group. The zero value is suitable for use as the
|
||||
// output of an operation, but cannot be used as an input.
|
||||
type G2 struct {
|
||||
bn256.G2
|
||||
}
|
||||
|
||||
// PairingCheck calculates the Optimal Ate pairing for a set of points.
|
||||
func PairingCheck(a []*G1, b []*G2) bool {
|
||||
as := make([]*bn256.G1, len(a))
|
||||
for i, p := range a {
|
||||
as[i] = &p.G1
|
||||
}
|
||||
bs := make([]*bn256.G2, len(b))
|
||||
for i, p := range b {
|
||||
bs[i] = &p.G2
|
||||
}
|
||||
return bn256.PairingCheck(as, bs)
|
||||
}
|
|
@ -0,0 +1,63 @@
|
|||
// Copyright 2018 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
// +build !amd64 appengine gccgo
|
||||
|
||||
// Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
|
||||
"github.com/ethereum/go-ethereum/crypto/bn256/google"
|
||||
)
|
||||
|
||||
// G1 is an abstract cyclic group. The zero value is suitable for use as the
|
||||
// output of an operation, but cannot be used as an input.
|
||||
type G1 struct {
|
||||
bn256.G1
|
||||
}
|
||||
|
||||
// Add sets e to a+b and then returns e.
|
||||
func (e *G1) Add(a, b *G1) *G1 {
|
||||
e.G1.Add(&a.G1, &b.G1)
|
||||
return e
|
||||
}
|
||||
|
||||
// ScalarMult sets e to a*k and then returns e.
|
||||
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
|
||||
e.G1.ScalarMult(&a.G1, k)
|
||||
return e
|
||||
}
|
||||
|
||||
// G2 is an abstract cyclic group. The zero value is suitable for use as the
|
||||
// output of an operation, but cannot be used as an input.
|
||||
type G2 struct {
|
||||
bn256.G2
|
||||
}
|
||||
|
||||
// PairingCheck calculates the Optimal Ate pairing for a set of points.
|
||||
func PairingCheck(a []*G1, b []*G2) bool {
|
||||
as := make([]*bn256.G1, len(a))
|
||||
for i, p := range a {
|
||||
as[i] = &p.G1
|
||||
}
|
||||
bs := make([]*bn256.G2, len(b))
|
||||
for i, p := range b {
|
||||
bs[i] = &p.G2
|
||||
}
|
||||
return bn256.PairingCheck(as, bs)
|
||||
}
|
|
@ -0,0 +1,481 @@
|
|||
// Package bn256 implements a particular bilinear group at the 128-bit security
|
||||
// level.
|
||||
//
|
||||
// Bilinear groups are the basis of many of the new cryptographic protocols that
|
||||
// have been proposed over the past decade. They consist of a triplet of groups
|
||||
// (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ (where gₓ
|
||||
// is a generator of the respective group). That function is called a pairing
|
||||
// function.
|
||||
//
|
||||
// This package specifically implements the Optimal Ate pairing over a 256-bit
|
||||
// Barreto-Naehrig curve as described in
|
||||
// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
|
||||
// with the implementation described in that paper.
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"errors"
|
||||
"io"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
func randomK(r io.Reader) (k *big.Int, err error) {
|
||||
for {
|
||||
k, err = rand.Int(r, Order)
|
||||
if k.Sign() > 0 || err != nil {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// G1 is an abstract cyclic group. The zero value is suitable for use as the
|
||||
// output of an operation, but cannot be used as an input.
|
||||
type G1 struct {
|
||||
p *curvePoint
|
||||
}
|
||||
|
||||
// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
|
||||
func RandomG1(r io.Reader) (*big.Int, *G1, error) {
|
||||
k, err := randomK(r)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
return k, new(G1).ScalarBaseMult(k), nil
|
||||
}
|
||||
|
||||
func (g *G1) String() string {
|
||||
return "bn256.G1" + g.p.String()
|
||||
}
|
||||
|
||||
// ScalarBaseMult sets e to g*k where g is the generator of the group and then
|
||||
// returns e.
|
||||
func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
|
||||
if e.p == nil {
|
||||
e.p = &curvePoint{}
|
||||
}
|
||||
e.p.Mul(curveGen, k)
|
||||
return e
|
||||
}
|
||||
|
||||
// ScalarMult sets e to a*k and then returns e.
|
||||
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
|
||||
if e.p == nil {
|
||||
e.p = &curvePoint{}
|
||||
}
|
||||
e.p.Mul(a.p, k)
|
||||
return e
|
||||
}
|
||||
|
||||
// Add sets e to a+b and then returns e.
|
||||
func (e *G1) Add(a, b *G1) *G1 {
|
||||
if e.p == nil {
|
||||
e.p = &curvePoint{}
|
||||
}
|
||||
e.p.Add(a.p, b.p)
|
||||
return e
|
||||
}
|
||||
|
||||
// Neg sets e to -a and then returns e.
|
||||
func (e *G1) Neg(a *G1) *G1 {
|
||||
if e.p == nil {
|
||||
e.p = &curvePoint{}
|
||||
}
|
||||
e.p.Neg(a.p)
|
||||
return e
|
||||
}
|
||||
|
||||
// Set sets e to a and then returns e.
|
||||
func (e *G1) Set(a *G1) *G1 {
|
||||
if e.p == nil {
|
||||
e.p = &curvePoint{}
|
||||
}
|
||||
e.p.Set(a.p)
|
||||
return e
|
||||
}
|
||||
|
||||
// Marshal converts e to a byte slice.
|
||||
func (e *G1) Marshal() []byte {
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
|
||||
e.p.MakeAffine()
|
||||
ret := make([]byte, numBytes*2)
|
||||
if e.p.IsInfinity() {
|
||||
return ret
|
||||
}
|
||||
temp := &gfP{}
|
||||
|
||||
montDecode(temp, &e.p.x)
|
||||
temp.Marshal(ret)
|
||||
montDecode(temp, &e.p.y)
|
||||
temp.Marshal(ret[numBytes:])
|
||||
|
||||
return ret
|
||||
}
|
||||
|
||||
// Unmarshal sets e to the result of converting the output of Marshal back into
|
||||
// a group element and then returns e.
|
||||
func (e *G1) Unmarshal(m []byte) ([]byte, error) {
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
if len(m) < 2*numBytes {
|
||||
return nil, errors.New("bn256: not enough data")
|
||||
}
|
||||
// Unmarshal the points and check their caps
|
||||
if e.p == nil {
|
||||
e.p = &curvePoint{}
|
||||
} else {
|
||||
e.p.x, e.p.y = gfP{0}, gfP{0}
|
||||
}
|
||||
var err error
|
||||
if err = e.p.x.Unmarshal(m); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.y.Unmarshal(m[numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
// Encode into Montgomery form and ensure it's on the curve
|
||||
montEncode(&e.p.x, &e.p.x)
|
||||
montEncode(&e.p.y, &e.p.y)
|
||||
|
||||
zero := gfP{0}
|
||||
if e.p.x == zero && e.p.y == zero {
|
||||
// This is the point at infinity.
|
||||
e.p.y = *newGFp(1)
|
||||
e.p.z = gfP{0}
|
||||
e.p.t = gfP{0}
|
||||
} else {
|
||||
e.p.z = *newGFp(1)
|
||||
e.p.t = *newGFp(1)
|
||||
|
||||
if !e.p.IsOnCurve() {
|
||||
return nil, errors.New("bn256: malformed point")
|
||||
}
|
||||
}
|
||||
return m[2*numBytes:], nil
|
||||
}
|
||||
|
||||
// G2 is an abstract cyclic group. The zero value is suitable for use as the
|
||||
// output of an operation, but cannot be used as an input.
|
||||
type G2 struct {
|
||||
p *twistPoint
|
||||
}
|
||||
|
||||
// RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r.
|
||||
func RandomG2(r io.Reader) (*big.Int, *G2, error) {
|
||||
k, err := randomK(r)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
return k, new(G2).ScalarBaseMult(k), nil
|
||||
}
|
||||
|
||||
func (e *G2) String() string {
|
||||
return "bn256.G2" + e.p.String()
|
||||
}
|
||||
|
||||
// ScalarBaseMult sets e to g*k where g is the generator of the group and then
|
||||
// returns out.
|
||||
func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
|
||||
if e.p == nil {
|
||||
e.p = &twistPoint{}
|
||||
}
|
||||
e.p.Mul(twistGen, k)
|
||||
return e
|
||||
}
|
||||
|
||||
// ScalarMult sets e to a*k and then returns e.
|
||||
func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
|
||||
if e.p == nil {
|
||||
e.p = &twistPoint{}
|
||||
}
|
||||
e.p.Mul(a.p, k)
|
||||
return e
|
||||
}
|
||||
|
||||
// Add sets e to a+b and then returns e.
|
||||
func (e *G2) Add(a, b *G2) *G2 {
|
||||
if e.p == nil {
|
||||
e.p = &twistPoint{}
|
||||
}
|
||||
e.p.Add(a.p, b.p)
|
||||
return e
|
||||
}
|
||||
|
||||
// Neg sets e to -a and then returns e.
|
||||
func (e *G2) Neg(a *G2) *G2 {
|
||||
if e.p == nil {
|
||||
e.p = &twistPoint{}
|
||||
}
|
||||
e.p.Neg(a.p)
|
||||
return e
|
||||
}
|
||||
|
||||
// Set sets e to a and then returns e.
|
||||
func (e *G2) Set(a *G2) *G2 {
|
||||
if e.p == nil {
|
||||
e.p = &twistPoint{}
|
||||
}
|
||||
e.p.Set(a.p)
|
||||
return e
|
||||
}
|
||||
|
||||
// Marshal converts e into a byte slice.
|
||||
func (e *G2) Marshal() []byte {
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
|
||||
if e.p == nil {
|
||||
e.p = &twistPoint{}
|
||||
}
|
||||
|
||||
e.p.MakeAffine()
|
||||
ret := make([]byte, numBytes*4)
|
||||
if e.p.IsInfinity() {
|
||||
return ret
|
||||
}
|
||||
temp := &gfP{}
|
||||
|
||||
montDecode(temp, &e.p.x.x)
|
||||
temp.Marshal(ret)
|
||||
montDecode(temp, &e.p.x.y)
|
||||
temp.Marshal(ret[numBytes:])
|
||||
montDecode(temp, &e.p.y.x)
|
||||
temp.Marshal(ret[2*numBytes:])
|
||||
montDecode(temp, &e.p.y.y)
|
||||
temp.Marshal(ret[3*numBytes:])
|
||||
|
||||
return ret
|
||||
}
|
||||
|
||||
// Unmarshal sets e to the result of converting the output of Marshal back into
|
||||
// a group element and then returns e.
|
||||
func (e *G2) Unmarshal(m []byte) ([]byte, error) {
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
if len(m) < 4*numBytes {
|
||||
return nil, errors.New("bn256: not enough data")
|
||||
}
|
||||
// Unmarshal the points and check their caps
|
||||
if e.p == nil {
|
||||
e.p = &twistPoint{}
|
||||
}
|
||||
var err error
|
||||
if err = e.p.x.x.Unmarshal(m); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.x.y.Unmarshal(m[numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.y.x.Unmarshal(m[2*numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.y.y.Unmarshal(m[3*numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
// Encode into Montgomery form and ensure it's on the curve
|
||||
montEncode(&e.p.x.x, &e.p.x.x)
|
||||
montEncode(&e.p.x.y, &e.p.x.y)
|
||||
montEncode(&e.p.y.x, &e.p.y.x)
|
||||
montEncode(&e.p.y.y, &e.p.y.y)
|
||||
|
||||
if e.p.x.IsZero() && e.p.y.IsZero() {
|
||||
// This is the point at infinity.
|
||||
e.p.y.SetOne()
|
||||
e.p.z.SetZero()
|
||||
e.p.t.SetZero()
|
||||
} else {
|
||||
e.p.z.SetOne()
|
||||
e.p.t.SetOne()
|
||||
|
||||
if !e.p.IsOnCurve() {
|
||||
return nil, errors.New("bn256: malformed point")
|
||||
}
|
||||
}
|
||||
return m[4*numBytes:], nil
|
||||
}
|
||||
|
||||
// GT is an abstract cyclic group. The zero value is suitable for use as the
|
||||
// output of an operation, but cannot be used as an input.
|
||||
type GT struct {
|
||||
p *gfP12
|
||||
}
|
||||
|
||||
// Pair calculates an Optimal Ate pairing.
|
||||
func Pair(g1 *G1, g2 *G2) *GT {
|
||||
return >{optimalAte(g2.p, g1.p)}
|
||||
}
|
||||
|
||||
// PairingCheck calculates the Optimal Ate pairing for a set of points.
|
||||
func PairingCheck(a []*G1, b []*G2) bool {
|
||||
acc := new(gfP12)
|
||||
acc.SetOne()
|
||||
|
||||
for i := 0; i < len(a); i++ {
|
||||
if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
|
||||
continue
|
||||
}
|
||||
acc.Mul(acc, miller(b[i].p, a[i].p))
|
||||
}
|
||||
return finalExponentiation(acc).IsOne()
|
||||
}
|
||||
|
||||
// Miller applies Miller's algorithm, which is a bilinear function from the
|
||||
// source groups to F_p^12. Miller(g1, g2).Finalize() is equivalent to Pair(g1,
|
||||
// g2).
|
||||
func Miller(g1 *G1, g2 *G2) *GT {
|
||||
return >{miller(g2.p, g1.p)}
|
||||
}
|
||||
|
||||
func (g *GT) String() string {
|
||||
return "bn256.GT" + g.p.String()
|
||||
}
|
||||
|
||||
// ScalarMult sets e to a*k and then returns e.
|
||||
func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
|
||||
if e.p == nil {
|
||||
e.p = &gfP12{}
|
||||
}
|
||||
e.p.Exp(a.p, k)
|
||||
return e
|
||||
}
|
||||
|
||||
// Add sets e to a+b and then returns e.
|
||||
func (e *GT) Add(a, b *GT) *GT {
|
||||
if e.p == nil {
|
||||
e.p = &gfP12{}
|
||||
}
|
||||
e.p.Mul(a.p, b.p)
|
||||
return e
|
||||
}
|
||||
|
||||
// Neg sets e to -a and then returns e.
|
||||
func (e *GT) Neg(a *GT) *GT {
|
||||
if e.p == nil {
|
||||
e.p = &gfP12{}
|
||||
}
|
||||
e.p.Conjugate(a.p)
|
||||
return e
|
||||
}
|
||||
|
||||
// Set sets e to a and then returns e.
|
||||
func (e *GT) Set(a *GT) *GT {
|
||||
if e.p == nil {
|
||||
e.p = &gfP12{}
|
||||
}
|
||||
e.p.Set(a.p)
|
||||
return e
|
||||
}
|
||||
|
||||
// Finalize is a linear function from F_p^12 to GT.
|
||||
func (e *GT) Finalize() *GT {
|
||||
ret := finalExponentiation(e.p)
|
||||
e.p.Set(ret)
|
||||
return e
|
||||
}
|
||||
|
||||
// Marshal converts e into a byte slice.
|
||||
func (e *GT) Marshal() []byte {
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
|
||||
ret := make([]byte, numBytes*12)
|
||||
temp := &gfP{}
|
||||
|
||||
montDecode(temp, &e.p.x.x.x)
|
||||
temp.Marshal(ret)
|
||||
montDecode(temp, &e.p.x.x.y)
|
||||
temp.Marshal(ret[numBytes:])
|
||||
montDecode(temp, &e.p.x.y.x)
|
||||
temp.Marshal(ret[2*numBytes:])
|
||||
montDecode(temp, &e.p.x.y.y)
|
||||
temp.Marshal(ret[3*numBytes:])
|
||||
montDecode(temp, &e.p.x.z.x)
|
||||
temp.Marshal(ret[4*numBytes:])
|
||||
montDecode(temp, &e.p.x.z.y)
|
||||
temp.Marshal(ret[5*numBytes:])
|
||||
montDecode(temp, &e.p.y.x.x)
|
||||
temp.Marshal(ret[6*numBytes:])
|
||||
montDecode(temp, &e.p.y.x.y)
|
||||
temp.Marshal(ret[7*numBytes:])
|
||||
montDecode(temp, &e.p.y.y.x)
|
||||
temp.Marshal(ret[8*numBytes:])
|
||||
montDecode(temp, &e.p.y.y.y)
|
||||
temp.Marshal(ret[9*numBytes:])
|
||||
montDecode(temp, &e.p.y.z.x)
|
||||
temp.Marshal(ret[10*numBytes:])
|
||||
montDecode(temp, &e.p.y.z.y)
|
||||
temp.Marshal(ret[11*numBytes:])
|
||||
|
||||
return ret
|
||||
}
|
||||
|
||||
// Unmarshal sets e to the result of converting the output of Marshal back into
|
||||
// a group element and then returns e.
|
||||
func (e *GT) Unmarshal(m []byte) ([]byte, error) {
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
|
||||
if len(m) < 12*numBytes {
|
||||
return nil, errors.New("bn256: not enough data")
|
||||
}
|
||||
|
||||
if e.p == nil {
|
||||
e.p = &gfP12{}
|
||||
}
|
||||
|
||||
var err error
|
||||
if err = e.p.x.x.x.Unmarshal(m); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.x.x.y.Unmarshal(m[numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.x.y.x.Unmarshal(m[2*numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.x.y.y.Unmarshal(m[3*numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.x.z.x.Unmarshal(m[4*numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.x.z.y.Unmarshal(m[5*numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.y.x.x.Unmarshal(m[6*numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.y.x.y.Unmarshal(m[7*numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.y.y.x.Unmarshal(m[8*numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.y.y.y.Unmarshal(m[9*numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.y.z.x.Unmarshal(m[10*numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err = e.p.y.z.y.Unmarshal(m[11*numBytes:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
montEncode(&e.p.x.x.x, &e.p.x.x.x)
|
||||
montEncode(&e.p.x.x.y, &e.p.x.x.y)
|
||||
montEncode(&e.p.x.y.x, &e.p.x.y.x)
|
||||
montEncode(&e.p.x.y.y, &e.p.x.y.y)
|
||||
montEncode(&e.p.x.z.x, &e.p.x.z.x)
|
||||
montEncode(&e.p.x.z.y, &e.p.x.z.y)
|
||||
montEncode(&e.p.y.x.x, &e.p.y.x.x)
|
||||
montEncode(&e.p.y.x.y, &e.p.y.x.y)
|
||||
montEncode(&e.p.y.y.x, &e.p.y.y.x)
|
||||
montEncode(&e.p.y.y.y, &e.p.y.y.y)
|
||||
montEncode(&e.p.y.z.x, &e.p.y.z.x)
|
||||
montEncode(&e.p.y.z.y, &e.p.y.z.y)
|
||||
|
||||
return m[12*numBytes:], nil
|
||||
}
|
|
@ -0,0 +1,118 @@
|
|||
// +build amd64,!appengine,!gccgo
|
||||
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/rand"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestG1Marshal(t *testing.T) {
|
||||
_, Ga, err := RandomG1(rand.Reader)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
ma := Ga.Marshal()
|
||||
|
||||
Gb := new(G1)
|
||||
_, err = Gb.Unmarshal(ma)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
mb := Gb.Marshal()
|
||||
|
||||
if !bytes.Equal(ma, mb) {
|
||||
t.Fatal("bytes are different")
|
||||
}
|
||||
}
|
||||
|
||||
func TestG2Marshal(t *testing.T) {
|
||||
_, Ga, err := RandomG2(rand.Reader)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
ma := Ga.Marshal()
|
||||
|
||||
Gb := new(G2)
|
||||
_, err = Gb.Unmarshal(ma)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
mb := Gb.Marshal()
|
||||
|
||||
if !bytes.Equal(ma, mb) {
|
||||
t.Fatal("bytes are different")
|
||||
}
|
||||
}
|
||||
|
||||
func TestBilinearity(t *testing.T) {
|
||||
for i := 0; i < 2; i++ {
|
||||
a, p1, _ := RandomG1(rand.Reader)
|
||||
b, p2, _ := RandomG2(rand.Reader)
|
||||
e1 := Pair(p1, p2)
|
||||
|
||||
e2 := Pair(&G1{curveGen}, &G2{twistGen})
|
||||
e2.ScalarMult(e2, a)
|
||||
e2.ScalarMult(e2, b)
|
||||
|
||||
if *e1.p != *e2.p {
|
||||
t.Fatalf("bad pairing result: %s", e1)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestTripartiteDiffieHellman(t *testing.T) {
|
||||
a, _ := rand.Int(rand.Reader, Order)
|
||||
b, _ := rand.Int(rand.Reader, Order)
|
||||
c, _ := rand.Int(rand.Reader, Order)
|
||||
|
||||
pa, pb, pc := new(G1), new(G1), new(G1)
|
||||
qa, qb, qc := new(G2), new(G2), new(G2)
|
||||
|
||||
pa.Unmarshal(new(G1).ScalarBaseMult(a).Marshal())
|
||||
qa.Unmarshal(new(G2).ScalarBaseMult(a).Marshal())
|
||||
pb.Unmarshal(new(G1).ScalarBaseMult(b).Marshal())
|
||||
qb.Unmarshal(new(G2).ScalarBaseMult(b).Marshal())
|
||||
pc.Unmarshal(new(G1).ScalarBaseMult(c).Marshal())
|
||||
qc.Unmarshal(new(G2).ScalarBaseMult(c).Marshal())
|
||||
|
||||
k1 := Pair(pb, qc)
|
||||
k1.ScalarMult(k1, a)
|
||||
k1Bytes := k1.Marshal()
|
||||
|
||||
k2 := Pair(pc, qa)
|
||||
k2.ScalarMult(k2, b)
|
||||
k2Bytes := k2.Marshal()
|
||||
|
||||
k3 := Pair(pa, qb)
|
||||
k3.ScalarMult(k3, c)
|
||||
k3Bytes := k3.Marshal()
|
||||
|
||||
if !bytes.Equal(k1Bytes, k2Bytes) || !bytes.Equal(k2Bytes, k3Bytes) {
|
||||
t.Errorf("keys didn't agree")
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkG1(b *testing.B) {
|
||||
x, _ := rand.Int(rand.Reader, Order)
|
||||
b.ResetTimer()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
new(G1).ScalarBaseMult(x)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkG2(b *testing.B) {
|
||||
x, _ := rand.Int(rand.Reader, Order)
|
||||
b.ResetTimer()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
new(G2).ScalarBaseMult(x)
|
||||
}
|
||||
}
|
||||
func BenchmarkPairing(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
Pair(&G1{curveGen}, &G2{twistGen})
|
||||
}
|
||||
}
|
|
@ -0,0 +1,59 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
func bigFromBase10(s string) *big.Int {
|
||||
n, _ := new(big.Int).SetString(s, 10)
|
||||
return n
|
||||
}
|
||||
|
||||
// u is the BN parameter that determines the prime: 1868033³.
|
||||
var u = bigFromBase10("4965661367192848881")
|
||||
|
||||
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
|
||||
var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")
|
||||
|
||||
// P is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
|
||||
var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583")
|
||||
|
||||
// p2 is p, represented as little-endian 64-bit words.
|
||||
var p2 = [4]uint64{0x3c208c16d87cfd47, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}
|
||||
|
||||
// np is the negative inverse of p, mod 2^256.
|
||||
var np = [4]uint64{0x87d20782e4866389, 0x9ede7d651eca6ac9, 0xd8afcbd01833da80, 0xf57a22b791888c6b}
|
||||
|
||||
// rN1 is R^-1 where R = 2^256 mod p.
|
||||
var rN1 = &gfP{0xed84884a014afa37, 0xeb2022850278edf8, 0xcf63e9cfb74492d9, 0x2e67157159e5c639}
|
||||
|
||||
// r2 is R^2 where R = 2^256 mod p.
|
||||
var r2 = &gfP{0xf32cfc5b538afa89, 0xb5e71911d44501fb, 0x47ab1eff0a417ff6, 0x06d89f71cab8351f}
|
||||
|
||||
// r3 is R^3 where R = 2^256 mod p.
|
||||
var r3 = &gfP{0xb1cd6dafda1530df, 0x62f210e6a7283db6, 0xef7f0b0c0ada0afb, 0x20fd6e902d592544}
|
||||
|
||||
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9.
|
||||
var xiToPMinus1Over6 = &gfP2{gfP{0xa222ae234c492d72, 0xd00f02a4565de15b, 0xdc2ff3a253dfc926, 0x10a75716b3899551}, gfP{0xaf9ba69633144907, 0xca6b1d7387afb78a, 0x11bded5ef08a2087, 0x02f34d751a1f3a7c}}
|
||||
|
||||
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9.
|
||||
var xiToPMinus1Over3 = &gfP2{gfP{0x6e849f1ea0aa4757, 0xaa1c7b6d89f89141, 0xb6e713cdfae0ca3a, 0x26694fbb4e82ebc3}, gfP{0xb5773b104563ab30, 0x347f91c8a9aa6454, 0x7a007127242e0991, 0x1956bcd8118214ec}}
|
||||
|
||||
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9.
|
||||
var xiToPMinus1Over2 = &gfP2{gfP{0xa1d77ce45ffe77c7, 0x07affd117826d1db, 0x6d16bd27bb7edc6b, 0x2c87200285defecc}, gfP{0xe4bbdd0c2936b629, 0xbb30f162e133bacb, 0x31a9d1b6f9645366, 0x253570bea500f8dd}}
|
||||
|
||||
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9.
|
||||
var xiToPSquaredMinus1Over3 = &gfP{0x3350c88e13e80b9c, 0x7dce557cdb5e56b9, 0x6001b4b8b615564a, 0x2682e617020217e0}
|
||||
|
||||
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p).
|
||||
var xiTo2PSquaredMinus2Over3 = &gfP{0x71930c11d782e155, 0xa6bb947cffbe3323, 0xaa303344d4741444, 0x2c3b3f0d26594943}
|
||||
|
||||
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p).
|
||||
var xiToPSquaredMinus1Over6 = &gfP{0xca8d800500fa1bf2, 0xf0c5d61468b39769, 0x0e201271ad0d4418, 0x04290f65bad856e6}
|
||||
|
||||
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9.
|
||||
var xiTo2PMinus2Over3 = &gfP2{gfP{0x5dddfd154bd8c949, 0x62cb29a5a4445b60, 0x37bc870a0c7dd2b9, 0x24830a9d3171f0fd}, gfP{0x7361d77f843abe92, 0xa5bb2bd3273411fb, 0x9c941f314b3e2399, 0x15df9cddbb9fd3ec}}
|
|
@ -0,0 +1,229 @@
|
|||
package bn256
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// curvePoint implements the elliptic curve y²=x³+3. Points are kept in Jacobian
|
||||
// form and t=z² when valid. G₁ is the set of points of this curve on GF(p).
|
||||
type curvePoint struct {
|
||||
x, y, z, t gfP
|
||||
}
|
||||
|
||||
var curveB = newGFp(3)
|
||||
|
||||
// curveGen is the generator of G₁.
|
||||
var curveGen = &curvePoint{
|
||||
x: *newGFp(1),
|
||||
y: *newGFp(2),
|
||||
z: *newGFp(1),
|
||||
t: *newGFp(1),
|
||||
}
|
||||
|
||||
func (c *curvePoint) String() string {
|
||||
c.MakeAffine()
|
||||
x, y := &gfP{}, &gfP{}
|
||||
montDecode(x, &c.x)
|
||||
montDecode(y, &c.y)
|
||||
return "(" + x.String() + ", " + y.String() + ")"
|
||||
}
|
||||
|
||||
func (c *curvePoint) Set(a *curvePoint) {
|
||||
c.x.Set(&a.x)
|
||||
c.y.Set(&a.y)
|
||||
c.z.Set(&a.z)
|
||||
c.t.Set(&a.t)
|
||||
}
|
||||
|
||||
// IsOnCurve returns true iff c is on the curve.
|
||||
func (c *curvePoint) IsOnCurve() bool {
|
||||
c.MakeAffine()
|
||||
if c.IsInfinity() {
|
||||
return true
|
||||
}
|
||||
|
||||
y2, x3 := &gfP{}, &gfP{}
|
||||
gfpMul(y2, &c.y, &c.y)
|
||||
gfpMul(x3, &c.x, &c.x)
|
||||
gfpMul(x3, x3, &c.x)
|
||||
gfpAdd(x3, x3, curveB)
|
||||
|
||||
return *y2 == *x3
|
||||
}
|
||||
|
||||
func (c *curvePoint) SetInfinity() {
|
||||
c.x = gfP{0}
|
||||
c.y = *newGFp(1)
|
||||
c.z = gfP{0}
|
||||
c.t = gfP{0}
|
||||
}
|
||||
|
||||
func (c *curvePoint) IsInfinity() bool {
|
||||
return c.z == gfP{0}
|
||||
}
|
||||
|
||||
func (c *curvePoint) Add(a, b *curvePoint) {
|
||||
if a.IsInfinity() {
|
||||
c.Set(b)
|
||||
return
|
||||
}
|
||||
if b.IsInfinity() {
|
||||
c.Set(a)
|
||||
return
|
||||
}
|
||||
|
||||
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
|
||||
|
||||
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
|
||||
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
|
||||
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
|
||||
z12, z22 := &gfP{}, &gfP{}
|
||||
gfpMul(z12, &a.z, &a.z)
|
||||
gfpMul(z22, &b.z, &b.z)
|
||||
|
||||
u1, u2 := &gfP{}, &gfP{}
|
||||
gfpMul(u1, &a.x, z22)
|
||||
gfpMul(u2, &b.x, z12)
|
||||
|
||||
t, s1 := &gfP{}, &gfP{}
|
||||
gfpMul(t, &b.z, z22)
|
||||
gfpMul(s1, &a.y, t)
|
||||
|
||||
s2 := &gfP{}
|
||||
gfpMul(t, &a.z, z12)
|
||||
gfpMul(s2, &b.y, t)
|
||||
|
||||
// Compute x = (2h)²(s²-u1-u2)
|
||||
// where s = (s2-s1)/(u2-u1) is the slope of the line through
|
||||
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
|
||||
// This is also:
|
||||
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
|
||||
// = r² - j - 2v
|
||||
// with the notations below.
|
||||
h := &gfP{}
|
||||
gfpSub(h, u2, u1)
|
||||
xEqual := *h == gfP{0}
|
||||
|
||||
gfpAdd(t, h, h)
|
||||
// i = 4h²
|
||||
i := &gfP{}
|
||||
gfpMul(i, t, t)
|
||||
// j = 4h³
|
||||
j := &gfP{}
|
||||
gfpMul(j, h, i)
|
||||
|
||||
gfpSub(t, s2, s1)
|
||||
yEqual := *t == gfP{0}
|
||||
if xEqual && yEqual {
|
||||
c.Double(a)
|
||||
return
|
||||
}
|
||||
r := &gfP{}
|
||||
gfpAdd(r, t, t)
|
||||
|
||||
v := &gfP{}
|
||||
gfpMul(v, u1, i)
|
||||
|
||||
// t4 = 4(s2-s1)²
|
||||
t4, t6 := &gfP{}, &gfP{}
|
||||
gfpMul(t4, r, r)
|
||||
gfpAdd(t, v, v)
|
||||
gfpSub(t6, t4, j)
|
||||
|
||||
gfpSub(&c.x, t6, t)
|
||||
|
||||
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
|
||||
// This is also
|
||||
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
|
||||
gfpSub(t, v, &c.x) // t7
|
||||
gfpMul(t4, s1, j) // t8
|
||||
gfpAdd(t6, t4, t4) // t9
|
||||
gfpMul(t4, r, t) // t10
|
||||
gfpSub(&c.y, t4, t6)
|
||||
|
||||
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
|
||||
gfpAdd(t, &a.z, &b.z) // t11
|
||||
gfpMul(t4, t, t) // t12
|
||||
gfpSub(t, t4, z12) // t13
|
||||
gfpSub(t4, t, z22) // t14
|
||||
gfpMul(&c.z, t4, h)
|
||||
}
|
||||
|
||||
func (c *curvePoint) Double(a *curvePoint) {
|
||||
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
|
||||
A, B, C := &gfP{}, &gfP{}, &gfP{}
|
||||
gfpMul(A, &a.x, &a.x)
|
||||
gfpMul(B, &a.y, &a.y)
|
||||
gfpMul(C, B, B)
|
||||
|
||||
t, t2 := &gfP{}, &gfP{}
|
||||
gfpAdd(t, &a.x, B)
|
||||
gfpMul(t2, t, t)
|
||||
gfpSub(t, t2, A)
|
||||
gfpSub(t2, t, C)
|
||||
|
||||
d, e, f := &gfP{}, &gfP{}, &gfP{}
|
||||
gfpAdd(d, t2, t2)
|
||||
gfpAdd(t, A, A)
|
||||
gfpAdd(e, t, A)
|
||||
gfpMul(f, e, e)
|
||||
|
||||
gfpAdd(t, d, d)
|
||||
gfpSub(&c.x, f, t)
|
||||
|
||||
gfpAdd(t, C, C)
|
||||
gfpAdd(t2, t, t)
|
||||
gfpAdd(t, t2, t2)
|
||||
gfpSub(&c.y, d, &c.x)
|
||||
gfpMul(t2, e, &c.y)
|
||||
gfpSub(&c.y, t2, t)
|
||||
|
||||
gfpMul(t, &a.y, &a.z)
|
||||
gfpAdd(&c.z, t, t)
|
||||
}
|
||||
|
||||
func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) {
|
||||
sum, t := &curvePoint{}, &curvePoint{}
|
||||
sum.SetInfinity()
|
||||
|
||||
for i := scalar.BitLen(); i >= 0; i-- {
|
||||
t.Double(sum)
|
||||
if scalar.Bit(i) != 0 {
|
||||
sum.Add(t, a)
|
||||
} else {
|
||||
sum.Set(t)
|
||||
}
|
||||
}
|
||||
c.Set(sum)
|
||||
}
|
||||
|
||||
func (c *curvePoint) MakeAffine() {
|
||||
if c.z == *newGFp(1) {
|
||||
return
|
||||
} else if c.z == *newGFp(0) {
|
||||
c.x = gfP{0}
|
||||
c.y = *newGFp(1)
|
||||
c.t = gfP{0}
|
||||
return
|
||||
}
|
||||
|
||||
zInv := &gfP{}
|
||||
zInv.Invert(&c.z)
|
||||
|
||||
t, zInv2 := &gfP{}, &gfP{}
|
||||
gfpMul(t, &c.y, zInv)
|
||||
gfpMul(zInv2, zInv, zInv)
|
||||
|
||||
gfpMul(&c.x, &c.x, zInv2)
|
||||
gfpMul(&c.y, t, zInv2)
|
||||
|
||||
c.z = *newGFp(1)
|
||||
c.t = *newGFp(1)
|
||||
}
|
||||
|
||||
func (c *curvePoint) Neg(a *curvePoint) {
|
||||
c.x.Set(&a.x)
|
||||
gfpNeg(&c.y, &a.y)
|
||||
c.z.Set(&a.z)
|
||||
c.t = gfP{0}
|
||||
}
|
|
@ -0,0 +1,45 @@
|
|||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build amd64,!appengine,!gccgo
|
||||
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
)
|
||||
|
||||
func ExamplePair() {
|
||||
// This implements the tripartite Diffie-Hellman algorithm from "A One
|
||||
// Round Protocol for Tripartite Diffie-Hellman", A. Joux.
|
||||
// http://www.springerlink.com/content/cddc57yyva0hburb/fulltext.pdf
|
||||
|
||||
// Each of three parties, a, b and c, generate a private value.
|
||||
a, _ := rand.Int(rand.Reader, Order)
|
||||
b, _ := rand.Int(rand.Reader, Order)
|
||||
c, _ := rand.Int(rand.Reader, Order)
|
||||
|
||||
// Then each party calculates g₁ and g₂ times their private value.
|
||||
pa := new(G1).ScalarBaseMult(a)
|
||||
qa := new(G2).ScalarBaseMult(a)
|
||||
|
||||
pb := new(G1).ScalarBaseMult(b)
|
||||
qb := new(G2).ScalarBaseMult(b)
|
||||
|
||||
pc := new(G1).ScalarBaseMult(c)
|
||||
qc := new(G2).ScalarBaseMult(c)
|
||||
|
||||
// Now each party exchanges its public values with the other two and
|
||||
// all parties can calculate the shared key.
|
||||
k1 := Pair(pb, qc)
|
||||
k1.ScalarMult(k1, a)
|
||||
|
||||
k2 := Pair(pc, qa)
|
||||
k2.ScalarMult(k2, b)
|
||||
|
||||
k3 := Pair(pa, qb)
|
||||
k3.ScalarMult(k3, c)
|
||||
|
||||
// k1, k2 and k3 will all be equal.
|
||||
}
|
|
@ -0,0 +1,81 @@
|
|||
package bn256
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
)
|
||||
|
||||
type gfP [4]uint64
|
||||
|
||||
func newGFp(x int64) (out *gfP) {
|
||||
if x >= 0 {
|
||||
out = &gfP{uint64(x)}
|
||||
} else {
|
||||
out = &gfP{uint64(-x)}
|
||||
gfpNeg(out, out)
|
||||
}
|
||||
|
||||
montEncode(out, out)
|
||||
return out
|
||||
}
|
||||
|
||||
func (e *gfP) String() string {
|
||||
return fmt.Sprintf("%16.16x%16.16x%16.16x%16.16x", e[3], e[2], e[1], e[0])
|
||||
}
|
||||
|
||||
func (e *gfP) Set(f *gfP) {
|
||||
e[0] = f[0]
|
||||
e[1] = f[1]
|
||||
e[2] = f[2]
|
||||
e[3] = f[3]
|
||||
}
|
||||
|
||||
func (e *gfP) Invert(f *gfP) {
|
||||
bits := [4]uint64{0x3c208c16d87cfd45, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}
|
||||
|
||||
sum, power := &gfP{}, &gfP{}
|
||||
sum.Set(rN1)
|
||||
power.Set(f)
|
||||
|
||||
for word := 0; word < 4; word++ {
|
||||
for bit := uint(0); bit < 64; bit++ {
|
||||
if (bits[word]>>bit)&1 == 1 {
|
||||
gfpMul(sum, sum, power)
|
||||
}
|
||||
gfpMul(power, power, power)
|
||||
}
|
||||
}
|
||||
|
||||
gfpMul(sum, sum, r3)
|
||||
e.Set(sum)
|
||||
}
|
||||
|
||||
func (e *gfP) Marshal(out []byte) {
|
||||
for w := uint(0); w < 4; w++ {
|
||||
for b := uint(0); b < 8; b++ {
|
||||
out[8*w+b] = byte(e[3-w] >> (56 - 8*b))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (e *gfP) Unmarshal(in []byte) error {
|
||||
// Unmarshal the bytes into little endian form
|
||||
for w := uint(0); w < 4; w++ {
|
||||
for b := uint(0); b < 8; b++ {
|
||||
e[3-w] += uint64(in[8*w+b]) << (56 - 8*b)
|
||||
}
|
||||
}
|
||||
// Ensure the point respects the curve modulus
|
||||
for i := 3; i >= 0; i-- {
|
||||
if e[i] < p2[i] {
|
||||
return nil
|
||||
}
|
||||
if e[i] > p2[i] {
|
||||
return errors.New("bn256: coordinate exceeds modulus")
|
||||
}
|
||||
}
|
||||
return errors.New("bn256: coordinate equals modulus")
|
||||
}
|
||||
|
||||
func montEncode(c, a *gfP) { gfpMul(c, a, r2) }
|
||||
func montDecode(c, a *gfP) { gfpMul(c, a, &gfP{1}) }
|
|
@ -0,0 +1,32 @@
|
|||
#define storeBlock(a0,a1,a2,a3, r) \
|
||||
MOVQ a0, 0+r \
|
||||
MOVQ a1, 8+r \
|
||||
MOVQ a2, 16+r \
|
||||
MOVQ a3, 24+r
|
||||
|
||||
#define loadBlock(r, a0,a1,a2,a3) \
|
||||
MOVQ 0+r, a0 \
|
||||
MOVQ 8+r, a1 \
|
||||
MOVQ 16+r, a2 \
|
||||
MOVQ 24+r, a3
|
||||
|
||||
#define gfpCarry(a0,a1,a2,a3,a4, b0,b1,b2,b3,b4) \
|
||||
\ // b = a-p
|
||||
MOVQ a0, b0 \
|
||||
MOVQ a1, b1 \
|
||||
MOVQ a2, b2 \
|
||||
MOVQ a3, b3 \
|
||||
MOVQ a4, b4 \
|
||||
\
|
||||
SUBQ ·p2+0(SB), b0 \
|
||||
SBBQ ·p2+8(SB), b1 \
|
||||
SBBQ ·p2+16(SB), b2 \
|
||||
SBBQ ·p2+24(SB), b3 \
|
||||
SBBQ $0, b4 \
|
||||
\
|
||||
\ // if b is negative then return a
|
||||
\ // else return b
|
||||
CMOVQCC b0, a0 \
|
||||
CMOVQCC b1, a1 \
|
||||
CMOVQCC b2, a2 \
|
||||
CMOVQCC b3, a3
|
|
@ -0,0 +1,160 @@
|
|||
package bn256
|
||||
|
||||
// For details of the algorithms used, see "Multiplication and Squaring on
|
||||
// Pairing-Friendly Fields, Devegili et al.
|
||||
// http://eprint.iacr.org/2006/471.pdf.
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// gfP12 implements the field of size p¹² as a quadratic extension of gfP6
|
||||
// where ω²=τ.
|
||||
type gfP12 struct {
|
||||
x, y gfP6 // value is xω + y
|
||||
}
|
||||
|
||||
func (e *gfP12) String() string {
|
||||
return "(" + e.x.String() + "," + e.y.String() + ")"
|
||||
}
|
||||
|
||||
func (e *gfP12) Set(a *gfP12) *gfP12 {
|
||||
e.x.Set(&a.x)
|
||||
e.y.Set(&a.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) SetZero() *gfP12 {
|
||||
e.x.SetZero()
|
||||
e.y.SetZero()
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) SetOne() *gfP12 {
|
||||
e.x.SetZero()
|
||||
e.y.SetOne()
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) IsZero() bool {
|
||||
return e.x.IsZero() && e.y.IsZero()
|
||||
}
|
||||
|
||||
func (e *gfP12) IsOne() bool {
|
||||
return e.x.IsZero() && e.y.IsOne()
|
||||
}
|
||||
|
||||
func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
|
||||
e.x.Neg(&a.x)
|
||||
e.y.Set(&a.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) Neg(a *gfP12) *gfP12 {
|
||||
e.x.Neg(&a.x)
|
||||
e.y.Neg(&a.y)
|
||||
return e
|
||||
}
|
||||
|
||||
// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
|
||||
func (e *gfP12) Frobenius(a *gfP12) *gfP12 {
|
||||
e.x.Frobenius(&a.x)
|
||||
e.y.Frobenius(&a.y)
|
||||
e.x.MulScalar(&e.x, xiToPMinus1Over6)
|
||||
return e
|
||||
}
|
||||
|
||||
// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
|
||||
func (e *gfP12) FrobeniusP2(a *gfP12) *gfP12 {
|
||||
e.x.FrobeniusP2(&a.x)
|
||||
e.x.MulGFP(&e.x, xiToPSquaredMinus1Over6)
|
||||
e.y.FrobeniusP2(&a.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) FrobeniusP4(a *gfP12) *gfP12 {
|
||||
e.x.FrobeniusP4(&a.x)
|
||||
e.x.MulGFP(&e.x, xiToPSquaredMinus1Over3)
|
||||
e.y.FrobeniusP4(&a.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) Add(a, b *gfP12) *gfP12 {
|
||||
e.x.Add(&a.x, &b.x)
|
||||
e.y.Add(&a.y, &b.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
|
||||
e.x.Sub(&a.x, &b.x)
|
||||
e.y.Sub(&a.y, &b.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) Mul(a, b *gfP12) *gfP12 {
|
||||
tx := (&gfP6{}).Mul(&a.x, &b.y)
|
||||
t := (&gfP6{}).Mul(&b.x, &a.y)
|
||||
tx.Add(tx, t)
|
||||
|
||||
ty := (&gfP6{}).Mul(&a.y, &b.y)
|
||||
t.Mul(&a.x, &b.x).MulTau(t)
|
||||
|
||||
e.x.Set(tx)
|
||||
e.y.Add(ty, t)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) MulScalar(a *gfP12, b *gfP6) *gfP12 {
|
||||
e.x.Mul(&e.x, b)
|
||||
e.y.Mul(&e.y, b)
|
||||
return e
|
||||
}
|
||||
|
||||
func (c *gfP12) Exp(a *gfP12, power *big.Int) *gfP12 {
|
||||
sum := (&gfP12{}).SetOne()
|
||||
t := &gfP12{}
|
||||
|
||||
for i := power.BitLen() - 1; i >= 0; i-- {
|
||||
t.Square(sum)
|
||||
if power.Bit(i) != 0 {
|
||||
sum.Mul(t, a)
|
||||
} else {
|
||||
sum.Set(t)
|
||||
}
|
||||
}
|
||||
|
||||
c.Set(sum)
|
||||
return c
|
||||
}
|
||||
|
||||
func (e *gfP12) Square(a *gfP12) *gfP12 {
|
||||
// Complex squaring algorithm
|
||||
v0 := (&gfP6{}).Mul(&a.x, &a.y)
|
||||
|
||||
t := (&gfP6{}).MulTau(&a.x)
|
||||
t.Add(&a.y, t)
|
||||
ty := (&gfP6{}).Add(&a.x, &a.y)
|
||||
ty.Mul(ty, t).Sub(ty, v0)
|
||||
t.MulTau(v0)
|
||||
ty.Sub(ty, t)
|
||||
|
||||
e.x.Add(v0, v0)
|
||||
e.y.Set(ty)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP12) Invert(a *gfP12) *gfP12 {
|
||||
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
|
||||
// ftp://136.206.11.249/pub/crypto/pairings.pdf
|
||||
t1, t2 := &gfP6{}, &gfP6{}
|
||||
|
||||
t1.Square(&a.x)
|
||||
t2.Square(&a.y)
|
||||
t1.MulTau(t1).Sub(t2, t1)
|
||||
t2.Invert(t1)
|
||||
|
||||
e.x.Neg(&a.x)
|
||||
e.y.Set(&a.y)
|
||||
e.MulScalar(e, t2)
|
||||
return e
|
||||
}
|
|
@ -0,0 +1,156 @@
|
|||
package bn256
|
||||
|
||||
// For details of the algorithms used, see "Multiplication and Squaring on
|
||||
// Pairing-Friendly Fields, Devegili et al.
|
||||
// http://eprint.iacr.org/2006/471.pdf.
|
||||
|
||||
// gfP2 implements a field of size p² as a quadratic extension of the base field
|
||||
// where i²=-1.
|
||||
type gfP2 struct {
|
||||
x, y gfP // value is xi+y.
|
||||
}
|
||||
|
||||
func gfP2Decode(in *gfP2) *gfP2 {
|
||||
out := &gfP2{}
|
||||
montDecode(&out.x, &in.x)
|
||||
montDecode(&out.y, &in.y)
|
||||
return out
|
||||
}
|
||||
|
||||
func (e *gfP2) String() string {
|
||||
return "(" + e.x.String() + ", " + e.y.String() + ")"
|
||||
}
|
||||
|
||||
func (e *gfP2) Set(a *gfP2) *gfP2 {
|
||||
e.x.Set(&a.x)
|
||||
e.y.Set(&a.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) SetZero() *gfP2 {
|
||||
e.x = gfP{0}
|
||||
e.y = gfP{0}
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) SetOne() *gfP2 {
|
||||
e.x = gfP{0}
|
||||
e.y = *newGFp(1)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) IsZero() bool {
|
||||
zero := gfP{0}
|
||||
return e.x == zero && e.y == zero
|
||||
}
|
||||
|
||||
func (e *gfP2) IsOne() bool {
|
||||
zero, one := gfP{0}, *newGFp(1)
|
||||
return e.x == zero && e.y == one
|
||||
}
|
||||
|
||||
func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
|
||||
e.y.Set(&a.y)
|
||||
gfpNeg(&e.x, &a.x)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) Neg(a *gfP2) *gfP2 {
|
||||
gfpNeg(&e.x, &a.x)
|
||||
gfpNeg(&e.y, &a.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) Add(a, b *gfP2) *gfP2 {
|
||||
gfpAdd(&e.x, &a.x, &b.x)
|
||||
gfpAdd(&e.y, &a.y, &b.y)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
|
||||
gfpSub(&e.x, &a.x, &b.x)
|
||||
gfpSub(&e.y, &a.y, &b.y)
|
||||
return e
|
||||
}
|
||||
|
||||
// See "Multiplication and Squaring in Pairing-Friendly Fields",
|
||||
// http://eprint.iacr.org/2006/471.pdf
|
||||
func (e *gfP2) Mul(a, b *gfP2) *gfP2 {
|
||||
tx, t := &gfP{}, &gfP{}
|
||||
gfpMul(tx, &a.x, &b.y)
|
||||
gfpMul(t, &b.x, &a.y)
|
||||
gfpAdd(tx, tx, t)
|
||||
|
||||
ty := &gfP{}
|
||||
gfpMul(ty, &a.y, &b.y)
|
||||
gfpMul(t, &a.x, &b.x)
|
||||
gfpSub(ty, ty, t)
|
||||
|
||||
e.x.Set(tx)
|
||||
e.y.Set(ty)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) MulScalar(a *gfP2, b *gfP) *gfP2 {
|
||||
gfpMul(&e.x, &a.x, b)
|
||||
gfpMul(&e.y, &a.y, b)
|
||||
return e
|
||||
}
|
||||
|
||||
// MulXi sets e=ξa where ξ=i+9 and then returns e.
|
||||
func (e *gfP2) MulXi(a *gfP2) *gfP2 {
|
||||
// (xi+y)(i+9) = (9x+y)i+(9y-x)
|
||||
tx := &gfP{}
|
||||
gfpAdd(tx, &a.x, &a.x)
|
||||
gfpAdd(tx, tx, tx)
|
||||
gfpAdd(tx, tx, tx)
|
||||
gfpAdd(tx, tx, &a.x)
|
||||
|
||||
gfpAdd(tx, tx, &a.y)
|
||||
|
||||
ty := &gfP{}
|
||||
gfpAdd(ty, &a.y, &a.y)
|
||||
gfpAdd(ty, ty, ty)
|
||||
gfpAdd(ty, ty, ty)
|
||||
gfpAdd(ty, ty, &a.y)
|
||||
|
||||
gfpSub(ty, ty, &a.x)
|
||||
|
||||
e.x.Set(tx)
|
||||
e.y.Set(ty)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) Square(a *gfP2) *gfP2 {
|
||||
// Complex squaring algorithm:
|
||||
// (xi+y)² = (x+y)(y-x) + 2*i*x*y
|
||||
tx, ty := &gfP{}, &gfP{}
|
||||
gfpSub(tx, &a.y, &a.x)
|
||||
gfpAdd(ty, &a.x, &a.y)
|
||||
gfpMul(ty, tx, ty)
|
||||
|
||||
gfpMul(tx, &a.x, &a.y)
|
||||
gfpAdd(tx, tx, tx)
|
||||
|
||||
e.x.Set(tx)
|
||||
e.y.Set(ty)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP2) Invert(a *gfP2) *gfP2 {
|
||||
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
|
||||
// ftp://136.206.11.249/pub/crypto/pairings.pdf
|
||||
t1, t2 := &gfP{}, &gfP{}
|
||||
gfpMul(t1, &a.x, &a.x)
|
||||
gfpMul(t2, &a.y, &a.y)
|
||||
gfpAdd(t1, t1, t2)
|
||||
|
||||
inv := &gfP{}
|
||||
inv.Invert(t1)
|
||||
|
||||
gfpNeg(t1, &a.x)
|
||||
|
||||
gfpMul(&e.x, t1, inv)
|
||||
gfpMul(&e.y, &a.y, inv)
|
||||
return e
|
||||
}
|
|
@ -0,0 +1,213 @@
|
|||
package bn256
|
||||
|
||||
// For details of the algorithms used, see "Multiplication and Squaring on
|
||||
// Pairing-Friendly Fields, Devegili et al.
|
||||
// http://eprint.iacr.org/2006/471.pdf.
|
||||
|
||||
// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
|
||||
// and ξ=i+3.
|
||||
type gfP6 struct {
|
||||
x, y, z gfP2 // value is xτ² + yτ + z
|
||||
}
|
||||
|
||||
func (e *gfP6) String() string {
|
||||
return "(" + e.x.String() + ", " + e.y.String() + ", " + e.z.String() + ")"
|
||||
}
|
||||
|
||||
func (e *gfP6) Set(a *gfP6) *gfP6 {
|
||||
e.x.Set(&a.x)
|
||||
e.y.Set(&a.y)
|
||||
e.z.Set(&a.z)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) SetZero() *gfP6 {
|
||||
e.x.SetZero()
|
||||
e.y.SetZero()
|
||||
e.z.SetZero()
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) SetOne() *gfP6 {
|
||||
e.x.SetZero()
|
||||
e.y.SetZero()
|
||||
e.z.SetOne()
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) IsZero() bool {
|
||||
return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
|
||||
}
|
||||
|
||||
func (e *gfP6) IsOne() bool {
|
||||
return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
|
||||
}
|
||||
|
||||
func (e *gfP6) Neg(a *gfP6) *gfP6 {
|
||||
e.x.Neg(&a.x)
|
||||
e.y.Neg(&a.y)
|
||||
e.z.Neg(&a.z)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) Frobenius(a *gfP6) *gfP6 {
|
||||
e.x.Conjugate(&a.x)
|
||||
e.y.Conjugate(&a.y)
|
||||
e.z.Conjugate(&a.z)
|
||||
|
||||
e.x.Mul(&e.x, xiTo2PMinus2Over3)
|
||||
e.y.Mul(&e.y, xiToPMinus1Over3)
|
||||
return e
|
||||
}
|
||||
|
||||
// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
|
||||
func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
|
||||
// τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
|
||||
e.x.MulScalar(&a.x, xiTo2PSquaredMinus2Over3)
|
||||
// τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
|
||||
e.y.MulScalar(&a.y, xiToPSquaredMinus1Over3)
|
||||
e.z.Set(&a.z)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) FrobeniusP4(a *gfP6) *gfP6 {
|
||||
e.x.MulScalar(&a.x, xiToPSquaredMinus1Over3)
|
||||
e.y.MulScalar(&a.y, xiTo2PSquaredMinus2Over3)
|
||||
e.z.Set(&a.z)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) Add(a, b *gfP6) *gfP6 {
|
||||
e.x.Add(&a.x, &b.x)
|
||||
e.y.Add(&a.y, &b.y)
|
||||
e.z.Add(&a.z, &b.z)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
|
||||
e.x.Sub(&a.x, &b.x)
|
||||
e.y.Sub(&a.y, &b.y)
|
||||
e.z.Sub(&a.z, &b.z)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) Mul(a, b *gfP6) *gfP6 {
|
||||
// "Multiplication and Squaring on Pairing-Friendly Fields"
|
||||
// Section 4, Karatsuba method.
|
||||
// http://eprint.iacr.org/2006/471.pdf
|
||||
v0 := (&gfP2{}).Mul(&a.z, &b.z)
|
||||
v1 := (&gfP2{}).Mul(&a.y, &b.y)
|
||||
v2 := (&gfP2{}).Mul(&a.x, &b.x)
|
||||
|
||||
t0 := (&gfP2{}).Add(&a.x, &a.y)
|
||||
t1 := (&gfP2{}).Add(&b.x, &b.y)
|
||||
tz := (&gfP2{}).Mul(t0, t1)
|
||||
tz.Sub(tz, v1).Sub(tz, v2).MulXi(tz).Add(tz, v0)
|
||||
|
||||
t0.Add(&a.y, &a.z)
|
||||
t1.Add(&b.y, &b.z)
|
||||
ty := (&gfP2{}).Mul(t0, t1)
|
||||
t0.MulXi(v2)
|
||||
ty.Sub(ty, v0).Sub(ty, v1).Add(ty, t0)
|
||||
|
||||
t0.Add(&a.x, &a.z)
|
||||
t1.Add(&b.x, &b.z)
|
||||
tx := (&gfP2{}).Mul(t0, t1)
|
||||
tx.Sub(tx, v0).Add(tx, v1).Sub(tx, v2)
|
||||
|
||||
e.x.Set(tx)
|
||||
e.y.Set(ty)
|
||||
e.z.Set(tz)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) MulScalar(a *gfP6, b *gfP2) *gfP6 {
|
||||
e.x.Mul(&a.x, b)
|
||||
e.y.Mul(&a.y, b)
|
||||
e.z.Mul(&a.z, b)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) MulGFP(a *gfP6, b *gfP) *gfP6 {
|
||||
e.x.MulScalar(&a.x, b)
|
||||
e.y.MulScalar(&a.y, b)
|
||||
e.z.MulScalar(&a.z, b)
|
||||
return e
|
||||
}
|
||||
|
||||
// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
|
||||
func (e *gfP6) MulTau(a *gfP6) *gfP6 {
|
||||
tz := (&gfP2{}).MulXi(&a.x)
|
||||
ty := (&gfP2{}).Set(&a.y)
|
||||
|
||||
e.y.Set(&a.z)
|
||||
e.x.Set(ty)
|
||||
e.z.Set(tz)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) Square(a *gfP6) *gfP6 {
|
||||
v0 := (&gfP2{}).Square(&a.z)
|
||||
v1 := (&gfP2{}).Square(&a.y)
|
||||
v2 := (&gfP2{}).Square(&a.x)
|
||||
|
||||
c0 := (&gfP2{}).Add(&a.x, &a.y)
|
||||
c0.Square(c0).Sub(c0, v1).Sub(c0, v2).MulXi(c0).Add(c0, v0)
|
||||
|
||||
c1 := (&gfP2{}).Add(&a.y, &a.z)
|
||||
c1.Square(c1).Sub(c1, v0).Sub(c1, v1)
|
||||
xiV2 := (&gfP2{}).MulXi(v2)
|
||||
c1.Add(c1, xiV2)
|
||||
|
||||
c2 := (&gfP2{}).Add(&a.x, &a.z)
|
||||
c2.Square(c2).Sub(c2, v0).Add(c2, v1).Sub(c2, v2)
|
||||
|
||||
e.x.Set(c2)
|
||||
e.y.Set(c1)
|
||||
e.z.Set(c0)
|
||||
return e
|
||||
}
|
||||
|
||||
func (e *gfP6) Invert(a *gfP6) *gfP6 {
|
||||
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
|
||||
// ftp://136.206.11.249/pub/crypto/pairings.pdf
|
||||
|
||||
// Here we can give a short explanation of how it works: let j be a cubic root of
|
||||
// unity in GF(p²) so that 1+j+j²=0.
|
||||
// Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
|
||||
// = (xτ² + yτ + z)(Cτ²+Bτ+A)
|
||||
// = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
|
||||
//
|
||||
// On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
|
||||
// = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
|
||||
//
|
||||
// So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
|
||||
t1 := (&gfP2{}).Mul(&a.x, &a.y)
|
||||
t1.MulXi(t1)
|
||||
|
||||
A := (&gfP2{}).Square(&a.z)
|
||||
A.Sub(A, t1)
|
||||
|
||||
B := (&gfP2{}).Square(&a.x)
|
||||
B.MulXi(B)
|
||||
t1.Mul(&a.y, &a.z)
|
||||
B.Sub(B, t1)
|
||||
|
||||
C := (&gfP2{}).Square(&a.y)
|
||||
t1.Mul(&a.x, &a.z)
|
||||
C.Sub(C, t1)
|
||||
|
||||
F := (&gfP2{}).Mul(C, &a.y)
|
||||
F.MulXi(F)
|
||||
t1.Mul(A, &a.z)
|
||||
F.Add(F, t1)
|
||||
t1.Mul(B, &a.x).MulXi(t1)
|
||||
F.Add(F, t1)
|
||||
|
||||
F.Invert(F)
|
||||
|
||||
e.x.Mul(C, F)
|
||||
e.y.Mul(B, F)
|
||||
e.z.Mul(A, F)
|
||||
return e
|
||||
}
|
|
@ -0,0 +1,15 @@
|
|||
// +build amd64,!appengine,!gccgo
|
||||
|
||||
package bn256
|
||||
|
||||
// go:noescape
|
||||
func gfpNeg(c, a *gfP)
|
||||
|
||||
//go:noescape
|
||||
func gfpAdd(c, a, b *gfP)
|
||||
|
||||
//go:noescape
|
||||
func gfpSub(c, a, b *gfP)
|
||||
|
||||
//go:noescape
|
||||
func gfpMul(c, a, b *gfP)
|
|
@ -0,0 +1,97 @@
|
|||
// +build amd64,!appengine,!gccgo
|
||||
|
||||
#include "gfp.h"
|
||||
#include "mul.h"
|
||||
#include "mul_bmi2.h"
|
||||
|
||||
TEXT ·gfpNeg(SB),0,$0-16
|
||||
MOVQ ·p2+0(SB), R8
|
||||
MOVQ ·p2+8(SB), R9
|
||||
MOVQ ·p2+16(SB), R10
|
||||
MOVQ ·p2+24(SB), R11
|
||||
|
||||
MOVQ a+8(FP), DI
|
||||
SUBQ 0(DI), R8
|
||||
SBBQ 8(DI), R9
|
||||
SBBQ 16(DI), R10
|
||||
SBBQ 24(DI), R11
|
||||
|
||||
MOVQ $0, AX
|
||||
gfpCarry(R8,R9,R10,R11,AX, R12,R13,R14,R15,BX)
|
||||
|
||||
MOVQ c+0(FP), DI
|
||||
storeBlock(R8,R9,R10,R11, 0(DI))
|
||||
RET
|
||||
|
||||
TEXT ·gfpAdd(SB),0,$0-24
|
||||
MOVQ a+8(FP), DI
|
||||
MOVQ b+16(FP), SI
|
||||
|
||||
loadBlock(0(DI), R8,R9,R10,R11)
|
||||
MOVQ $0, R12
|
||||
|
||||
ADDQ 0(SI), R8
|
||||
ADCQ 8(SI), R9
|
||||
ADCQ 16(SI), R10
|
||||
ADCQ 24(SI), R11
|
||||
ADCQ $0, R12
|
||||
|
||||
gfpCarry(R8,R9,R10,R11,R12, R13,R14,R15,AX,BX)
|
||||
|
||||
MOVQ c+0(FP), DI
|
||||
storeBlock(R8,R9,R10,R11, 0(DI))
|
||||
RET
|
||||
|
||||
TEXT ·gfpSub(SB),0,$0-24
|
||||
MOVQ a+8(FP), DI
|
||||
MOVQ b+16(FP), SI
|
||||
|
||||
loadBlock(0(DI), R8,R9,R10,R11)
|
||||
|
||||
MOVQ ·p2+0(SB), R12
|
||||
MOVQ ·p2+8(SB), R13
|
||||
MOVQ ·p2+16(SB), R14
|
||||
MOVQ ·p2+24(SB), R15
|
||||
MOVQ $0, AX
|
||||
|
||||
SUBQ 0(SI), R8
|
||||
SBBQ 8(SI), R9
|
||||
SBBQ 16(SI), R10
|
||||
SBBQ 24(SI), R11
|
||||
|
||||
CMOVQCC AX, R12
|
||||
CMOVQCC AX, R13
|
||||
CMOVQCC AX, R14
|
||||
CMOVQCC AX, R15
|
||||
|
||||
ADDQ R12, R8
|
||||
ADCQ R13, R9
|
||||
ADCQ R14, R10
|
||||
ADCQ R15, R11
|
||||
|
||||
MOVQ c+0(FP), DI
|
||||
storeBlock(R8,R9,R10,R11, 0(DI))
|
||||
RET
|
||||
|
||||
TEXT ·gfpMul(SB),0,$160-24
|
||||
MOVQ a+8(FP), DI
|
||||
MOVQ b+16(FP), SI
|
||||
|
||||
// Jump to a slightly different implementation if MULX isn't supported.
|
||||
CMPB runtime·support_bmi2(SB), $0
|
||||
JE nobmi2Mul
|
||||
|
||||
mulBMI2(0(DI),8(DI),16(DI),24(DI), 0(SI))
|
||||
storeBlock( R8, R9,R10,R11, 0(SP))
|
||||
storeBlock(R12,R13,R14,R15, 32(SP))
|
||||
gfpReduceBMI2()
|
||||
JMP end
|
||||
|
||||
nobmi2Mul:
|
||||
mul(0(DI),8(DI),16(DI),24(DI), 0(SI), 0(SP))
|
||||
gfpReduce(0(SP))
|
||||
|
||||
end:
|
||||
MOVQ c+0(FP), DI
|
||||
storeBlock(R12,R13,R14,R15, 0(DI))
|
||||
RET
|
|
@ -0,0 +1,19 @@
|
|||
// +build !amd64 appengine gccgo
|
||||
|
||||
package bn256
|
||||
|
||||
func gfpNeg(c, a *gfP) {
|
||||
panic("unsupported architecture")
|
||||
}
|
||||
|
||||
func gfpAdd(c, a, b *gfP) {
|
||||
panic("unsupported architecture")
|
||||
}
|
||||
|
||||
func gfpSub(c, a, b *gfP) {
|
||||
panic("unsupported architecture")
|
||||
}
|
||||
|
||||
func gfpMul(c, a, b *gfP) {
|
||||
panic("unsupported architecture")
|
||||
}
|
|
@ -0,0 +1,62 @@
|
|||
// +build amd64,!appengine,!gccgo
|
||||
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"testing"
|
||||
)
|
||||
|
||||
// Tests that negation works the same way on both assembly-optimized and pure Go
|
||||
// implementation.
|
||||
func TestGFpNeg(t *testing.T) {
|
||||
n := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed}
|
||||
w := &gfP{0xfedcba9876543211, 0x0123456789abcdef, 0x2152411021524110, 0x0114251201142512}
|
||||
h := &gfP{}
|
||||
|
||||
gfpNeg(h, n)
|
||||
if *h != *w {
|
||||
t.Errorf("negation mismatch: have %#x, want %#x", *h, *w)
|
||||
}
|
||||
}
|
||||
|
||||
// Tests that addition works the same way on both assembly-optimized and pure Go
|
||||
// implementation.
|
||||
func TestGFpAdd(t *testing.T) {
|
||||
a := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed}
|
||||
b := &gfP{0xfedcba9876543210, 0x0123456789abcdef, 0xfeebdaedfeebdaed, 0xdeadbeefdeadbeef}
|
||||
w := &gfP{0xc3df73e9278302b8, 0x687e956e978e3572, 0x254954275c18417f, 0xad354b6afc67f9b4}
|
||||
h := &gfP{}
|
||||
|
||||
gfpAdd(h, a, b)
|
||||
if *h != *w {
|
||||
t.Errorf("addition mismatch: have %#x, want %#x", *h, *w)
|
||||
}
|
||||
}
|
||||
|
||||
// Tests that subtraction works the same way on both assembly-optimized and pure Go
|
||||
// implementation.
|
||||
func TestGFpSub(t *testing.T) {
|
||||
a := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed}
|
||||
b := &gfP{0xfedcba9876543210, 0x0123456789abcdef, 0xfeebdaedfeebdaed, 0xdeadbeefdeadbeef}
|
||||
w := &gfP{0x02468acf13579bdf, 0xfdb97530eca86420, 0xdfc1e401dfc1e402, 0x203e1bfe203e1bfd}
|
||||
h := &gfP{}
|
||||
|
||||
gfpSub(h, a, b)
|
||||
if *h != *w {
|
||||
t.Errorf("subtraction mismatch: have %#x, want %#x", *h, *w)
|
||||
}
|
||||
}
|
||||
|
||||
// Tests that multiplication works the same way on both assembly-optimized and pure Go
|
||||
// implementation.
|
||||
func TestGFpMul(t *testing.T) {
|
||||
a := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed}
|
||||
b := &gfP{0xfedcba9876543210, 0x0123456789abcdef, 0xfeebdaedfeebdaed, 0xdeadbeefdeadbeef}
|
||||
w := &gfP{0xcbcbd377f7ad22d3, 0x3b89ba5d849379bf, 0x87b61627bd38b6d2, 0xc44052a2a0e654b2}
|
||||
h := &gfP{}
|
||||
|
||||
gfpMul(h, a, b)
|
||||
if *h != *w {
|
||||
t.Errorf("multiplication mismatch: have %#x, want %#x", *h, *w)
|
||||
}
|
||||
}
|
|
@ -0,0 +1,73 @@
|
|||
// +build amd64,!appengine,!gccgo
|
||||
|
||||
package bn256
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"crypto/rand"
|
||||
)
|
||||
|
||||
func TestRandomG2Marshal(t *testing.T) {
|
||||
for i := 0; i < 10; i++ {
|
||||
n, g2, err := RandomG2(rand.Reader)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
continue
|
||||
}
|
||||
t.Logf("%d: %x\n", n, g2.Marshal())
|
||||
}
|
||||
}
|
||||
|
||||
func TestPairings(t *testing.T) {
|
||||
a1 := new(G1).ScalarBaseMult(bigFromBase10("1"))
|
||||
a2 := new(G1).ScalarBaseMult(bigFromBase10("2"))
|
||||
a37 := new(G1).ScalarBaseMult(bigFromBase10("37"))
|
||||
an1 := new(G1).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616"))
|
||||
|
||||
b0 := new(G2).ScalarBaseMult(bigFromBase10("0"))
|
||||
b1 := new(G2).ScalarBaseMult(bigFromBase10("1"))
|
||||
b2 := new(G2).ScalarBaseMult(bigFromBase10("2"))
|
||||
b27 := new(G2).ScalarBaseMult(bigFromBase10("27"))
|
||||
b999 := new(G2).ScalarBaseMult(bigFromBase10("999"))
|
||||
bn1 := new(G2).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616"))
|
||||
|
||||
p1 := Pair(a1, b1)
|
||||
pn1 := Pair(a1, bn1)
|
||||
np1 := Pair(an1, b1)
|
||||
if pn1.String() != np1.String() {
|
||||
t.Error("Pairing mismatch: e(a, -b) != e(-a, b)")
|
||||
}
|
||||
if !PairingCheck([]*G1{a1, an1}, []*G2{b1, b1}) {
|
||||
t.Error("MultiAte check gave false negative!")
|
||||
}
|
||||
p0 := new(GT).Add(p1, pn1)
|
||||
p0_2 := Pair(a1, b0)
|
||||
if p0.String() != p0_2.String() {
|
||||
t.Error("Pairing mismatch: e(a, b) * e(a, -b) != 1")
|
||||
}
|
||||
p0_3 := new(GT).ScalarMult(p1, bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617"))
|
||||
if p0.String() != p0_3.String() {
|
||||
t.Error("Pairing mismatch: e(a, b) has wrong order")
|
||||
}
|
||||
p2 := Pair(a2, b1)
|
||||
p2_2 := Pair(a1, b2)
|
||||
p2_3 := new(GT).ScalarMult(p1, bigFromBase10("2"))
|
||||
if p2.String() != p2_2.String() {
|
||||
t.Error("Pairing mismatch: e(a, b * 2) != e(a * 2, b)")
|
||||
}
|
||||
if p2.String() != p2_3.String() {
|
||||
t.Error("Pairing mismatch: e(a, b * 2) != e(a, b) ** 2")
|
||||
}
|
||||
if p2.String() == p1.String() {
|
||||
t.Error("Pairing is degenerate!")
|
||||
}
|
||||
if PairingCheck([]*G1{a1, a1}, []*G2{b1, b1}) {
|
||||
t.Error("MultiAte check gave false positive!")
|
||||
}
|
||||
p999 := Pair(a37, b27)
|
||||
p999_2 := Pair(a1, b999)
|
||||
if p999.String() != p999_2.String() {
|
||||
t.Error("Pairing mismatch: e(a * 37, b * 27) != e(a, b * 999)")
|
||||
}
|
||||
}
|
|
@ -0,0 +1,181 @@
|
|||
#define mul(a0,a1,a2,a3, rb, stack) \
|
||||
MOVQ a0, AX \
|
||||
MULQ 0+rb \
|
||||
MOVQ AX, R8 \
|
||||
MOVQ DX, R9 \
|
||||
MOVQ a0, AX \
|
||||
MULQ 8+rb \
|
||||
ADDQ AX, R9 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R10 \
|
||||
MOVQ a0, AX \
|
||||
MULQ 16+rb \
|
||||
ADDQ AX, R10 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R11 \
|
||||
MOVQ a0, AX \
|
||||
MULQ 24+rb \
|
||||
ADDQ AX, R11 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R12 \
|
||||
\
|
||||
storeBlock(R8,R9,R10,R11, 0+stack) \
|
||||
MOVQ R12, 32+stack \
|
||||
\
|
||||
MOVQ a1, AX \
|
||||
MULQ 0+rb \
|
||||
MOVQ AX, R8 \
|
||||
MOVQ DX, R9 \
|
||||
MOVQ a1, AX \
|
||||
MULQ 8+rb \
|
||||
ADDQ AX, R9 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R10 \
|
||||
MOVQ a1, AX \
|
||||
MULQ 16+rb \
|
||||
ADDQ AX, R10 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R11 \
|
||||
MOVQ a1, AX \
|
||||
MULQ 24+rb \
|
||||
ADDQ AX, R11 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R12 \
|
||||
\
|
||||
ADDQ 8+stack, R8 \
|
||||
ADCQ 16+stack, R9 \
|
||||
ADCQ 24+stack, R10 \
|
||||
ADCQ 32+stack, R11 \
|
||||
ADCQ $0, R12 \
|
||||
storeBlock(R8,R9,R10,R11, 8+stack) \
|
||||
MOVQ R12, 40+stack \
|
||||
\
|
||||
MOVQ a2, AX \
|
||||
MULQ 0+rb \
|
||||
MOVQ AX, R8 \
|
||||
MOVQ DX, R9 \
|
||||
MOVQ a2, AX \
|
||||
MULQ 8+rb \
|
||||
ADDQ AX, R9 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R10 \
|
||||
MOVQ a2, AX \
|
||||
MULQ 16+rb \
|
||||
ADDQ AX, R10 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R11 \
|
||||
MOVQ a2, AX \
|
||||
MULQ 24+rb \
|
||||
ADDQ AX, R11 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R12 \
|
||||
\
|
||||
ADDQ 16+stack, R8 \
|
||||
ADCQ 24+stack, R9 \
|
||||
ADCQ 32+stack, R10 \
|
||||
ADCQ 40+stack, R11 \
|
||||
ADCQ $0, R12 \
|
||||
storeBlock(R8,R9,R10,R11, 16+stack) \
|
||||
MOVQ R12, 48+stack \
|
||||
\
|
||||
MOVQ a3, AX \
|
||||
MULQ 0+rb \
|
||||
MOVQ AX, R8 \
|
||||
MOVQ DX, R9 \
|
||||
MOVQ a3, AX \
|
||||
MULQ 8+rb \
|
||||
ADDQ AX, R9 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R10 \
|
||||
MOVQ a3, AX \
|
||||
MULQ 16+rb \
|
||||
ADDQ AX, R10 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R11 \
|
||||
MOVQ a3, AX \
|
||||
MULQ 24+rb \
|
||||
ADDQ AX, R11 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R12 \
|
||||
\
|
||||
ADDQ 24+stack, R8 \
|
||||
ADCQ 32+stack, R9 \
|
||||
ADCQ 40+stack, R10 \
|
||||
ADCQ 48+stack, R11 \
|
||||
ADCQ $0, R12 \
|
||||
storeBlock(R8,R9,R10,R11, 24+stack) \
|
||||
MOVQ R12, 56+stack
|
||||
|
||||
#define gfpReduce(stack) \
|
||||
\ // m = (T * N') mod R, store m in R8:R9:R10:R11
|
||||
MOVQ ·np+0(SB), AX \
|
||||
MULQ 0+stack \
|
||||
MOVQ AX, R8 \
|
||||
MOVQ DX, R9 \
|
||||
MOVQ ·np+0(SB), AX \
|
||||
MULQ 8+stack \
|
||||
ADDQ AX, R9 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R10 \
|
||||
MOVQ ·np+0(SB), AX \
|
||||
MULQ 16+stack \
|
||||
ADDQ AX, R10 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R11 \
|
||||
MOVQ ·np+0(SB), AX \
|
||||
MULQ 24+stack \
|
||||
ADDQ AX, R11 \
|
||||
\
|
||||
MOVQ ·np+8(SB), AX \
|
||||
MULQ 0+stack \
|
||||
MOVQ AX, R12 \
|
||||
MOVQ DX, R13 \
|
||||
MOVQ ·np+8(SB), AX \
|
||||
MULQ 8+stack \
|
||||
ADDQ AX, R13 \
|
||||
ADCQ $0, DX \
|
||||
MOVQ DX, R14 \
|
||||
MOVQ ·np+8(SB), AX \
|
||||
MULQ 16+stack \
|
||||
ADDQ AX, R14 \
|
||||
\
|
||||
ADDQ R12, R9 \
|
||||
ADCQ R13, R10 \
|
||||
ADCQ R14, R11 \
|
||||
\
|
||||
MOVQ ·np+16(SB), AX \
|
||||
MULQ 0+stack \
|
||||
MOVQ AX, R12 \
|
||||
MOVQ DX, R13 \
|
||||
MOVQ ·np+16(SB), AX \
|
||||
MULQ 8+stack \
|
||||
ADDQ AX, R13 \
|
||||
\
|
||||
ADDQ R12, R10 \
|
||||
ADCQ R13, R11 \
|
||||
\
|
||||
MOVQ ·np+24(SB), AX \
|
||||
MULQ 0+stack \
|
||||
ADDQ AX, R11 \
|
||||
\
|
||||
storeBlock(R8,R9,R10,R11, 64+stack) \
|
||||
\
|
||||
\ // m * N
|
||||
mul(·p2+0(SB),·p2+8(SB),·p2+16(SB),·p2+24(SB), 64+stack, 96+stack) \
|
||||
\
|
||||
\ // Add the 512-bit intermediate to m*N
|
||||
loadBlock(96+stack, R8,R9,R10,R11) \
|
||||
loadBlock(128+stack, R12,R13,R14,R15) \
|
||||
\
|
||||
MOVQ $0, AX \
|
||||
ADDQ 0+stack, R8 \
|
||||
ADCQ 8+stack, R9 \
|
||||
ADCQ 16+stack, R10 \
|
||||
ADCQ 24+stack, R11 \
|
||||
ADCQ 32+stack, R12 \
|
||||
ADCQ 40+stack, R13 \
|
||||
ADCQ 48+stack, R14 \
|
||||
ADCQ 56+stack, R15 \
|
||||
ADCQ $0, AX \
|
||||
\
|
||||
gfpCarry(R12,R13,R14,R15,AX, R8,R9,R10,R11,BX)
|
|
@ -0,0 +1,112 @@
|
|||
#define mulBMI2(a0,a1,a2,a3, rb) \
|
||||
MOVQ a0, DX \
|
||||
MOVQ $0, R13 \
|
||||
MULXQ 0+rb, R8, R9 \
|
||||
MULXQ 8+rb, AX, R10 \
|
||||
ADDQ AX, R9 \
|
||||
MULXQ 16+rb, AX, R11 \
|
||||
ADCQ AX, R10 \
|
||||
MULXQ 24+rb, AX, R12 \
|
||||
ADCQ AX, R11 \
|
||||
ADCQ $0, R12 \
|
||||
ADCQ $0, R13 \
|
||||
\
|
||||
MOVQ a1, DX \
|
||||
MOVQ $0, R14 \
|
||||
MULXQ 0+rb, AX, BX \
|
||||
ADDQ AX, R9 \
|
||||
ADCQ BX, R10 \
|
||||
MULXQ 16+rb, AX, BX \
|
||||
ADCQ AX, R11 \
|
||||
ADCQ BX, R12 \
|
||||
ADCQ $0, R13 \
|
||||
MULXQ 8+rb, AX, BX \
|
||||
ADDQ AX, R10 \
|
||||
ADCQ BX, R11 \
|
||||
MULXQ 24+rb, AX, BX \
|
||||
ADCQ AX, R12 \
|
||||
ADCQ BX, R13 \
|
||||
ADCQ $0, R14 \
|
||||
\
|
||||
MOVQ a2, DX \
|
||||
MOVQ $0, R15 \
|
||||
MULXQ 0+rb, AX, BX \
|
||||
ADDQ AX, R10 \
|
||||
ADCQ BX, R11 \
|
||||
MULXQ 16+rb, AX, BX \
|
||||
ADCQ AX, R12 \
|
||||
ADCQ BX, R13 \
|
||||
ADCQ $0, R14 \
|
||||
MULXQ 8+rb, AX, BX \
|
||||
ADDQ AX, R11 \
|
||||
ADCQ BX, R12 \
|
||||
MULXQ 24+rb, AX, BX \
|
||||
ADCQ AX, R13 \
|
||||
ADCQ BX, R14 \
|
||||
ADCQ $0, R15 \
|
||||
\
|
||||
MOVQ a3, DX \
|
||||
MULXQ 0+rb, AX, BX \
|
||||
ADDQ AX, R11 \
|
||||
ADCQ BX, R12 \
|
||||
MULXQ 16+rb, AX, BX \
|
||||
ADCQ AX, R13 \
|
||||
ADCQ BX, R14 \
|
||||
ADCQ $0, R15 \
|
||||
MULXQ 8+rb, AX, BX \
|
||||
ADDQ AX, R12 \
|
||||
ADCQ BX, R13 \
|
||||
MULXQ 24+rb, AX, BX \
|
||||
ADCQ AX, R14 \
|
||||
ADCQ BX, R15
|
||||
|
||||
#define gfpReduceBMI2() \
|
||||
\ // m = (T * N') mod R, store m in R8:R9:R10:R11
|
||||
MOVQ ·np+0(SB), DX \
|
||||
MULXQ 0(SP), R8, R9 \
|
||||
MULXQ 8(SP), AX, R10 \
|
||||
ADDQ AX, R9 \
|
||||
MULXQ 16(SP), AX, R11 \
|
||||
ADCQ AX, R10 \
|
||||
MULXQ 24(SP), AX, BX \
|
||||
ADCQ AX, R11 \
|
||||
\
|
||||
MOVQ ·np+8(SB), DX \
|
||||
MULXQ 0(SP), AX, BX \
|
||||
ADDQ AX, R9 \
|
||||
ADCQ BX, R10 \
|
||||
MULXQ 16(SP), AX, BX \
|
||||
ADCQ AX, R11 \
|
||||
MULXQ 8(SP), AX, BX \
|
||||
ADDQ AX, R10 \
|
||||
ADCQ BX, R11 \
|
||||
\
|
||||
MOVQ ·np+16(SB), DX \
|
||||
MULXQ 0(SP), AX, BX \
|
||||
ADDQ AX, R10 \
|
||||
ADCQ BX, R11 \
|
||||
MULXQ 8(SP), AX, BX \
|
||||
ADDQ AX, R11 \
|
||||
\
|
||||
MOVQ ·np+24(SB), DX \
|
||||
MULXQ 0(SP), AX, BX \
|
||||
ADDQ AX, R11 \
|
||||
\
|
||||
storeBlock(R8,R9,R10,R11, 64(SP)) \
|
||||
\
|
||||
\ // m * N
|
||||
mulBMI2(·p2+0(SB),·p2+8(SB),·p2+16(SB),·p2+24(SB), 64(SP)) \
|
||||
\
|
||||
\ // Add the 512-bit intermediate to m*N
|
||||
MOVQ $0, AX \
|
||||
ADDQ 0(SP), R8 \
|
||||
ADCQ 8(SP), R9 \
|
||||
ADCQ 16(SP), R10 \
|
||||
ADCQ 24(SP), R11 \
|
||||
ADCQ 32(SP), R12 \
|
||||
ADCQ 40(SP), R13 \
|
||||
ADCQ 48(SP), R14 \
|
||||
ADCQ 56(SP), R15 \
|
||||
ADCQ $0, AX \
|
||||
\
|
||||
gfpCarry(R12,R13,R14,R15,AX, R8,R9,R10,R11,BX)
|
|
@ -0,0 +1,271 @@
|
|||
package bn256
|
||||
|
||||
func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2) (a, b, c *gfP2, rOut *twistPoint) {
|
||||
// See the mixed addition algorithm from "Faster Computation of the
|
||||
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
|
||||
B := (&gfP2{}).Mul(&p.x, &r.t)
|
||||
|
||||
D := (&gfP2{}).Add(&p.y, &r.z)
|
||||
D.Square(D).Sub(D, r2).Sub(D, &r.t).Mul(D, &r.t)
|
||||
|
||||
H := (&gfP2{}).Sub(B, &r.x)
|
||||
I := (&gfP2{}).Square(H)
|
||||
|
||||
E := (&gfP2{}).Add(I, I)
|
||||
E.Add(E, E)
|
||||
|
||||
J := (&gfP2{}).Mul(H, E)
|
||||
|
||||
L1 := (&gfP2{}).Sub(D, &r.y)
|
||||
L1.Sub(L1, &r.y)
|
||||
|
||||
V := (&gfP2{}).Mul(&r.x, E)
|
||||
|
||||
rOut = &twistPoint{}
|
||||
rOut.x.Square(L1).Sub(&rOut.x, J).Sub(&rOut.x, V).Sub(&rOut.x, V)
|
||||
|
||||
rOut.z.Add(&r.z, H).Square(&rOut.z).Sub(&rOut.z, &r.t).Sub(&rOut.z, I)
|
||||
|
||||
t := (&gfP2{}).Sub(V, &rOut.x)
|
||||
t.Mul(t, L1)
|
||||
t2 := (&gfP2{}).Mul(&r.y, J)
|
||||
t2.Add(t2, t2)
|
||||
rOut.y.Sub(t, t2)
|
||||
|
||||
rOut.t.Square(&rOut.z)
|
||||
|
||||
t.Add(&p.y, &rOut.z).Square(t).Sub(t, r2).Sub(t, &rOut.t)
|
||||
|
||||
t2.Mul(L1, &p.x)
|
||||
t2.Add(t2, t2)
|
||||
a = (&gfP2{}).Sub(t2, t)
|
||||
|
||||
c = (&gfP2{}).MulScalar(&rOut.z, &q.y)
|
||||
c.Add(c, c)
|
||||
|
||||
b = (&gfP2{}).Neg(L1)
|
||||
b.MulScalar(b, &q.x).Add(b, b)
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func lineFunctionDouble(r *twistPoint, q *curvePoint) (a, b, c *gfP2, rOut *twistPoint) {
|
||||
// See the doubling algorithm for a=0 from "Faster Computation of the
|
||||
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
|
||||
A := (&gfP2{}).Square(&r.x)
|
||||
B := (&gfP2{}).Square(&r.y)
|
||||
C := (&gfP2{}).Square(B)
|
||||
|
||||
D := (&gfP2{}).Add(&r.x, B)
|
||||
D.Square(D).Sub(D, A).Sub(D, C).Add(D, D)
|
||||
|
||||
E := (&gfP2{}).Add(A, A)
|
||||
E.Add(E, A)
|
||||
|
||||
G := (&gfP2{}).Square(E)
|
||||
|
||||
rOut = &twistPoint{}
|
||||
rOut.x.Sub(G, D).Sub(&rOut.x, D)
|
||||
|
||||
rOut.z.Add(&r.y, &r.z).Square(&rOut.z).Sub(&rOut.z, B).Sub(&rOut.z, &r.t)
|
||||
|
||||
rOut.y.Sub(D, &rOut.x).Mul(&rOut.y, E)
|
||||
t := (&gfP2{}).Add(C, C)
|
||||
t.Add(t, t).Add(t, t)
|
||||
rOut.y.Sub(&rOut.y, t)
|
||||
|
||||
rOut.t.Square(&rOut.z)
|
||||
|
||||
t.Mul(E, &r.t).Add(t, t)
|
||||
b = (&gfP2{}).Neg(t)
|
||||
b.MulScalar(b, &q.x)
|
||||
|
||||
a = (&gfP2{}).Add(&r.x, E)
|
||||
a.Square(a).Sub(a, A).Sub(a, G)
|
||||
t.Add(B, B).Add(t, t)
|
||||
a.Sub(a, t)
|
||||
|
||||
c = (&gfP2{}).Mul(&rOut.z, &r.t)
|
||||
c.Add(c, c).MulScalar(c, &q.y)
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func mulLine(ret *gfP12, a, b, c *gfP2) {
|
||||
a2 := &gfP6{}
|
||||
a2.y.Set(a)
|
||||
a2.z.Set(b)
|
||||
a2.Mul(a2, &ret.x)
|
||||
t3 := (&gfP6{}).MulScalar(&ret.y, c)
|
||||
|
||||
t := (&gfP2{}).Add(b, c)
|
||||
t2 := &gfP6{}
|
||||
t2.y.Set(a)
|
||||
t2.z.Set(t)
|
||||
ret.x.Add(&ret.x, &ret.y)
|
||||
|
||||
ret.y.Set(t3)
|
||||
|
||||
ret.x.Mul(&ret.x, t2).Sub(&ret.x, a2).Sub(&ret.x, &ret.y)
|
||||
a2.MulTau(a2)
|
||||
ret.y.Add(&ret.y, a2)
|
||||
}
|
||||
|
||||
// sixuPlus2NAF is 6u+2 in non-adjacent form.
|
||||
var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0,
|
||||
0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1,
|
||||
1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1,
|
||||
1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1}
|
||||
|
||||
// miller implements the Miller loop for calculating the Optimal Ate pairing.
|
||||
// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
|
||||
func miller(q *twistPoint, p *curvePoint) *gfP12 {
|
||||
ret := (&gfP12{}).SetOne()
|
||||
|
||||
aAffine := &twistPoint{}
|
||||
aAffine.Set(q)
|
||||
aAffine.MakeAffine()
|
||||
|
||||
bAffine := &curvePoint{}
|
||||
bAffine.Set(p)
|
||||
bAffine.MakeAffine()
|
||||
|
||||
minusA := &twistPoint{}
|
||||
minusA.Neg(aAffine)
|
||||
|
||||
r := &twistPoint{}
|
||||
r.Set(aAffine)
|
||||
|
||||
r2 := (&gfP2{}).Square(&aAffine.y)
|
||||
|
||||
for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
|
||||
a, b, c, newR := lineFunctionDouble(r, bAffine)
|
||||
if i != len(sixuPlus2NAF)-1 {
|
||||
ret.Square(ret)
|
||||
}
|
||||
|
||||
mulLine(ret, a, b, c)
|
||||
r = newR
|
||||
|
||||
switch sixuPlus2NAF[i-1] {
|
||||
case 1:
|
||||
a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2)
|
||||
case -1:
|
||||
a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2)
|
||||
default:
|
||||
continue
|
||||
}
|
||||
|
||||
mulLine(ret, a, b, c)
|
||||
r = newR
|
||||
}
|
||||
|
||||
// In order to calculate Q1 we have to convert q from the sextic twist
|
||||
// to the full GF(p^12) group, apply the Frobenius there, and convert
|
||||
// back.
|
||||
//
|
||||
// The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
|
||||
// x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
|
||||
// where x̄ is the conjugate of x. If we are going to apply the inverse
|
||||
// isomorphism we need a value with a single coefficient of ω² so we
|
||||
// rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
|
||||
// p, 2p-2 is a multiple of six. Therefore we can rewrite as
|
||||
// x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
|
||||
// ω².
|
||||
//
|
||||
// A similar argument can be made for the y value.
|
||||
|
||||
q1 := &twistPoint{}
|
||||
q1.x.Conjugate(&aAffine.x).Mul(&q1.x, xiToPMinus1Over3)
|
||||
q1.y.Conjugate(&aAffine.y).Mul(&q1.y, xiToPMinus1Over2)
|
||||
q1.z.SetOne()
|
||||
q1.t.SetOne()
|
||||
|
||||
// For Q2 we are applying the p² Frobenius. The two conjugations cancel
|
||||
// out and we are left only with the factors from the isomorphism. In
|
||||
// the case of x, we end up with a pure number which is why
|
||||
// xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
|
||||
// ignore this to end up with -Q2.
|
||||
|
||||
minusQ2 := &twistPoint{}
|
||||
minusQ2.x.MulScalar(&aAffine.x, xiToPSquaredMinus1Over3)
|
||||
minusQ2.y.Set(&aAffine.y)
|
||||
minusQ2.z.SetOne()
|
||||
minusQ2.t.SetOne()
|
||||
|
||||
r2.Square(&q1.y)
|
||||
a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2)
|
||||
mulLine(ret, a, b, c)
|
||||
r = newR
|
||||
|
||||
r2.Square(&minusQ2.y)
|
||||
a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2)
|
||||
mulLine(ret, a, b, c)
|
||||
r = newR
|
||||
|
||||
return ret
|
||||
}
|
||||
|
||||
// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
|
||||
// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
|
||||
// http://cryptojedi.org/papers/dclxvi-20100714.pdf)
|
||||
func finalExponentiation(in *gfP12) *gfP12 {
|
||||
t1 := &gfP12{}
|
||||
|
||||
// This is the p^6-Frobenius
|
||||
t1.x.Neg(&in.x)
|
||||
t1.y.Set(&in.y)
|
||||
|
||||
inv := &gfP12{}
|
||||
inv.Invert(in)
|
||||
t1.Mul(t1, inv)
|
||||
|
||||
t2 := (&gfP12{}).FrobeniusP2(t1)
|
||||
t1.Mul(t1, t2)
|
||||
|
||||
fp := (&gfP12{}).Frobenius(t1)
|
||||
fp2 := (&gfP12{}).FrobeniusP2(t1)
|
||||
fp3 := (&gfP12{}).Frobenius(fp2)
|
||||
|
||||
fu := (&gfP12{}).Exp(t1, u)
|
||||
fu2 := (&gfP12{}).Exp(fu, u)
|
||||
fu3 := (&gfP12{}).Exp(fu2, u)
|
||||
|
||||
y3 := (&gfP12{}).Frobenius(fu)
|
||||
fu2p := (&gfP12{}).Frobenius(fu2)
|
||||
fu3p := (&gfP12{}).Frobenius(fu3)
|
||||
y2 := (&gfP12{}).FrobeniusP2(fu2)
|
||||
|
||||
y0 := &gfP12{}
|
||||
y0.Mul(fp, fp2).Mul(y0, fp3)
|
||||
|
||||
y1 := (&gfP12{}).Conjugate(t1)
|
||||
y5 := (&gfP12{}).Conjugate(fu2)
|
||||
y3.Conjugate(y3)
|
||||
y4 := (&gfP12{}).Mul(fu, fu2p)
|
||||
y4.Conjugate(y4)
|
||||
|
||||
y6 := (&gfP12{}).Mul(fu3, fu3p)
|
||||
y6.Conjugate(y6)
|
||||
|
||||
t0 := (&gfP12{}).Square(y6)
|
||||
t0.Mul(t0, y4).Mul(t0, y5)
|
||||
t1.Mul(y3, y5).Mul(t1, t0)
|
||||
t0.Mul(t0, y2)
|
||||
t1.Square(t1).Mul(t1, t0).Square(t1)
|
||||
t0.Mul(t1, y1)
|
||||
t1.Mul(t1, y0)
|
||||
t0.Square(t0).Mul(t0, t1)
|
||||
|
||||
return t0
|
||||
}
|
||||
|
||||
func optimalAte(a *twistPoint, b *curvePoint) *gfP12 {
|
||||
e := miller(a, b)
|
||||
ret := finalExponentiation(e)
|
||||
|
||||
if a.IsInfinity() || b.IsInfinity() {
|
||||
ret.SetOne()
|
||||
}
|
||||
return ret
|
||||
}
|
|
@ -0,0 +1,204 @@
|
|||
package bn256
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
|
||||
// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
|
||||
// n-torsion points of this curve over GF(p²) (where n = Order)
|
||||
type twistPoint struct {
|
||||
x, y, z, t gfP2
|
||||
}
|
||||
|
||||
var twistB = &gfP2{
|
||||
gfP{0x38e7ecccd1dcff67, 0x65f0b37d93ce0d3e, 0xd749d0dd22ac00aa, 0x0141b9ce4a688d4d},
|
||||
gfP{0x3bf938e377b802a8, 0x020b1b273633535d, 0x26b7edf049755260, 0x2514c6324384a86d},
|
||||
}
|
||||
|
||||
// twistGen is the generator of group G₂.
|
||||
var twistGen = &twistPoint{
|
||||
gfP2{
|
||||
gfP{0xafb4737da84c6140, 0x6043dd5a5802d8c4, 0x09e950fc52a02f86, 0x14fef0833aea7b6b},
|
||||
gfP{0x8e83b5d102bc2026, 0xdceb1935497b0172, 0xfbb8264797811adf, 0x19573841af96503b},
|
||||
},
|
||||
gfP2{
|
||||
gfP{0x64095b56c71856ee, 0xdc57f922327d3cbb, 0x55f935be33351076, 0x0da4a0e693fd6482},
|
||||
gfP{0x619dfa9d886be9f6, 0xfe7fd297f59e9b78, 0xff9e1a62231b7dfe, 0x28fd7eebae9e4206},
|
||||
},
|
||||
gfP2{*newGFp(0), *newGFp(1)},
|
||||
gfP2{*newGFp(0), *newGFp(1)},
|
||||
}
|
||||
|
||||
func (c *twistPoint) String() string {
|
||||
c.MakeAffine()
|
||||
x, y := gfP2Decode(&c.x), gfP2Decode(&c.y)
|
||||
return "(" + x.String() + ", " + y.String() + ")"
|
||||
}
|
||||
|
||||
func (c *twistPoint) Set(a *twistPoint) {
|
||||
c.x.Set(&a.x)
|
||||
c.y.Set(&a.y)
|
||||
c.z.Set(&a.z)
|
||||
c.t.Set(&a.t)
|
||||
}
|
||||
|
||||
// IsOnCurve returns true iff c is on the curve.
|
||||
func (c *twistPoint) IsOnCurve() bool {
|
||||
c.MakeAffine()
|
||||
if c.IsInfinity() {
|
||||
return true
|
||||
}
|
||||
|
||||
y2, x3 := &gfP2{}, &gfP2{}
|
||||
y2.Square(&c.y)
|
||||
x3.Square(&c.x).Mul(x3, &c.x).Add(x3, twistB)
|
||||
|
||||
if *y2 != *x3 {
|
||||
return false
|
||||
}
|
||||
cneg := &twistPoint{}
|
||||
cneg.Mul(c, Order)
|
||||
return cneg.z.IsZero()
|
||||
}
|
||||
|
||||
func (c *twistPoint) SetInfinity() {
|
||||
c.x.SetZero()
|
||||
c.y.SetOne()
|
||||
c.z.SetZero()
|
||||
c.t.SetZero()
|
||||
}
|
||||
|
||||
func (c *twistPoint) IsInfinity() bool {
|
||||
return c.z.IsZero()
|
||||
}
|
||||
|
||||
func (c *twistPoint) Add(a, b *twistPoint) {
|
||||
// For additional comments, see the same function in curve.go.
|
||||
|
||||
if a.IsInfinity() {
|
||||
c.Set(b)
|
||||
return
|
||||
}
|
||||
if b.IsInfinity() {
|
||||
c.Set(a)
|
||||
return
|
||||
}
|
||||
|
||||
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
|
||||
z12 := (&gfP2{}).Square(&a.z)
|
||||
z22 := (&gfP2{}).Square(&b.z)
|
||||
u1 := (&gfP2{}).Mul(&a.x, z22)
|
||||
u2 := (&gfP2{}).Mul(&b.x, z12)
|
||||
|
||||
t := (&gfP2{}).Mul(&b.z, z22)
|
||||
s1 := (&gfP2{}).Mul(&a.y, t)
|
||||
|
||||
t.Mul(&a.z, z12)
|
||||
s2 := (&gfP2{}).Mul(&b.y, t)
|
||||
|
||||
h := (&gfP2{}).Sub(u2, u1)
|
||||
xEqual := h.IsZero()
|
||||
|
||||
t.Add(h, h)
|
||||
i := (&gfP2{}).Square(t)
|
||||
j := (&gfP2{}).Mul(h, i)
|
||||
|
||||
t.Sub(s2, s1)
|
||||
yEqual := t.IsZero()
|
||||
if xEqual && yEqual {
|
||||
c.Double(a)
|
||||
return
|
||||
}
|
||||
r := (&gfP2{}).Add(t, t)
|
||||
|
||||
v := (&gfP2{}).Mul(u1, i)
|
||||
|
||||
t4 := (&gfP2{}).Square(r)
|
||||
t.Add(v, v)
|
||||
t6 := (&gfP2{}).Sub(t4, j)
|
||||
c.x.Sub(t6, t)
|
||||
|
||||
t.Sub(v, &c.x) // t7
|
||||
t4.Mul(s1, j) // t8
|
||||
t6.Add(t4, t4) // t9
|
||||
t4.Mul(r, t) // t10
|
||||
c.y.Sub(t4, t6)
|
||||
|
||||
t.Add(&a.z, &b.z) // t11
|
||||
t4.Square(t) // t12
|
||||
t.Sub(t4, z12) // t13
|
||||
t4.Sub(t, z22) // t14
|
||||
c.z.Mul(t4, h)
|
||||
}
|
||||
|
||||
func (c *twistPoint) Double(a *twistPoint) {
|
||||
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
|
||||
A := (&gfP2{}).Square(&a.x)
|
||||
B := (&gfP2{}).Square(&a.y)
|
||||
C := (&gfP2{}).Square(B)
|
||||
|
||||
t := (&gfP2{}).Add(&a.x, B)
|
||||
t2 := (&gfP2{}).Square(t)
|
||||
t.Sub(t2, A)
|
||||
t2.Sub(t, C)
|
||||
d := (&gfP2{}).Add(t2, t2)
|
||||
t.Add(A, A)
|
||||
e := (&gfP2{}).Add(t, A)
|
||||
f := (&gfP2{}).Square(e)
|
||||
|
||||
t.Add(d, d)
|
||||
c.x.Sub(f, t)
|
||||
|
||||
t.Add(C, C)
|
||||
t2.Add(t, t)
|
||||
t.Add(t2, t2)
|
||||
c.y.Sub(d, &c.x)
|
||||
t2.Mul(e, &c.y)
|
||||
c.y.Sub(t2, t)
|
||||
|
||||
t.Mul(&a.y, &a.z)
|
||||
c.z.Add(t, t)
|
||||
}
|
||||
|
||||
func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int) {
|
||||
sum, t := &twistPoint{}, &twistPoint{}
|
||||
|
||||
for i := scalar.BitLen(); i >= 0; i-- {
|
||||
t.Double(sum)
|
||||
if scalar.Bit(i) != 0 {
|
||||
sum.Add(t, a)
|
||||
} else {
|
||||
sum.Set(t)
|
||||
}
|
||||
}
|
||||
|
||||
c.Set(sum)
|
||||
}
|
||||
|
||||
func (c *twistPoint) MakeAffine() {
|
||||
if c.z.IsOne() {
|
||||
return
|
||||
} else if c.z.IsZero() {
|
||||
c.x.SetZero()
|
||||
c.y.SetOne()
|
||||
c.t.SetZero()
|
||||
return
|
||||
}
|
||||
|
||||
zInv := (&gfP2{}).Invert(&c.z)
|
||||
t := (&gfP2{}).Mul(&c.y, zInv)
|
||||
zInv2 := (&gfP2{}).Square(zInv)
|
||||
c.y.Mul(t, zInv2)
|
||||
t.Mul(&c.x, zInv2)
|
||||
c.x.Set(t)
|
||||
c.z.SetOne()
|
||||
c.t.SetOne()
|
||||
}
|
||||
|
||||
func (c *twistPoint) Neg(a *twistPoint) {
|
||||
c.x.Set(&a.x)
|
||||
c.y.Neg(&a.y)
|
||||
c.z.Set(&a.z)
|
||||
c.t.SetZero()
|
||||
}
|
|
@ -18,6 +18,7 @@ package bn256
|
|||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"errors"
|
||||
"io"
|
||||
"math/big"
|
||||
)
|
||||
|
@ -115,21 +116,25 @@ func (n *G1) Marshal() []byte {
|
|||
|
||||
// Unmarshal sets e to the result of converting the output of Marshal back into
|
||||
// a group element and then returns e.
|
||||
func (e *G1) Unmarshal(m []byte) (*G1, bool) {
|
||||
func (e *G1) Unmarshal(m []byte) ([]byte, error) {
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
|
||||
if len(m) != 2*numBytes {
|
||||
return nil, false
|
||||
return nil, errors.New("bn256: not enough data")
|
||||
}
|
||||
|
||||
// Unmarshal the points and check their caps
|
||||
if e.p == nil {
|
||||
e.p = newCurvePoint(nil)
|
||||
}
|
||||
|
||||
e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
|
||||
if e.p.x.Cmp(P) >= 0 {
|
||||
return nil, errors.New("bn256: coordinate exceeds modulus")
|
||||
}
|
||||
e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
|
||||
|
||||
if e.p.y.Cmp(P) >= 0 {
|
||||
return nil, errors.New("bn256: coordinate exceeds modulus")
|
||||
}
|
||||
// Ensure the point is on the curve
|
||||
if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
|
||||
// This is the point at infinity.
|
||||
e.p.y.SetInt64(1)
|
||||
|
@ -140,11 +145,10 @@ func (e *G1) Unmarshal(m []byte) (*G1, bool) {
|
|||
e.p.t.SetInt64(1)
|
||||
|
||||
if !e.p.IsOnCurve() {
|
||||
return nil, false
|
||||
return nil, errors.New("bn256: malformed point")
|
||||
}
|
||||
}
|
||||
|
||||
return e, true
|
||||
return m[2*numBytes:], nil
|
||||
}
|
||||
|
||||
// G2 is an abstract cyclic group. The zero value is suitable for use as the
|
||||
|
@ -233,23 +237,33 @@ func (n *G2) Marshal() []byte {
|
|||
|
||||
// Unmarshal sets e to the result of converting the output of Marshal back into
|
||||
// a group element and then returns e.
|
||||
func (e *G2) Unmarshal(m []byte) (*G2, bool) {
|
||||
func (e *G2) Unmarshal(m []byte) ([]byte, error) {
|
||||
// Each value is a 256-bit number.
|
||||
const numBytes = 256 / 8
|
||||
|
||||
if len(m) != 4*numBytes {
|
||||
return nil, false
|
||||
return nil, errors.New("bn256: not enough data")
|
||||
}
|
||||
|
||||
// Unmarshal the points and check their caps
|
||||
if e.p == nil {
|
||||
e.p = newTwistPoint(nil)
|
||||
}
|
||||
|
||||
e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
|
||||
if e.p.x.x.Cmp(P) >= 0 {
|
||||
return nil, errors.New("bn256: coordinate exceeds modulus")
|
||||
}
|
||||
e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
|
||||
if e.p.x.y.Cmp(P) >= 0 {
|
||||
return nil, errors.New("bn256: coordinate exceeds modulus")
|
||||
}
|
||||
e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
|
||||
if e.p.y.x.Cmp(P) >= 0 {
|
||||
return nil, errors.New("bn256: coordinate exceeds modulus")
|
||||
}
|
||||
e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
|
||||
|
||||
if e.p.y.y.Cmp(P) >= 0 {
|
||||
return nil, errors.New("bn256: coordinate exceeds modulus")
|
||||
}
|
||||
// Ensure the point is on the curve
|
||||
if e.p.x.x.Sign() == 0 &&
|
||||
e.p.x.y.Sign() == 0 &&
|
||||
e.p.y.x.Sign() == 0 &&
|
||||
|
@ -263,11 +277,10 @@ func (e *G2) Unmarshal(m []byte) (*G2, bool) {
|
|||
e.p.t.SetOne()
|
||||
|
||||
if !e.p.IsOnCurve() {
|
||||
return nil, false
|
||||
return nil, errors.New("bn256: malformed point")
|
||||
}
|
||||
}
|
||||
|
||||
return e, true
|
||||
return m[4*numBytes:], nil
|
||||
}
|
||||
|
||||
// GT is an abstract cyclic group. The zero value is suitable for use as the
|
|
@ -219,15 +219,16 @@ func TestBilinearity(t *testing.T) {
|
|||
func TestG1Marshal(t *testing.T) {
|
||||
g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
|
||||
form := g.Marshal()
|
||||
_, ok := new(G1).Unmarshal(form)
|
||||
if !ok {
|
||||
_, err := new(G1).Unmarshal(form)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to unmarshal")
|
||||
}
|
||||
|
||||
g.ScalarBaseMult(Order)
|
||||
form = g.Marshal()
|
||||
g2, ok := new(G1).Unmarshal(form)
|
||||
if !ok {
|
||||
|
||||
g2 := new(G1)
|
||||
if _, err = g2.Unmarshal(form); err != nil {
|
||||
t.Fatalf("failed to unmarshal ∞")
|
||||
}
|
||||
if !g2.p.IsInfinity() {
|
||||
|
@ -238,15 +239,15 @@ func TestG1Marshal(t *testing.T) {
|
|||
func TestG2Marshal(t *testing.T) {
|
||||
g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
|
||||
form := g.Marshal()
|
||||
_, ok := new(G2).Unmarshal(form)
|
||||
if !ok {
|
||||
_, err := new(G2).Unmarshal(form)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to unmarshal")
|
||||
}
|
||||
|
||||
g.ScalarBaseMult(Order)
|
||||
form = g.Marshal()
|
||||
g2, ok := new(G2).Unmarshal(form)
|
||||
if !ok {
|
||||
g2 := new(G2)
|
||||
if _, err = g2.Unmarshal(form); err != nil {
|
||||
t.Fatalf("failed to unmarshal ∞")
|
||||
}
|
||||
if !g2.p.IsInfinity() {
|
||||
|
@ -273,12 +274,18 @@ func TestTripartiteDiffieHellman(t *testing.T) {
|
|||
b, _ := rand.Int(rand.Reader, Order)
|
||||
c, _ := rand.Int(rand.Reader, Order)
|
||||
|
||||
pa, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(a).Marshal())
|
||||
qa, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(a).Marshal())
|
||||
pb, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(b).Marshal())
|
||||
qb, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(b).Marshal())
|
||||
pc, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(c).Marshal())
|
||||
qc, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(c).Marshal())
|
||||
pa := new(G1)
|
||||
pa.Unmarshal(new(G1).ScalarBaseMult(a).Marshal())
|
||||
qa := new(G2)
|
||||
qa.Unmarshal(new(G2).ScalarBaseMult(a).Marshal())
|
||||
pb := new(G1)
|
||||
pb.Unmarshal(new(G1).ScalarBaseMult(b).Marshal())
|
||||
qb := new(G2)
|
||||
qb.Unmarshal(new(G2).ScalarBaseMult(b).Marshal())
|
||||
pc := new(G1)
|
||||
pc.Unmarshal(new(G1).ScalarBaseMult(c).Marshal())
|
||||
qc := new(G2)
|
||||
qc.Unmarshal(new(G2).ScalarBaseMult(c).Marshal())
|
||||
|
||||
k1 := Pair(pb, qc)
|
||||
k1.ScalarMult(k1, a)
|
|
@ -76,7 +76,13 @@ func (c *twistPoint) IsOnCurve() bool {
|
|||
yy.Sub(yy, xxx)
|
||||
yy.Sub(yy, twistB)
|
||||
yy.Minimal()
|
||||
return yy.x.Sign() == 0 && yy.y.Sign() == 0
|
||||
|
||||
if yy.x.Sign() != 0 || yy.y.Sign() != 0 {
|
||||
return false
|
||||
}
|
||||
cneg := newTwistPoint(pool)
|
||||
cneg.Mul(c, Order, pool)
|
||||
return cneg.z.IsZero()
|
||||
}
|
||||
|
||||
func (c *twistPoint) SetInfinity() {
|
Loading…
Reference in New Issue