mirror of https://github.com/status-im/op-geth.git
Add 'crypto/ecies/' from commit '7c0f4a9b18d992166452d8cd32caaefd92b26386'
git-subtree-dir: crypto/ecies git-subtree-mainline:49a739c8d6
git-subtree-split:7c0f4a9b18
This commit is contained in:
commit
396f1a0a33
|
@ -0,0 +1,24 @@
|
|||
# Compiled Object files, Static and Dynamic libs (Shared Objects)
|
||||
*.o
|
||||
*.a
|
||||
*.so
|
||||
|
||||
# Folders
|
||||
_obj
|
||||
_test
|
||||
|
||||
# Architecture specific extensions/prefixes
|
||||
*.[568vq]
|
||||
[568vq].out
|
||||
|
||||
*.cgo1.go
|
||||
*.cgo2.c
|
||||
_cgo_defun.c
|
||||
_cgo_gotypes.go
|
||||
_cgo_export.*
|
||||
|
||||
_testmain.go
|
||||
|
||||
*.exe
|
||||
|
||||
*~
|
|
@ -0,0 +1,28 @@
|
|||
Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
|
||||
Copyright (c) 2012 The Go Authors. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
* Neither the name of Google Inc. nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
@ -0,0 +1,94 @@
|
|||
# NOTE
|
||||
|
||||
This implementation is direct fork of Kylom's implementation. I claim no authorship over this code apart from some minor modifications.
|
||||
Please be aware this code **has not yet been reviewed**.
|
||||
|
||||
ecies implements the Elliptic Curve Integrated Encryption Scheme.
|
||||
|
||||
The package is designed to be compliant with the appropriate NIST
|
||||
standards, and therefore doesn't support the full SEC 1 algorithm set.
|
||||
|
||||
|
||||
STATUS:
|
||||
|
||||
ecies should be ready for use. The ASN.1 support is only complete so
|
||||
far as to supported the listed algorithms before.
|
||||
|
||||
|
||||
CAVEATS
|
||||
|
||||
1. CMAC support is currently not present.
|
||||
|
||||
|
||||
SUPPORTED ALGORITHMS
|
||||
|
||||
SYMMETRIC CIPHERS HASH FUNCTIONS
|
||||
AES128 SHA-1
|
||||
AES192 SHA-224
|
||||
AES256 SHA-256
|
||||
SHA-384
|
||||
ELLIPTIC CURVE SHA-512
|
||||
P256
|
||||
P384 KEY DERIVATION FUNCTION
|
||||
P521 NIST SP 800-65a Concatenation KDF
|
||||
|
||||
Curve P224 isn't supported because it does not provide a minimum security
|
||||
level of AES128 with HMAC-SHA1. According to NIST SP 800-57, the security
|
||||
level of P224 is 112 bits of security. Symmetric ciphers use CTR-mode;
|
||||
message tags are computed using HMAC-<HASH> function.
|
||||
|
||||
|
||||
CURVE SELECTION
|
||||
|
||||
According to NIST SP 800-57, the following curves should be selected:
|
||||
|
||||
+----------------+-------+
|
||||
| SYMMETRIC SIZE | CURVE |
|
||||
+----------------+-------+
|
||||
| 128-bit | P256 |
|
||||
+----------------+-------+
|
||||
| 192-bit | P384 |
|
||||
+----------------+-------+
|
||||
| 256-bit | P521 |
|
||||
+----------------+-------+
|
||||
|
||||
|
||||
TODO
|
||||
|
||||
1. Look at serialising the parameters with the SEC 1 ASN.1 module.
|
||||
2. Validate ASN.1 formats with SEC 1.
|
||||
|
||||
|
||||
TEST VECTORS
|
||||
|
||||
The only test vectors I've found so far date from 1993, predating AES
|
||||
and including only 163-bit curves. Therefore, there are no published
|
||||
test vectors to compare to.
|
||||
|
||||
|
||||
LICENSE
|
||||
|
||||
ecies is released under the same license as the Go source code. See the
|
||||
LICENSE file for details.
|
||||
|
||||
|
||||
REFERENCES
|
||||
|
||||
* SEC (Standard for Efficient Cryptography) 1, version 2.0: Elliptic
|
||||
Curve Cryptography; Certicom, May 2009.
|
||||
http://www.secg.org/sec1-v2.pdf
|
||||
* GEC (Guidelines for Efficient Cryptography) 2, version 0.3: Test
|
||||
Vectors for SEC 1; Certicom, September 1999.
|
||||
http://read.pudn.com/downloads168/doc/772358/TestVectorsforSEC%201-gec2.pdf
|
||||
* NIST SP 800-56a: Recommendation for Pair-Wise Key Establishment Schemes
|
||||
Using Discrete Logarithm Cryptography. National Institute of Standards
|
||||
and Technology, May 2007.
|
||||
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
|
||||
* Suite B Implementer’s Guide to NIST SP 800-56A. National Security
|
||||
Agency, July 28, 2009.
|
||||
http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf
|
||||
* NIST SP 800-57: Recommendation for Key Management – Part 1: General
|
||||
(Revision 3). National Institute of Standards and Technology, July
|
||||
2012.
|
||||
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
|
||||
|
|
@ -0,0 +1,556 @@
|
|||
package ecies
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto"
|
||||
"crypto/elliptic"
|
||||
"crypto/sha1"
|
||||
"crypto/sha256"
|
||||
"crypto/sha512"
|
||||
"encoding/asn1"
|
||||
"encoding/pem"
|
||||
"fmt"
|
||||
"hash"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
var (
|
||||
secgScheme = []int{1, 3, 132, 1}
|
||||
shaScheme = []int{2, 16, 840, 1, 101, 3, 4, 2}
|
||||
ansiX962Scheme = []int{1, 2, 840, 10045}
|
||||
x963Scheme = []int{1, 2, 840, 63, 0}
|
||||
)
|
||||
|
||||
var ErrInvalidPrivateKey = fmt.Errorf("ecies: invalid private key")
|
||||
|
||||
func doScheme(base, v []int) asn1.ObjectIdentifier {
|
||||
var oidInts asn1.ObjectIdentifier
|
||||
oidInts = append(oidInts, base...)
|
||||
return append(oidInts, v...)
|
||||
}
|
||||
|
||||
// curve OID code taken from crypto/x509, including
|
||||
// - oidNameCurve*
|
||||
// - namedCurveFromOID
|
||||
// - oidFromNamedCurve
|
||||
// RFC 5480, 2.1.1.1. Named Curve
|
||||
//
|
||||
// secp224r1 OBJECT IDENTIFIER ::= {
|
||||
// iso(1) identified-organization(3) certicom(132) curve(0) 33 }
|
||||
//
|
||||
// secp256r1 OBJECT IDENTIFIER ::= {
|
||||
// iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
|
||||
// prime(1) 7 }
|
||||
//
|
||||
// secp384r1 OBJECT IDENTIFIER ::= {
|
||||
// iso(1) identified-organization(3) certicom(132) curve(0) 34 }
|
||||
//
|
||||
// secp521r1 OBJECT IDENTIFIER ::= {
|
||||
// iso(1) identified-organization(3) certicom(132) curve(0) 35 }
|
||||
//
|
||||
// NB: secp256r1 is equivalent to prime256v1
|
||||
type secgNamedCurve asn1.ObjectIdentifier
|
||||
|
||||
var (
|
||||
secgNamedCurveP224 = secgNamedCurve{1, 3, 132, 0, 33}
|
||||
secgNamedCurveP256 = secgNamedCurve{1, 2, 840, 10045, 3, 1, 7}
|
||||
secgNamedCurveP384 = secgNamedCurve{1, 3, 132, 0, 34}
|
||||
secgNamedCurveP521 = secgNamedCurve{1, 3, 132, 0, 35}
|
||||
rawCurveP224 = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 3}
|
||||
rawCurveP256 = []byte{6, 8, 4, 2, 1, 3, 4, 7, 2, 2, 0, 6, 6, 1, 3, 1, 7}
|
||||
rawCurveP384 = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 4}
|
||||
rawCurveP521 = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 5}
|
||||
)
|
||||
|
||||
func rawCurve(curve elliptic.Curve) []byte {
|
||||
switch curve {
|
||||
case elliptic.P224():
|
||||
return rawCurveP224
|
||||
case elliptic.P256():
|
||||
return rawCurveP256
|
||||
case elliptic.P384():
|
||||
return rawCurveP384
|
||||
case elliptic.P521():
|
||||
return rawCurveP521
|
||||
default:
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
func (curve secgNamedCurve) Equal(curve2 secgNamedCurve) bool {
|
||||
if len(curve) != len(curve2) {
|
||||
return false
|
||||
}
|
||||
for i, _ := range curve {
|
||||
if curve[i] != curve2[i] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
func namedCurveFromOID(curve secgNamedCurve) elliptic.Curve {
|
||||
switch {
|
||||
case curve.Equal(secgNamedCurveP224):
|
||||
return elliptic.P224()
|
||||
case curve.Equal(secgNamedCurveP256):
|
||||
return elliptic.P256()
|
||||
case curve.Equal(secgNamedCurveP384):
|
||||
return elliptic.P384()
|
||||
case curve.Equal(secgNamedCurveP521):
|
||||
return elliptic.P521()
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func oidFromNamedCurve(curve elliptic.Curve) (secgNamedCurve, bool) {
|
||||
switch curve {
|
||||
case elliptic.P224():
|
||||
return secgNamedCurveP224, true
|
||||
case elliptic.P256():
|
||||
return secgNamedCurveP256, true
|
||||
case elliptic.P384():
|
||||
return secgNamedCurveP384, true
|
||||
case elliptic.P521():
|
||||
return secgNamedCurveP521, true
|
||||
}
|
||||
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// asnAlgorithmIdentifier represents the ASN.1 structure of the same name. See RFC
|
||||
// 5280, section 4.1.1.2.
|
||||
type asnAlgorithmIdentifier struct {
|
||||
Algorithm asn1.ObjectIdentifier
|
||||
Parameters asn1.RawValue `asn1:"optional"`
|
||||
}
|
||||
|
||||
func (a asnAlgorithmIdentifier) Cmp(b asnAlgorithmIdentifier) bool {
|
||||
if len(a.Algorithm) != len(b.Algorithm) {
|
||||
return false
|
||||
}
|
||||
for i, _ := range a.Algorithm {
|
||||
if a.Algorithm[i] != b.Algorithm[i] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
type asnHashFunction asnAlgorithmIdentifier
|
||||
|
||||
var (
|
||||
oidSHA1 = asn1.ObjectIdentifier{1, 3, 14, 3, 2, 26}
|
||||
oidSHA224 = doScheme(shaScheme, []int{4})
|
||||
oidSHA256 = doScheme(shaScheme, []int{1})
|
||||
oidSHA384 = doScheme(shaScheme, []int{2})
|
||||
oidSHA512 = doScheme(shaScheme, []int{3})
|
||||
)
|
||||
|
||||
func hashFromOID(oid asn1.ObjectIdentifier) func() hash.Hash {
|
||||
switch {
|
||||
case oid.Equal(oidSHA1):
|
||||
return sha1.New
|
||||
case oid.Equal(oidSHA224):
|
||||
return sha256.New224
|
||||
case oid.Equal(oidSHA256):
|
||||
return sha256.New
|
||||
case oid.Equal(oidSHA384):
|
||||
return sha512.New384
|
||||
case oid.Equal(oidSHA512):
|
||||
return sha512.New
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func oidFromHash(hash crypto.Hash) (asn1.ObjectIdentifier, bool) {
|
||||
switch hash {
|
||||
case crypto.SHA1:
|
||||
return oidSHA1, true
|
||||
case crypto.SHA224:
|
||||
return oidSHA224, true
|
||||
case crypto.SHA256:
|
||||
return oidSHA256, true
|
||||
case crypto.SHA384:
|
||||
return oidSHA384, true
|
||||
case crypto.SHA512:
|
||||
return oidSHA512, true
|
||||
default:
|
||||
return nil, false
|
||||
}
|
||||
}
|
||||
|
||||
var (
|
||||
asnAlgoSHA1 = asnHashFunction{
|
||||
Algorithm: oidSHA1,
|
||||
}
|
||||
asnAlgoSHA224 = asnHashFunction{
|
||||
Algorithm: oidSHA224,
|
||||
}
|
||||
asnAlgoSHA256 = asnHashFunction{
|
||||
Algorithm: oidSHA256,
|
||||
}
|
||||
asnAlgoSHA384 = asnHashFunction{
|
||||
Algorithm: oidSHA384,
|
||||
}
|
||||
asnAlgoSHA512 = asnHashFunction{
|
||||
Algorithm: oidSHA512,
|
||||
}
|
||||
)
|
||||
|
||||
// type ASNasnSubjectPublicKeyInfo struct {
|
||||
//
|
||||
// }
|
||||
//
|
||||
|
||||
type asnSubjectPublicKeyInfo struct {
|
||||
Algorithm asn1.ObjectIdentifier
|
||||
PublicKey asn1.BitString
|
||||
Supplements ecpksSupplements `asn1:"optional"`
|
||||
}
|
||||
|
||||
type asnECPKAlgorithms struct {
|
||||
Type asn1.ObjectIdentifier
|
||||
}
|
||||
|
||||
var idPublicKeyType = doScheme(ansiX962Scheme, []int{2})
|
||||
var idEcPublicKey = doScheme(idPublicKeyType, []int{1})
|
||||
var idEcPublicKeySupplemented = doScheme(idPublicKeyType, []int{0})
|
||||
|
||||
func curveToRaw(curve elliptic.Curve) (rv asn1.RawValue, ok bool) {
|
||||
switch curve {
|
||||
case elliptic.P224(), elliptic.P256(), elliptic.P384(), elliptic.P521():
|
||||
raw := rawCurve(curve)
|
||||
return asn1.RawValue{
|
||||
Tag: 30,
|
||||
Bytes: raw[2:],
|
||||
FullBytes: raw,
|
||||
}, true
|
||||
default:
|
||||
return rv, false
|
||||
}
|
||||
}
|
||||
|
||||
func asnECPublicKeyType(curve elliptic.Curve) (algo asnAlgorithmIdentifier, ok bool) {
|
||||
raw, ok := curveToRaw(curve)
|
||||
if !ok {
|
||||
return
|
||||
} else {
|
||||
return asnAlgorithmIdentifier{Algorithm: idEcPublicKey,
|
||||
Parameters: raw}, true
|
||||
}
|
||||
}
|
||||
|
||||
type asnECPrivKeyVer int
|
||||
|
||||
var asnECPrivKeyVer1 asnECPrivKeyVer = 1
|
||||
|
||||
type asnPrivateKey struct {
|
||||
Version asnECPrivKeyVer
|
||||
Private []byte
|
||||
Curve secgNamedCurve `asn1:"optional"`
|
||||
Public asn1.BitString
|
||||
}
|
||||
|
||||
var asnECDH = doScheme(secgScheme, []int{12})
|
||||
|
||||
type asnECDHAlgorithm asnAlgorithmIdentifier
|
||||
|
||||
var (
|
||||
dhSinglePass_stdDH_sha1kdf = asnECDHAlgorithm{
|
||||
Algorithm: doScheme(x963Scheme, []int{2}),
|
||||
}
|
||||
dhSinglePass_stdDH_sha256kdf = asnECDHAlgorithm{
|
||||
Algorithm: doScheme(secgScheme, []int{11, 1}),
|
||||
}
|
||||
dhSinglePass_stdDH_sha384kdf = asnECDHAlgorithm{
|
||||
Algorithm: doScheme(secgScheme, []int{11, 2}),
|
||||
}
|
||||
dhSinglePass_stdDH_sha224kdf = asnECDHAlgorithm{
|
||||
Algorithm: doScheme(secgScheme, []int{11, 0}),
|
||||
}
|
||||
dhSinglePass_stdDH_sha512kdf = asnECDHAlgorithm{
|
||||
Algorithm: doScheme(secgScheme, []int{11, 3}),
|
||||
}
|
||||
)
|
||||
|
||||
func (a asnECDHAlgorithm) Cmp(b asnECDHAlgorithm) bool {
|
||||
if len(a.Algorithm) != len(b.Algorithm) {
|
||||
return false
|
||||
}
|
||||
for i, _ := range a.Algorithm {
|
||||
if a.Algorithm[i] != b.Algorithm[i] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// asnNISTConcatenation is the only supported KDF at this time.
|
||||
type asnKeyDerivationFunction asnAlgorithmIdentifier
|
||||
|
||||
var asnNISTConcatenationKDF = asnKeyDerivationFunction{
|
||||
Algorithm: doScheme(secgScheme, []int{17, 1}),
|
||||
}
|
||||
|
||||
func (a asnKeyDerivationFunction) Cmp(b asnKeyDerivationFunction) bool {
|
||||
if len(a.Algorithm) != len(b.Algorithm) {
|
||||
return false
|
||||
}
|
||||
for i, _ := range a.Algorithm {
|
||||
if a.Algorithm[i] != b.Algorithm[i] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
var eciesRecommendedParameters = doScheme(secgScheme, []int{7})
|
||||
var eciesSpecifiedParameters = doScheme(secgScheme, []int{8})
|
||||
|
||||
type asnECIESParameters struct {
|
||||
KDF asnKeyDerivationFunction `asn1:"optional"`
|
||||
Sym asnSymmetricEncryption `asn1:"optional"`
|
||||
MAC asnMessageAuthenticationCode `asn1:"optional"`
|
||||
}
|
||||
|
||||
type asnSymmetricEncryption asnAlgorithmIdentifier
|
||||
|
||||
var (
|
||||
aes128CTRinECIES = asnSymmetricEncryption{
|
||||
Algorithm: doScheme(secgScheme, []int{21, 0}),
|
||||
}
|
||||
aes192CTRinECIES = asnSymmetricEncryption{
|
||||
Algorithm: doScheme(secgScheme, []int{21, 1}),
|
||||
}
|
||||
aes256CTRinECIES = asnSymmetricEncryption{
|
||||
Algorithm: doScheme(secgScheme, []int{21, 2}),
|
||||
}
|
||||
)
|
||||
|
||||
func (a asnSymmetricEncryption) Cmp(b asnSymmetricEncryption) bool {
|
||||
if len(a.Algorithm) != len(b.Algorithm) {
|
||||
return false
|
||||
}
|
||||
for i, _ := range a.Algorithm {
|
||||
if a.Algorithm[i] != b.Algorithm[i] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
type asnMessageAuthenticationCode asnAlgorithmIdentifier
|
||||
|
||||
var (
|
||||
hmacFull = asnMessageAuthenticationCode{
|
||||
Algorithm: doScheme(secgScheme, []int{22}),
|
||||
}
|
||||
)
|
||||
|
||||
func (a asnMessageAuthenticationCode) Cmp(b asnMessageAuthenticationCode) bool {
|
||||
if len(a.Algorithm) != len(b.Algorithm) {
|
||||
return false
|
||||
}
|
||||
for i, _ := range a.Algorithm {
|
||||
if a.Algorithm[i] != b.Algorithm[i] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
type ecpksSupplements struct {
|
||||
ECDomain secgNamedCurve
|
||||
ECCAlgorithms eccAlgorithmSet
|
||||
}
|
||||
|
||||
type eccAlgorithmSet struct {
|
||||
ECDH asnECDHAlgorithm `asn1:"optional"`
|
||||
ECIES asnECIESParameters `asn1:"optional"`
|
||||
}
|
||||
|
||||
func marshalSubjectPublicKeyInfo(pub *PublicKey) (subj asnSubjectPublicKeyInfo, err error) {
|
||||
subj.Algorithm = idEcPublicKeySupplemented
|
||||
curve, ok := oidFromNamedCurve(pub.Curve)
|
||||
if !ok {
|
||||
err = ErrInvalidPublicKey
|
||||
return
|
||||
}
|
||||
subj.Supplements.ECDomain = curve
|
||||
if pub.Params != nil {
|
||||
subj.Supplements.ECCAlgorithms.ECDH = paramsToASNECDH(pub.Params)
|
||||
subj.Supplements.ECCAlgorithms.ECIES = paramsToASNECIES(pub.Params)
|
||||
}
|
||||
pubkey := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
|
||||
subj.PublicKey = asn1.BitString{
|
||||
BitLength: len(pubkey) * 8,
|
||||
Bytes: pubkey,
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Encode a public key to DER format.
|
||||
func MarshalPublic(pub *PublicKey) ([]byte, error) {
|
||||
subj, err := marshalSubjectPublicKeyInfo(pub)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return asn1.Marshal(subj)
|
||||
}
|
||||
|
||||
// Decode a DER-encoded public key.
|
||||
func UnmarshalPublic(in []byte) (pub *PublicKey, err error) {
|
||||
var subj asnSubjectPublicKeyInfo
|
||||
|
||||
if _, err = asn1.Unmarshal(in, &subj); err != nil {
|
||||
return
|
||||
}
|
||||
if !subj.Algorithm.Equal(idEcPublicKeySupplemented) {
|
||||
err = ErrInvalidPublicKey
|
||||
return
|
||||
}
|
||||
pub = new(PublicKey)
|
||||
pub.Curve = namedCurveFromOID(subj.Supplements.ECDomain)
|
||||
x, y := elliptic.Unmarshal(pub.Curve, subj.PublicKey.Bytes)
|
||||
if x == nil {
|
||||
err = ErrInvalidPublicKey
|
||||
return
|
||||
}
|
||||
pub.X = x
|
||||
pub.Y = y
|
||||
pub.Params = new(ECIESParams)
|
||||
asnECIEStoParams(subj.Supplements.ECCAlgorithms.ECIES, pub.Params)
|
||||
asnECDHtoParams(subj.Supplements.ECCAlgorithms.ECDH, pub.Params)
|
||||
if pub.Params == nil {
|
||||
if pub.Params = ParamsFromCurve(pub.Curve); pub.Params == nil {
|
||||
err = ErrInvalidPublicKey
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func marshalPrivateKey(prv *PrivateKey) (ecprv asnPrivateKey, err error) {
|
||||
ecprv.Version = asnECPrivKeyVer1
|
||||
ecprv.Private = prv.D.Bytes()
|
||||
|
||||
var ok bool
|
||||
ecprv.Curve, ok = oidFromNamedCurve(prv.PublicKey.Curve)
|
||||
if !ok {
|
||||
err = ErrInvalidPrivateKey
|
||||
return
|
||||
}
|
||||
|
||||
var pub []byte
|
||||
if pub, err = MarshalPublic(&prv.PublicKey); err != nil {
|
||||
return
|
||||
} else {
|
||||
ecprv.Public = asn1.BitString{
|
||||
BitLength: len(pub) * 8,
|
||||
Bytes: pub,
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Encode a private key to DER format.
|
||||
func MarshalPrivate(prv *PrivateKey) ([]byte, error) {
|
||||
ecprv, err := marshalPrivateKey(prv)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return asn1.Marshal(ecprv)
|
||||
}
|
||||
|
||||
// Decode a private key from a DER-encoded format.
|
||||
func UnmarshalPrivate(in []byte) (prv *PrivateKey, err error) {
|
||||
var ecprv asnPrivateKey
|
||||
|
||||
if _, err = asn1.Unmarshal(in, &ecprv); err != nil {
|
||||
return
|
||||
} else if ecprv.Version != asnECPrivKeyVer1 {
|
||||
err = ErrInvalidPrivateKey
|
||||
return
|
||||
}
|
||||
|
||||
privateCurve := namedCurveFromOID(ecprv.Curve)
|
||||
if privateCurve == nil {
|
||||
err = ErrInvalidPrivateKey
|
||||
return
|
||||
}
|
||||
|
||||
prv = new(PrivateKey)
|
||||
prv.D = new(big.Int).SetBytes(ecprv.Private)
|
||||
|
||||
if pub, err := UnmarshalPublic(ecprv.Public.Bytes); err != nil {
|
||||
return nil, err
|
||||
} else {
|
||||
prv.PublicKey = *pub
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// Export a public key to PEM format.
|
||||
func ExportPublicPEM(pub *PublicKey) (out []byte, err error) {
|
||||
der, err := MarshalPublic(pub)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
var block pem.Block
|
||||
block.Type = "ELLIPTIC CURVE PUBLIC KEY"
|
||||
block.Bytes = der
|
||||
|
||||
buf := new(bytes.Buffer)
|
||||
err = pem.Encode(buf, &block)
|
||||
if err != nil {
|
||||
return
|
||||
} else {
|
||||
out = buf.Bytes()
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Export a private key to PEM format.
|
||||
func ExportPrivatePEM(prv *PrivateKey) (out []byte, err error) {
|
||||
der, err := MarshalPrivate(prv)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
var block pem.Block
|
||||
block.Type = "ELLIPTIC CURVE PRIVATE KEY"
|
||||
block.Bytes = der
|
||||
|
||||
buf := new(bytes.Buffer)
|
||||
err = pem.Encode(buf, &block)
|
||||
if err != nil {
|
||||
return
|
||||
} else {
|
||||
out = buf.Bytes()
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Import a PEM-encoded public key.
|
||||
func ImportPublicPEM(in []byte) (pub *PublicKey, err error) {
|
||||
p, _ := pem.Decode(in)
|
||||
if p == nil || p.Type != "ELLIPTIC CURVE PUBLIC KEY" {
|
||||
return nil, ErrInvalidPublicKey
|
||||
}
|
||||
|
||||
pub, err = UnmarshalPublic(p.Bytes)
|
||||
return
|
||||
}
|
||||
|
||||
// Import a PEM-encoded private key.
|
||||
func ImportPrivatePEM(in []byte) (prv *PrivateKey, err error) {
|
||||
p, _ := pem.Decode(in)
|
||||
if p == nil || p.Type != "ELLIPTIC CURVE PRIVATE KEY" {
|
||||
return nil, ErrInvalidPrivateKey
|
||||
}
|
||||
|
||||
prv, err = UnmarshalPrivate(p.Bytes)
|
||||
return
|
||||
}
|
|
@ -0,0 +1,331 @@
|
|||
package ecies
|
||||
|
||||
import (
|
||||
"crypto/cipher"
|
||||
"crypto/ecdsa"
|
||||
"crypto/elliptic"
|
||||
"crypto/hmac"
|
||||
"crypto/subtle"
|
||||
"fmt"
|
||||
"hash"
|
||||
"io"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
var (
|
||||
ErrImport = fmt.Errorf("ecies: failed to import key")
|
||||
ErrInvalidCurve = fmt.Errorf("ecies: invalid elliptic curve")
|
||||
ErrInvalidParams = fmt.Errorf("ecies: invalid ECIES parameters")
|
||||
ErrInvalidPublicKey = fmt.Errorf("ecies: invalid public key")
|
||||
ErrSharedKeyIsPointAtInfinity = fmt.Errorf("ecies: shared key is point at infinity")
|
||||
ErrSharedKeyTooBig = fmt.Errorf("ecies: shared key params are too big")
|
||||
)
|
||||
|
||||
// PublicKey is a representation of an elliptic curve public key.
|
||||
type PublicKey struct {
|
||||
X *big.Int
|
||||
Y *big.Int
|
||||
elliptic.Curve
|
||||
Params *ECIESParams
|
||||
}
|
||||
|
||||
// Export an ECIES public key as an ECDSA public key.
|
||||
func (pub *PublicKey) ExportECDSA() *ecdsa.PublicKey {
|
||||
return &ecdsa.PublicKey{pub.Curve, pub.X, pub.Y}
|
||||
}
|
||||
|
||||
// Import an ECDSA public key as an ECIES public key.
|
||||
func ImportECDSAPublic(pub *ecdsa.PublicKey) *PublicKey {
|
||||
return &PublicKey{
|
||||
X: pub.X,
|
||||
Y: pub.Y,
|
||||
Curve: pub.Curve,
|
||||
Params: ParamsFromCurve(pub.Curve),
|
||||
}
|
||||
}
|
||||
|
||||
// PrivateKey is a representation of an elliptic curve private key.
|
||||
type PrivateKey struct {
|
||||
PublicKey
|
||||
D *big.Int
|
||||
}
|
||||
|
||||
// Export an ECIES private key as an ECDSA private key.
|
||||
func (prv *PrivateKey) ExportECDSA() *ecdsa.PrivateKey {
|
||||
pub := &prv.PublicKey
|
||||
pubECDSA := pub.ExportECDSA()
|
||||
return &ecdsa.PrivateKey{*pubECDSA, prv.D}
|
||||
}
|
||||
|
||||
// Import an ECDSA private key as an ECIES private key.
|
||||
func ImportECDSA(prv *ecdsa.PrivateKey) *PrivateKey {
|
||||
pub := ImportECDSAPublic(&prv.PublicKey)
|
||||
return &PrivateKey{*pub, prv.D}
|
||||
}
|
||||
|
||||
// Generate an elliptic curve public / private keypair. If params is nil,
|
||||
// the recommended default paramters for the key will be chosen.
|
||||
func GenerateKey(rand io.Reader, curve elliptic.Curve, params *ECIESParams) (prv *PrivateKey, err error) {
|
||||
pb, x, y, err := elliptic.GenerateKey(curve, rand)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
prv = new(PrivateKey)
|
||||
prv.PublicKey.X = x
|
||||
prv.PublicKey.Y = y
|
||||
prv.PublicKey.Curve = curve
|
||||
prv.D = new(big.Int).SetBytes(pb)
|
||||
if params == nil {
|
||||
params = ParamsFromCurve(curve)
|
||||
}
|
||||
prv.PublicKey.Params = params
|
||||
return
|
||||
}
|
||||
|
||||
// MaxSharedKeyLength returns the maximum length of the shared key the
|
||||
// public key can produce.
|
||||
func MaxSharedKeyLength(pub *PublicKey) int {
|
||||
return (pub.Curve.Params().BitSize + 7) / 8
|
||||
}
|
||||
|
||||
// ECDH key agreement method used to establish secret keys for encryption.
|
||||
func (prv *PrivateKey) GenerateShared(pub *PublicKey, skLen, macLen int) (sk []byte, err error) {
|
||||
if prv.PublicKey.Curve != pub.Curve {
|
||||
return nil, ErrInvalidCurve
|
||||
}
|
||||
if skLen+macLen > MaxSharedKeyLength(pub) {
|
||||
return nil, ErrSharedKeyTooBig
|
||||
}
|
||||
x, _ := pub.Curve.ScalarMult(pub.X, pub.Y, prv.D.Bytes())
|
||||
if x == nil {
|
||||
return nil, ErrSharedKeyIsPointAtInfinity
|
||||
}
|
||||
|
||||
sk = make([]byte, skLen+macLen)
|
||||
skBytes := x.Bytes()
|
||||
copy(sk[len(sk)-len(skBytes):], skBytes)
|
||||
return sk, nil
|
||||
}
|
||||
|
||||
var (
|
||||
ErrKeyDataTooLong = fmt.Errorf("ecies: can't supply requested key data")
|
||||
ErrSharedTooLong = fmt.Errorf("ecies: shared secret is too long")
|
||||
ErrInvalidMessage = fmt.Errorf("ecies: invalid message")
|
||||
)
|
||||
|
||||
var (
|
||||
big2To32 = new(big.Int).Exp(big.NewInt(2), big.NewInt(32), nil)
|
||||
big2To32M1 = new(big.Int).Sub(big2To32, big.NewInt(1))
|
||||
)
|
||||
|
||||
func incCounter(ctr []byte) {
|
||||
if ctr[3]++; ctr[3] != 0 {
|
||||
return
|
||||
} else if ctr[2]++; ctr[2] != 0 {
|
||||
return
|
||||
} else if ctr[1]++; ctr[1] != 0 {
|
||||
return
|
||||
} else if ctr[0]++; ctr[0] != 0 {
|
||||
return
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// NIST SP 800-56 Concatenation Key Derivation Function (see section 5.8.1).
|
||||
func concatKDF(hash hash.Hash, z, s1 []byte, kdLen int) (k []byte, err error) {
|
||||
if s1 == nil {
|
||||
s1 = make([]byte, 0)
|
||||
}
|
||||
|
||||
reps := ((kdLen + 7) * 8) / (hash.BlockSize() * 8)
|
||||
if big.NewInt(int64(reps)).Cmp(big2To32M1) > 0 {
|
||||
fmt.Println(big2To32M1)
|
||||
return nil, ErrKeyDataTooLong
|
||||
}
|
||||
|
||||
counter := []byte{0, 0, 0, 1}
|
||||
k = make([]byte, 0)
|
||||
|
||||
for i := 0; i <= reps; i++ {
|
||||
hash.Write(counter)
|
||||
hash.Write(z)
|
||||
hash.Write(s1)
|
||||
k = append(k, hash.Sum(nil)...)
|
||||
hash.Reset()
|
||||
incCounter(counter)
|
||||
}
|
||||
|
||||
k = k[:kdLen]
|
||||
return
|
||||
}
|
||||
|
||||
// messageTag computes the MAC of a message (called the tag) as per
|
||||
// SEC 1, 3.5.
|
||||
func messageTag(hash func() hash.Hash, km, msg, shared []byte) []byte {
|
||||
if shared == nil {
|
||||
shared = make([]byte, 0)
|
||||
}
|
||||
mac := hmac.New(hash, km)
|
||||
mac.Write(msg)
|
||||
tag := mac.Sum(nil)
|
||||
return tag
|
||||
}
|
||||
|
||||
// Generate an initialisation vector for CTR mode.
|
||||
func generateIV(params *ECIESParams, rand io.Reader) (iv []byte, err error) {
|
||||
iv = make([]byte, params.BlockSize)
|
||||
_, err = io.ReadFull(rand, iv)
|
||||
return
|
||||
}
|
||||
|
||||
// symEncrypt carries out CTR encryption using the block cipher specified in the
|
||||
// parameters.
|
||||
func symEncrypt(rand io.Reader, params *ECIESParams, key, m []byte) (ct []byte, err error) {
|
||||
c, err := params.Cipher(key)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
iv, err := generateIV(params, rand)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
ctr := cipher.NewCTR(c, iv)
|
||||
|
||||
ct = make([]byte, len(m)+params.BlockSize)
|
||||
copy(ct, iv)
|
||||
ctr.XORKeyStream(ct[params.BlockSize:], m)
|
||||
return
|
||||
}
|
||||
|
||||
// symDecrypt carries out CTR decryption using the block cipher specified in
|
||||
// the parameters
|
||||
func symDecrypt(rand io.Reader, params *ECIESParams, key, ct []byte) (m []byte, err error) {
|
||||
c, err := params.Cipher(key)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
ctr := cipher.NewCTR(c, ct[:params.BlockSize])
|
||||
|
||||
m = make([]byte, len(ct)-params.BlockSize)
|
||||
ctr.XORKeyStream(m, ct[params.BlockSize:])
|
||||
return
|
||||
}
|
||||
|
||||
// Encrypt encrypts a message using ECIES as specified in SEC 1, 5.1. If
|
||||
// the shared information parameters aren't being used, they should be
|
||||
// nil.
|
||||
func Encrypt(rand io.Reader, pub *PublicKey, m, s1, s2 []byte) (ct []byte, err error) {
|
||||
params := pub.Params
|
||||
if params == nil {
|
||||
if params = ParamsFromCurve(pub.Curve); params == nil {
|
||||
err = ErrUnsupportedECIESParameters
|
||||
return
|
||||
}
|
||||
}
|
||||
R, err := GenerateKey(rand, pub.Curve, params)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
hash := params.Hash()
|
||||
z, err := R.GenerateShared(pub, params.KeyLen, params.KeyLen)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
Ke := K[:params.KeyLen]
|
||||
Km := K[params.KeyLen:]
|
||||
hash.Write(Km)
|
||||
Km = hash.Sum(nil)
|
||||
hash.Reset()
|
||||
|
||||
em, err := symEncrypt(rand, params, Ke, m)
|
||||
if err != nil || len(em) <= params.BlockSize {
|
||||
return
|
||||
}
|
||||
|
||||
d := messageTag(params.Hash, Km, em, s2)
|
||||
|
||||
Rb := elliptic.Marshal(pub.Curve, R.PublicKey.X, R.PublicKey.Y)
|
||||
ct = make([]byte, len(Rb)+len(em)+len(d))
|
||||
copy(ct, Rb)
|
||||
copy(ct[len(Rb):], em)
|
||||
copy(ct[len(Rb)+len(em):], d)
|
||||
return
|
||||
}
|
||||
|
||||
// Decrypt decrypts an ECIES ciphertext.
|
||||
func (prv *PrivateKey) Decrypt(rand io.Reader, c, s1, s2 []byte) (m []byte, err error) {
|
||||
if c == nil || len(c) == 0 {
|
||||
err = ErrInvalidMessage
|
||||
return
|
||||
}
|
||||
params := prv.PublicKey.Params
|
||||
if params == nil {
|
||||
if params = ParamsFromCurve(prv.PublicKey.Curve); params == nil {
|
||||
err = ErrUnsupportedECIESParameters
|
||||
return
|
||||
}
|
||||
}
|
||||
hash := params.Hash()
|
||||
|
||||
var (
|
||||
rLen int
|
||||
hLen int = hash.Size()
|
||||
mStart int
|
||||
mEnd int
|
||||
)
|
||||
|
||||
switch c[0] {
|
||||
case 2, 3, 4:
|
||||
rLen = ((prv.PublicKey.Curve.Params().BitSize + 7) / 4)
|
||||
if len(c) < (rLen + hLen + 1) {
|
||||
err = ErrInvalidMessage
|
||||
return
|
||||
}
|
||||
default:
|
||||
err = ErrInvalidPublicKey
|
||||
return
|
||||
}
|
||||
|
||||
mStart = rLen
|
||||
mEnd = len(c) - hLen
|
||||
|
||||
R := new(PublicKey)
|
||||
R.Curve = prv.PublicKey.Curve
|
||||
R.X, R.Y = elliptic.Unmarshal(R.Curve, c[:rLen])
|
||||
if R.X == nil {
|
||||
err = ErrInvalidPublicKey
|
||||
return
|
||||
}
|
||||
|
||||
z, err := prv.GenerateShared(R, params.KeyLen, params.KeyLen)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
Ke := K[:params.KeyLen]
|
||||
Km := K[params.KeyLen:]
|
||||
hash.Write(Km)
|
||||
Km = hash.Sum(nil)
|
||||
hash.Reset()
|
||||
|
||||
d := messageTag(params.Hash, Km, c[mStart:mEnd], s2)
|
||||
if subtle.ConstantTimeCompare(c[mEnd:], d) != 1 {
|
||||
err = ErrInvalidMessage
|
||||
return
|
||||
}
|
||||
|
||||
m, err = symDecrypt(rand, params, Ke, c[mStart:mEnd])
|
||||
return
|
||||
}
|
|
@ -0,0 +1,489 @@
|
|||
package ecies
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/elliptic"
|
||||
"crypto/rand"
|
||||
"crypto/sha256"
|
||||
"flag"
|
||||
"fmt"
|
||||
"io/ioutil"
|
||||
"testing"
|
||||
)
|
||||
|
||||
var dumpEnc bool
|
||||
|
||||
func init() {
|
||||
flDump := flag.Bool("dump", false, "write encrypted test message to file")
|
||||
flag.Parse()
|
||||
dumpEnc = *flDump
|
||||
}
|
||||
|
||||
// Ensure the KDF generates appropriately sized keys.
|
||||
func TestKDF(t *testing.T) {
|
||||
msg := []byte("Hello, world")
|
||||
h := sha256.New()
|
||||
|
||||
k, err := concatKDF(h, msg, nil, 64)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
if len(k) != 64 {
|
||||
fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n",
|
||||
len(k))
|
||||
t.FailNow()
|
||||
}
|
||||
}
|
||||
|
||||
var skLen int
|
||||
var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match")
|
||||
|
||||
// cmpParams compares a set of ECIES parameters. We assume, as per the
|
||||
// docs, that AES is the only supported symmetric encryption algorithm.
|
||||
func cmpParams(p1, p2 *ECIESParams) bool {
|
||||
if p1.hashAlgo != p2.hashAlgo {
|
||||
return false
|
||||
} else if p1.KeyLen != p2.KeyLen {
|
||||
return false
|
||||
} else if p1.BlockSize != p2.BlockSize {
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// cmpPublic returns true if the two public keys represent the same pojnt.
|
||||
func cmpPublic(pub1, pub2 PublicKey) bool {
|
||||
if pub1.X == nil || pub1.Y == nil {
|
||||
fmt.Println(ErrInvalidPublicKey.Error())
|
||||
return false
|
||||
}
|
||||
if pub2.X == nil || pub2.Y == nil {
|
||||
fmt.Println(ErrInvalidPublicKey.Error())
|
||||
return false
|
||||
}
|
||||
pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y)
|
||||
pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y)
|
||||
|
||||
return bytes.Equal(pub1Out, pub2Out)
|
||||
}
|
||||
|
||||
// cmpPrivate returns true if the two private keys are the same.
|
||||
func cmpPrivate(prv1, prv2 *PrivateKey) bool {
|
||||
if prv1 == nil || prv1.D == nil {
|
||||
return false
|
||||
} else if prv2 == nil || prv2.D == nil {
|
||||
return false
|
||||
} else if prv1.D.Cmp(prv2.D) != 0 {
|
||||
return false
|
||||
} else {
|
||||
return cmpPublic(prv1.PublicKey, prv2.PublicKey)
|
||||
}
|
||||
}
|
||||
|
||||
// Validate the ECDH component.
|
||||
func TestSharedKey(t *testing.T) {
|
||||
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
skLen = MaxSharedKeyLength(&prv1.PublicKey) / 2
|
||||
|
||||
prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
if !bytes.Equal(sk1, sk2) {
|
||||
fmt.Println(ErrBadSharedKeys.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
}
|
||||
|
||||
// Verify that the key generation code fails when too much key data is
|
||||
// requested.
|
||||
func TestTooBigSharedKey(t *testing.T) {
|
||||
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
_, err = prv1.GenerateShared(&prv2.PublicKey, skLen*2, skLen*2)
|
||||
if err != ErrSharedKeyTooBig {
|
||||
fmt.Println("ecdh: shared key should be too large for curve")
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
_, err = prv2.GenerateShared(&prv1.PublicKey, skLen*2, skLen*2)
|
||||
if err != ErrSharedKeyTooBig {
|
||||
fmt.Println("ecdh: shared key should be too large for curve")
|
||||
t.FailNow()
|
||||
}
|
||||
}
|
||||
|
||||
// Ensure a public key can be successfully marshalled and unmarshalled, and
|
||||
// that the decoded key is the same as the original.
|
||||
func TestMarshalPublic(t *testing.T) {
|
||||
prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
out, err := MarshalPublic(&prv.PublicKey)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
pub, err := UnmarshalPublic(out)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
if !cmpPublic(prv.PublicKey, *pub) {
|
||||
fmt.Println("ecies: failed to unmarshal public key")
|
||||
t.FailNow()
|
||||
}
|
||||
}
|
||||
|
||||
// Ensure that a private key can be encoded into DER format, and that
|
||||
// the resulting key is properly parsed back into a public key.
|
||||
func TestMarshalPrivate(t *testing.T) {
|
||||
prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
out, err := MarshalPrivate(prv)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
if dumpEnc {
|
||||
ioutil.WriteFile("test.out", out, 0644)
|
||||
}
|
||||
|
||||
prv2, err := UnmarshalPrivate(out)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
if !cmpPrivate(prv, prv2) {
|
||||
fmt.Println("ecdh: private key import failed")
|
||||
t.FailNow()
|
||||
}
|
||||
}
|
||||
|
||||
// Ensure that a private key can be successfully encoded to PEM format, and
|
||||
// the resulting key is properly parsed back in.
|
||||
func TestPrivatePEM(t *testing.T) {
|
||||
prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
out, err := ExportPrivatePEM(prv)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
if dumpEnc {
|
||||
ioutil.WriteFile("test.key", out, 0644)
|
||||
}
|
||||
|
||||
prv2, err := ImportPrivatePEM(out)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
} else if !cmpPrivate(prv, prv2) {
|
||||
fmt.Println("ecdh: import from PEM failed")
|
||||
t.FailNow()
|
||||
}
|
||||
}
|
||||
|
||||
// Ensure that a public key can be successfully encoded to PEM format, and
|
||||
// the resulting key is properly parsed back in.
|
||||
func TestPublicPEM(t *testing.T) {
|
||||
prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
out, err := ExportPublicPEM(&prv.PublicKey)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
if dumpEnc {
|
||||
ioutil.WriteFile("test.pem", out, 0644)
|
||||
}
|
||||
|
||||
pub2, err := ImportPublicPEM(out)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
} else if !cmpPublic(prv.PublicKey, *pub2) {
|
||||
fmt.Println("ecdh: import from PEM failed")
|
||||
t.FailNow()
|
||||
}
|
||||
}
|
||||
|
||||
// Benchmark the generation of P256 keys.
|
||||
func BenchmarkGenerateKeyP256(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil {
|
||||
fmt.Println(err.Error())
|
||||
b.FailNow()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Benchmark the generation of P256 shared keys.
|
||||
func BenchmarkGenSharedKeyP256(b *testing.B) {
|
||||
prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
b.FailNow()
|
||||
}
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
_, err := prv.GenerateShared(&prv.PublicKey, skLen, skLen)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
b.FailNow()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Verify that an encrypted message can be successfully decrypted.
|
||||
func TestEncryptDecrypt(t *testing.T) {
|
||||
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
message := []byte("Hello, world.")
|
||||
ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
if !bytes.Equal(pt, message) {
|
||||
fmt.Println("ecies: plaintext doesn't match message")
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
|
||||
if err == nil {
|
||||
fmt.Println("ecies: encryption should not have succeeded")
|
||||
t.FailNow()
|
||||
}
|
||||
}
|
||||
|
||||
// TestMarshalEncryption validates the encode/decode produces a valid
|
||||
// ECIES encryption key.
|
||||
func TestMarshalEncryption(t *testing.T) {
|
||||
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
out, err := MarshalPrivate(prv1)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
prv2, err := UnmarshalPrivate(out)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
message := []byte("Hello, world.")
|
||||
ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
if !bytes.Equal(pt, message) {
|
||||
fmt.Println("ecies: plaintext doesn't match message")
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
type testCase struct {
|
||||
Curve elliptic.Curve
|
||||
Name string
|
||||
Expected bool
|
||||
}
|
||||
|
||||
var testCases = []testCase{
|
||||
testCase{
|
||||
Curve: elliptic.P224(),
|
||||
Name: "P224",
|
||||
Expected: false,
|
||||
},
|
||||
testCase{
|
||||
Curve: elliptic.P256(),
|
||||
Name: "P256",
|
||||
Expected: true,
|
||||
},
|
||||
testCase{
|
||||
Curve: elliptic.P384(),
|
||||
Name: "P384",
|
||||
Expected: true,
|
||||
},
|
||||
testCase{
|
||||
Curve: elliptic.P521(),
|
||||
Name: "P521",
|
||||
Expected: true,
|
||||
},
|
||||
}
|
||||
|
||||
// Test parameter selection for each curve, and that P224 fails automatic
|
||||
// parameter selection (see README for a discussion of P224). Ensures that
|
||||
// selecting a set of parameters automatically for the given curve works.
|
||||
func TestParamSelection(t *testing.T) {
|
||||
for _, c := range testCases {
|
||||
testParamSelection(t, c)
|
||||
}
|
||||
}
|
||||
|
||||
func testParamSelection(t *testing.T, c testCase) {
|
||||
params := ParamsFromCurve(c.Curve)
|
||||
if params == nil && c.Expected {
|
||||
fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name)
|
||||
t.FailNow()
|
||||
} else if params != nil && !c.Expected {
|
||||
fmt.Printf("ecies: parameters should be invalid (%s)\n",
|
||||
c.Name)
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Printf("%s (%s)\n", err.Error(), c.Name)
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Printf("%s (%s)\n", err.Error(), c.Name)
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
message := []byte("Hello, world.")
|
||||
ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
|
||||
if err != nil {
|
||||
fmt.Printf("%s (%s)\n", err.Error(), c.Name)
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
|
||||
if err != nil {
|
||||
fmt.Printf("%s (%s)\n", err.Error(), c.Name)
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
if !bytes.Equal(pt, message) {
|
||||
fmt.Printf("ecies: plaintext doesn't match message (%s)\n",
|
||||
c.Name)
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
|
||||
if err == nil {
|
||||
fmt.Printf("ecies: encryption should not have succeeded (%s)\n",
|
||||
c.Name)
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Ensure that the basic public key validation in the decryption operation
|
||||
// works.
|
||||
func TestBasicKeyValidation(t *testing.T) {
|
||||
badBytes := []byte{0, 1, 5, 6, 7, 8, 9}
|
||||
|
||||
prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
message := []byte("Hello, world.")
|
||||
ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil)
|
||||
if err != nil {
|
||||
fmt.Println(err.Error())
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
for _, b := range badBytes {
|
||||
ct[0] = b
|
||||
_, err := prv.Decrypt(rand.Reader, ct, nil, nil)
|
||||
if err != ErrInvalidPublicKey {
|
||||
fmt.Println("ecies: validated an invalid key")
|
||||
t.FailNow()
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,181 @@
|
|||
package ecies
|
||||
|
||||
// This file contains parameters for ECIES encryption, specifying the
|
||||
// symmetric encryption and HMAC parameters.
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
"crypto/aes"
|
||||
"crypto/cipher"
|
||||
"crypto/elliptic"
|
||||
"crypto/sha256"
|
||||
"crypto/sha512"
|
||||
"fmt"
|
||||
"hash"
|
||||
)
|
||||
|
||||
// The default curve for this package is the NIST P256 curve, which
|
||||
// provides security equivalent to AES-128.
|
||||
var DefaultCurve = elliptic.P256()
|
||||
|
||||
var (
|
||||
ErrUnsupportedECDHAlgorithm = fmt.Errorf("ecies: unsupported ECDH algorithm")
|
||||
ErrUnsupportedECIESParameters = fmt.Errorf("ecies: unsupported ECIES parameters")
|
||||
)
|
||||
|
||||
type ECIESParams struct {
|
||||
Hash func() hash.Hash // hash function
|
||||
hashAlgo crypto.Hash
|
||||
Cipher func([]byte) (cipher.Block, error) // symmetric cipher
|
||||
BlockSize int // block size of symmetric cipher
|
||||
KeyLen int // length of symmetric key
|
||||
}
|
||||
|
||||
// Standard ECIES parameters:
|
||||
// * ECIES using AES128 and HMAC-SHA-256-16
|
||||
// * ECIES using AES256 and HMAC-SHA-256-32
|
||||
// * ECIES using AES256 and HMAC-SHA-384-48
|
||||
// * ECIES using AES256 and HMAC-SHA-512-64
|
||||
|
||||
var (
|
||||
ECIES_AES128_SHA256 = &ECIESParams{
|
||||
Hash: sha256.New,
|
||||
hashAlgo: crypto.SHA256,
|
||||
Cipher: aes.NewCipher,
|
||||
BlockSize: aes.BlockSize,
|
||||
KeyLen: 16,
|
||||
}
|
||||
|
||||
ECIES_AES256_SHA256 = &ECIESParams{
|
||||
Hash: sha256.New,
|
||||
hashAlgo: crypto.SHA256,
|
||||
Cipher: aes.NewCipher,
|
||||
BlockSize: aes.BlockSize,
|
||||
KeyLen: 32,
|
||||
}
|
||||
|
||||
ECIES_AES256_SHA384 = &ECIESParams{
|
||||
Hash: sha512.New384,
|
||||
hashAlgo: crypto.SHA384,
|
||||
Cipher: aes.NewCipher,
|
||||
BlockSize: aes.BlockSize,
|
||||
KeyLen: 32,
|
||||
}
|
||||
|
||||
ECIES_AES256_SHA512 = &ECIESParams{
|
||||
Hash: sha512.New,
|
||||
hashAlgo: crypto.SHA512,
|
||||
Cipher: aes.NewCipher,
|
||||
BlockSize: aes.BlockSize,
|
||||
KeyLen: 32,
|
||||
}
|
||||
)
|
||||
|
||||
var paramsFromCurve = map[elliptic.Curve]*ECIESParams{
|
||||
elliptic.P256(): ECIES_AES128_SHA256,
|
||||
elliptic.P384(): ECIES_AES256_SHA384,
|
||||
elliptic.P521(): ECIES_AES256_SHA512,
|
||||
}
|
||||
|
||||
func AddParamsForCurve(curve elliptic.Curve, params *ECIESParams) {
|
||||
paramsFromCurve[curve] = params
|
||||
}
|
||||
|
||||
// ParamsFromCurve selects parameters optimal for the selected elliptic curve.
|
||||
// Only the curves P256, P384, and P512 are supported.
|
||||
func ParamsFromCurve(curve elliptic.Curve) (params *ECIESParams) {
|
||||
return paramsFromCurve[curve]
|
||||
|
||||
/*
|
||||
switch curve {
|
||||
case elliptic.P256():
|
||||
return ECIES_AES128_SHA256
|
||||
case elliptic.P384():
|
||||
return ECIES_AES256_SHA384
|
||||
case elliptic.P521():
|
||||
return ECIES_AES256_SHA512
|
||||
default:
|
||||
return nil
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
// ASN.1 encode the ECIES parameters relevant to the encryption operations.
|
||||
func paramsToASNECIES(params *ECIESParams) (asnParams asnECIESParameters) {
|
||||
if nil == params {
|
||||
return
|
||||
}
|
||||
asnParams.KDF = asnNISTConcatenationKDF
|
||||
asnParams.MAC = hmacFull
|
||||
switch params.KeyLen {
|
||||
case 16:
|
||||
asnParams.Sym = aes128CTRinECIES
|
||||
case 24:
|
||||
asnParams.Sym = aes192CTRinECIES
|
||||
case 32:
|
||||
asnParams.Sym = aes256CTRinECIES
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// ASN.1 encode the ECIES parameters relevant to ECDH.
|
||||
func paramsToASNECDH(params *ECIESParams) (algo asnECDHAlgorithm) {
|
||||
switch params.hashAlgo {
|
||||
case crypto.SHA224:
|
||||
algo = dhSinglePass_stdDH_sha224kdf
|
||||
case crypto.SHA256:
|
||||
algo = dhSinglePass_stdDH_sha256kdf
|
||||
case crypto.SHA384:
|
||||
algo = dhSinglePass_stdDH_sha384kdf
|
||||
case crypto.SHA512:
|
||||
algo = dhSinglePass_stdDH_sha512kdf
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// ASN.1 decode the ECIES parameters relevant to the encryption stage.
|
||||
func asnECIEStoParams(asnParams asnECIESParameters, params *ECIESParams) {
|
||||
if !asnParams.KDF.Cmp(asnNISTConcatenationKDF) {
|
||||
params = nil
|
||||
return
|
||||
} else if !asnParams.MAC.Cmp(hmacFull) {
|
||||
params = nil
|
||||
return
|
||||
}
|
||||
|
||||
switch {
|
||||
case asnParams.Sym.Cmp(aes128CTRinECIES):
|
||||
params.KeyLen = 16
|
||||
params.BlockSize = 16
|
||||
params.Cipher = aes.NewCipher
|
||||
case asnParams.Sym.Cmp(aes192CTRinECIES):
|
||||
params.KeyLen = 24
|
||||
params.BlockSize = 16
|
||||
params.Cipher = aes.NewCipher
|
||||
case asnParams.Sym.Cmp(aes256CTRinECIES):
|
||||
params.KeyLen = 32
|
||||
params.BlockSize = 16
|
||||
params.Cipher = aes.NewCipher
|
||||
default:
|
||||
params = nil
|
||||
}
|
||||
}
|
||||
|
||||
// ASN.1 decode the ECIES parameters relevant to ECDH.
|
||||
func asnECDHtoParams(asnParams asnECDHAlgorithm, params *ECIESParams) {
|
||||
if asnParams.Cmp(dhSinglePass_stdDH_sha224kdf) {
|
||||
params.hashAlgo = crypto.SHA224
|
||||
params.Hash = sha256.New224
|
||||
} else if asnParams.Cmp(dhSinglePass_stdDH_sha256kdf) {
|
||||
params.hashAlgo = crypto.SHA256
|
||||
params.Hash = sha256.New
|
||||
} else if asnParams.Cmp(dhSinglePass_stdDH_sha384kdf) {
|
||||
params.hashAlgo = crypto.SHA384
|
||||
params.Hash = sha512.New384
|
||||
} else if asnParams.Cmp(dhSinglePass_stdDH_sha512kdf) {
|
||||
params.hashAlgo = crypto.SHA512
|
||||
params.Hash = sha512.New
|
||||
} else {
|
||||
params = nil
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue