mirror of https://github.com/status-im/op-geth.git
bmt: Binary Merkle Tree Hash (#14334)
bmt is a new package that provides hashers for binary merkle tree hashes on size-limited chunks. the main motivation is that using BMT hash as the chunk hash of the swarm hash offers logsize inclusion proofs for arbitrary files on a 32-byte resolution completely viable to use in challenges on the blockchain.
This commit is contained in:
parent
32d8d42274
commit
2bacf36d80
|
@ -0,0 +1,562 @@
|
|||
// Copyright 2017 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
// Package bmt provides a binary merkle tree implementation
|
||||
package bmt
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"hash"
|
||||
"io"
|
||||
"strings"
|
||||
"sync"
|
||||
"sync/atomic"
|
||||
)
|
||||
|
||||
/*
|
||||
Binary Merkle Tree Hash is a hash function over arbitrary datachunks of limited size
|
||||
It is defined as the root hash of the binary merkle tree built over fixed size segments
|
||||
of the underlying chunk using any base hash function (e.g keccak 256 SHA3)
|
||||
|
||||
It is used as the chunk hash function in swarm which in turn is the basis for the
|
||||
128 branching swarm hash http://swarm-guide.readthedocs.io/en/latest/architecture.html#swarm-hash
|
||||
|
||||
The BMT is optimal for providing compact inclusion proofs, i.e. prove that a
|
||||
segment is a substring of a chunk starting at a particular offset
|
||||
The size of the underlying segments is fixed at 32 bytes (called the resolution
|
||||
of the BMT hash), the EVM word size to optimize for on-chain BMT verification
|
||||
as well as the hash size optimal for inclusion proofs in the merkle tree of the swarm hash.
|
||||
|
||||
Two implementations are provided:
|
||||
|
||||
* RefHasher is optimized for code simplicity and meant as a reference implementation
|
||||
* Hasher is optimized for speed taking advantage of concurrency with minimalistic
|
||||
control structure to coordinate the concurrent routines
|
||||
It implements the ChunkHash interface as well as the go standard hash.Hash interface
|
||||
|
||||
*/
|
||||
|
||||
const (
|
||||
// DefaultSegmentCount is the maximum number of segments of the underlying chunk
|
||||
DefaultSegmentCount = 128 // Should be equal to storage.DefaultBranches
|
||||
// DefaultPoolSize is the maximum number of bmt trees used by the hashers, i.e,
|
||||
// the maximum number of concurrent BMT hashing operations performed by the same hasher
|
||||
DefaultPoolSize = 8
|
||||
)
|
||||
|
||||
// BaseHasher is a hash.Hash constructor function used for the base hash of the BMT.
|
||||
type BaseHasher func() hash.Hash
|
||||
|
||||
// Hasher a reusable hasher for fixed maximum size chunks representing a BMT
|
||||
// implements the hash.Hash interface
|
||||
// reuse pool of Tree-s for amortised memory allocation and resource control
|
||||
// supports order-agnostic concurrent segment writes
|
||||
// as well as sequential read and write
|
||||
// can not be called concurrently on more than one chunk
|
||||
// can be further appended after Sum
|
||||
// Reset gives back the Tree to the pool and guaranteed to leave
|
||||
// the tree and itself in a state reusable for hashing a new chunk
|
||||
type Hasher struct {
|
||||
pool *TreePool // BMT resource pool
|
||||
bmt *Tree // prebuilt BMT resource for flowcontrol and proofs
|
||||
blocksize int // segment size (size of hash) also for hash.Hash
|
||||
count int // segment count
|
||||
size int // for hash.Hash same as hashsize
|
||||
cur int // cursor position for righmost currently open chunk
|
||||
segment []byte // the rightmost open segment (not complete)
|
||||
depth int // index of last level
|
||||
result chan []byte // result channel
|
||||
hash []byte // to record the result
|
||||
max int32 // max segments for SegmentWriter interface
|
||||
blockLength []byte // The block length that needes to be added in Sum
|
||||
}
|
||||
|
||||
// New creates a reusable Hasher
|
||||
// implements the hash.Hash interface
|
||||
// pulls a new Tree from a resource pool for hashing each chunk
|
||||
func New(p *TreePool) *Hasher {
|
||||
return &Hasher{
|
||||
pool: p,
|
||||
depth: depth(p.SegmentCount),
|
||||
size: p.SegmentSize,
|
||||
blocksize: p.SegmentSize,
|
||||
count: p.SegmentCount,
|
||||
result: make(chan []byte),
|
||||
}
|
||||
}
|
||||
|
||||
// Node is a reuseable segment hasher representing a node in a BMT
|
||||
// it allows for continued writes after a Sum
|
||||
// and is left in completely reusable state after Reset
|
||||
type Node struct {
|
||||
level, index int // position of node for information/logging only
|
||||
initial bool // first and last node
|
||||
root bool // whether the node is root to a smaller BMT
|
||||
isLeft bool // whether it is left side of the parent double segment
|
||||
unbalanced bool // indicates if a node has only the left segment
|
||||
parent *Node // BMT connections
|
||||
state int32 // atomic increment impl concurrent boolean toggle
|
||||
left, right []byte
|
||||
}
|
||||
|
||||
// NewNode constructor for segment hasher nodes in the BMT
|
||||
func NewNode(level, index int, parent *Node) *Node {
|
||||
return &Node{
|
||||
parent: parent,
|
||||
level: level,
|
||||
index: index,
|
||||
initial: index == 0,
|
||||
isLeft: index%2 == 0,
|
||||
}
|
||||
}
|
||||
|
||||
// TreePool provides a pool of Trees used as resources by Hasher
|
||||
// a Tree popped from the pool is guaranteed to have clean state
|
||||
// for hashing a new chunk
|
||||
// Hasher Reset releases the Tree to the pool
|
||||
type TreePool struct {
|
||||
lock sync.Mutex
|
||||
c chan *Tree
|
||||
hasher BaseHasher
|
||||
SegmentSize int
|
||||
SegmentCount int
|
||||
Capacity int
|
||||
count int
|
||||
}
|
||||
|
||||
// NewTreePool creates a Tree pool with hasher, segment size, segment count and capacity
|
||||
// on GetTree it reuses free Trees or creates a new one if size is not reached
|
||||
func NewTreePool(hasher BaseHasher, segmentCount, capacity int) *TreePool {
|
||||
return &TreePool{
|
||||
c: make(chan *Tree, capacity),
|
||||
hasher: hasher,
|
||||
SegmentSize: hasher().Size(),
|
||||
SegmentCount: segmentCount,
|
||||
Capacity: capacity,
|
||||
}
|
||||
}
|
||||
|
||||
// Drain drains the pool uptil it has no more than n resources
|
||||
func (self *TreePool) Drain(n int) {
|
||||
self.lock.Lock()
|
||||
defer self.lock.Unlock()
|
||||
for len(self.c) > n {
|
||||
<-self.c
|
||||
self.count--
|
||||
}
|
||||
}
|
||||
|
||||
// Reserve is blocking until it returns an available Tree
|
||||
// it reuses free Trees or creates a new one if size is not reached
|
||||
func (self *TreePool) Reserve() *Tree {
|
||||
self.lock.Lock()
|
||||
defer self.lock.Unlock()
|
||||
var t *Tree
|
||||
if self.count == self.Capacity {
|
||||
return <-self.c
|
||||
}
|
||||
select {
|
||||
case t = <-self.c:
|
||||
default:
|
||||
t = NewTree(self.hasher, self.SegmentSize, self.SegmentCount)
|
||||
self.count++
|
||||
}
|
||||
return t
|
||||
}
|
||||
|
||||
// Release gives back a Tree to the pool.
|
||||
// This Tree is guaranteed to be in reusable state
|
||||
// does not need locking
|
||||
func (self *TreePool) Release(t *Tree) {
|
||||
self.c <- t // can never fail but...
|
||||
}
|
||||
|
||||
// Tree is a reusable control structure representing a BMT
|
||||
// organised in a binary tree
|
||||
// Hasher uses a TreePool to pick one for each chunk hash
|
||||
// the Tree is 'locked' while not in the pool
|
||||
type Tree struct {
|
||||
leaves []*Node
|
||||
}
|
||||
|
||||
// Draw draws the BMT (badly)
|
||||
func (self *Tree) Draw(hash []byte, d int) string {
|
||||
var left, right []string
|
||||
var anc []*Node
|
||||
for i, n := range self.leaves {
|
||||
left = append(left, fmt.Sprintf("%v", hashstr(n.left)))
|
||||
if i%2 == 0 {
|
||||
anc = append(anc, n.parent)
|
||||
}
|
||||
right = append(right, fmt.Sprintf("%v", hashstr(n.right)))
|
||||
}
|
||||
anc = self.leaves
|
||||
var hashes [][]string
|
||||
for l := 0; len(anc) > 0; l++ {
|
||||
var nodes []*Node
|
||||
hash := []string{""}
|
||||
for i, n := range anc {
|
||||
hash = append(hash, fmt.Sprintf("%v|%v", hashstr(n.left), hashstr(n.right)))
|
||||
if i%2 == 0 && n.parent != nil {
|
||||
nodes = append(nodes, n.parent)
|
||||
}
|
||||
}
|
||||
hash = append(hash, "")
|
||||
hashes = append(hashes, hash)
|
||||
anc = nodes
|
||||
}
|
||||
hashes = append(hashes, []string{"", fmt.Sprintf("%v", hashstr(hash)), ""})
|
||||
total := 60
|
||||
del := " "
|
||||
var rows []string
|
||||
for i := len(hashes) - 1; i >= 0; i-- {
|
||||
var textlen int
|
||||
hash := hashes[i]
|
||||
for _, s := range hash {
|
||||
textlen += len(s)
|
||||
}
|
||||
if total < textlen {
|
||||
total = textlen + len(hash)
|
||||
}
|
||||
delsize := (total - textlen) / (len(hash) - 1)
|
||||
if delsize > len(del) {
|
||||
delsize = len(del)
|
||||
}
|
||||
row := fmt.Sprintf("%v: %v", len(hashes)-i-1, strings.Join(hash, del[:delsize]))
|
||||
rows = append(rows, row)
|
||||
|
||||
}
|
||||
rows = append(rows, strings.Join(left, " "))
|
||||
rows = append(rows, strings.Join(right, " "))
|
||||
return strings.Join(rows, "\n") + "\n"
|
||||
}
|
||||
|
||||
// NewTree initialises the Tree by building up the nodes of a BMT
|
||||
// segment size is stipulated to be the size of the hash
|
||||
// segmentCount needs to be positive integer and does not need to be
|
||||
// a power of two and can even be an odd number
|
||||
// segmentSize * segmentCount determines the maximum chunk size
|
||||
// hashed using the tree
|
||||
func NewTree(hasher BaseHasher, segmentSize, segmentCount int) *Tree {
|
||||
n := NewNode(0, 0, nil)
|
||||
n.root = true
|
||||
prevlevel := []*Node{n}
|
||||
// iterate over levels and creates 2^level nodes
|
||||
level := 1
|
||||
count := 2
|
||||
for d := 1; d <= depth(segmentCount); d++ {
|
||||
nodes := make([]*Node, count)
|
||||
for i := 0; i < len(nodes); i++ {
|
||||
var parent *Node
|
||||
parent = prevlevel[i/2]
|
||||
t := NewNode(level, i, parent)
|
||||
nodes[i] = t
|
||||
}
|
||||
prevlevel = nodes
|
||||
level++
|
||||
count *= 2
|
||||
}
|
||||
// the datanode level is the nodes on the last level where
|
||||
return &Tree{
|
||||
leaves: prevlevel,
|
||||
}
|
||||
}
|
||||
|
||||
// methods needed by hash.Hash
|
||||
|
||||
// Size returns the size
|
||||
func (self *Hasher) Size() int {
|
||||
return self.size
|
||||
}
|
||||
|
||||
// BlockSize returns the block size
|
||||
func (self *Hasher) BlockSize() int {
|
||||
return self.blocksize
|
||||
}
|
||||
|
||||
// Sum returns the hash of the buffer
|
||||
// hash.Hash interface Sum method appends the byte slice to the underlying
|
||||
// data before it calculates and returns the hash of the chunk
|
||||
func (self *Hasher) Sum(b []byte) (r []byte) {
|
||||
t := self.bmt
|
||||
i := self.cur
|
||||
n := t.leaves[i]
|
||||
j := i
|
||||
// must run strictly before all nodes calculate
|
||||
// datanodes are guaranteed to have a parent
|
||||
if len(self.segment) > self.size && i > 0 && n.parent != nil {
|
||||
n = n.parent
|
||||
} else {
|
||||
i *= 2
|
||||
}
|
||||
d := self.finalise(n, i)
|
||||
self.writeSegment(j, self.segment, d)
|
||||
c := <-self.result
|
||||
self.releaseTree()
|
||||
|
||||
// sha3(length + BMT(pure_chunk))
|
||||
if self.blockLength == nil {
|
||||
return c
|
||||
}
|
||||
res := self.pool.hasher()
|
||||
res.Reset()
|
||||
res.Write(self.blockLength)
|
||||
res.Write(c)
|
||||
return res.Sum(nil)
|
||||
}
|
||||
|
||||
// Hasher implements the SwarmHash interface
|
||||
|
||||
// Hash waits for the hasher result and returns it
|
||||
// caller must call this on a BMT Hasher being written to
|
||||
func (self *Hasher) Hash() []byte {
|
||||
return <-self.result
|
||||
}
|
||||
|
||||
// Hasher implements the io.Writer interface
|
||||
|
||||
// Write fills the buffer to hash
|
||||
// with every full segment complete launches a hasher go routine
|
||||
// that shoots up the BMT
|
||||
func (self *Hasher) Write(b []byte) (int, error) {
|
||||
l := len(b)
|
||||
if l <= 0 {
|
||||
return 0, nil
|
||||
}
|
||||
s := self.segment
|
||||
i := self.cur
|
||||
count := (self.count + 1) / 2
|
||||
need := self.count*self.size - self.cur*2*self.size
|
||||
size := self.size
|
||||
if need > size {
|
||||
size *= 2
|
||||
}
|
||||
if l < need {
|
||||
need = l
|
||||
}
|
||||
// calculate missing bit to complete current open segment
|
||||
rest := size - len(s)
|
||||
if need < rest {
|
||||
rest = need
|
||||
}
|
||||
s = append(s, b[:rest]...)
|
||||
need -= rest
|
||||
// read full segments and the last possibly partial segment
|
||||
for need > 0 && i < count-1 {
|
||||
// push all finished chunks we read
|
||||
self.writeSegment(i, s, self.depth)
|
||||
need -= size
|
||||
if need < 0 {
|
||||
size += need
|
||||
}
|
||||
s = b[rest : rest+size]
|
||||
rest += size
|
||||
i++
|
||||
}
|
||||
self.segment = s
|
||||
self.cur = i
|
||||
// otherwise, we can assume len(s) == 0, so all buffer is read and chunk is not yet full
|
||||
return l, nil
|
||||
}
|
||||
|
||||
// Hasher implements the io.ReaderFrom interface
|
||||
|
||||
// ReadFrom reads from io.Reader and appends to the data to hash using Write
|
||||
// it reads so that chunk to hash is maximum length or reader reaches EOF
|
||||
// caller must Reset the hasher prior to call
|
||||
func (self *Hasher) ReadFrom(r io.Reader) (m int64, err error) {
|
||||
bufsize := self.size*self.count - self.size*self.cur - len(self.segment)
|
||||
buf := make([]byte, bufsize)
|
||||
var read int
|
||||
for {
|
||||
var n int
|
||||
n, err = r.Read(buf)
|
||||
read += n
|
||||
if err == io.EOF || read == len(buf) {
|
||||
hash := self.Sum(buf[:n])
|
||||
if read == len(buf) {
|
||||
err = NewEOC(hash)
|
||||
}
|
||||
break
|
||||
}
|
||||
if err != nil {
|
||||
break
|
||||
}
|
||||
n, err = self.Write(buf[:n])
|
||||
if err != nil {
|
||||
break
|
||||
}
|
||||
}
|
||||
return int64(read), err
|
||||
}
|
||||
|
||||
// Reset needs to be called before writing to the hasher
|
||||
func (self *Hasher) Reset() {
|
||||
self.getTree()
|
||||
self.blockLength = nil
|
||||
}
|
||||
|
||||
// Hasher implements the SwarmHash interface
|
||||
|
||||
// ResetWithLength needs to be called before writing to the hasher
|
||||
// the argument is supposed to be the byte slice binary representation of
|
||||
// the legth of the data subsumed under the hash
|
||||
func (self *Hasher) ResetWithLength(l []byte) {
|
||||
self.Reset()
|
||||
self.blockLength = l
|
||||
|
||||
}
|
||||
|
||||
// Release gives back the Tree to the pool whereby it unlocks
|
||||
// it resets tree, segment and index
|
||||
func (self *Hasher) releaseTree() {
|
||||
if self.bmt != nil {
|
||||
n := self.bmt.leaves[self.cur]
|
||||
for ; n != nil; n = n.parent {
|
||||
n.unbalanced = false
|
||||
if n.parent != nil {
|
||||
n.root = false
|
||||
}
|
||||
}
|
||||
self.pool.Release(self.bmt)
|
||||
self.bmt = nil
|
||||
|
||||
}
|
||||
self.cur = 0
|
||||
self.segment = nil
|
||||
}
|
||||
|
||||
func (self *Hasher) writeSegment(i int, s []byte, d int) {
|
||||
h := self.pool.hasher()
|
||||
n := self.bmt.leaves[i]
|
||||
|
||||
if len(s) > self.size && n.parent != nil {
|
||||
go func() {
|
||||
h.Reset()
|
||||
h.Write(s)
|
||||
s = h.Sum(nil)
|
||||
|
||||
if n.root {
|
||||
self.result <- s
|
||||
return
|
||||
}
|
||||
self.run(n.parent, h, d, n.index, s)
|
||||
}()
|
||||
return
|
||||
}
|
||||
go self.run(n, h, d, i*2, s)
|
||||
}
|
||||
|
||||
func (self *Hasher) run(n *Node, h hash.Hash, d int, i int, s []byte) {
|
||||
isLeft := i%2 == 0
|
||||
for {
|
||||
if isLeft {
|
||||
n.left = s
|
||||
} else {
|
||||
n.right = s
|
||||
}
|
||||
if !n.unbalanced && n.toggle() {
|
||||
return
|
||||
}
|
||||
if !n.unbalanced || !isLeft || i == 0 && d == 0 {
|
||||
h.Reset()
|
||||
h.Write(n.left)
|
||||
h.Write(n.right)
|
||||
s = h.Sum(nil)
|
||||
|
||||
} else {
|
||||
s = append(n.left, n.right...)
|
||||
}
|
||||
|
||||
self.hash = s
|
||||
if n.root {
|
||||
self.result <- s
|
||||
return
|
||||
}
|
||||
|
||||
isLeft = n.isLeft
|
||||
n = n.parent
|
||||
i++
|
||||
}
|
||||
}
|
||||
|
||||
// getTree obtains a BMT resource by reserving one from the pool
|
||||
func (self *Hasher) getTree() *Tree {
|
||||
if self.bmt != nil {
|
||||
return self.bmt
|
||||
}
|
||||
t := self.pool.Reserve()
|
||||
self.bmt = t
|
||||
return t
|
||||
}
|
||||
|
||||
// atomic bool toggle implementing a concurrent reusable 2-state object
|
||||
// atomic addint with %2 implements atomic bool toggle
|
||||
// it returns true if the toggler just put it in the active/waiting state
|
||||
func (self *Node) toggle() bool {
|
||||
return atomic.AddInt32(&self.state, 1)%2 == 1
|
||||
}
|
||||
|
||||
func hashstr(b []byte) string {
|
||||
end := len(b)
|
||||
if end > 4 {
|
||||
end = 4
|
||||
}
|
||||
return fmt.Sprintf("%x", b[:end])
|
||||
}
|
||||
|
||||
func depth(n int) (d int) {
|
||||
for l := (n - 1) / 2; l > 0; l /= 2 {
|
||||
d++
|
||||
}
|
||||
return d
|
||||
}
|
||||
|
||||
// finalise is following the zigzags on the tree belonging
|
||||
// to the final datasegment
|
||||
func (self *Hasher) finalise(n *Node, i int) (d int) {
|
||||
isLeft := i%2 == 0
|
||||
for {
|
||||
// when the final segment's path is going via left segments
|
||||
// the incoming data is pushed to the parent upon pulling the left
|
||||
// we do not need toogle the state since this condition is
|
||||
// detectable
|
||||
n.unbalanced = isLeft
|
||||
n.right = nil
|
||||
if n.initial {
|
||||
n.root = true
|
||||
return d
|
||||
}
|
||||
isLeft = n.isLeft
|
||||
n = n.parent
|
||||
d++
|
||||
}
|
||||
}
|
||||
|
||||
// EOC (end of chunk) implements the error interface
|
||||
type EOC struct {
|
||||
Hash []byte // read the hash of the chunk off the error
|
||||
}
|
||||
|
||||
// Error returns the error string
|
||||
func (self *EOC) Error() string {
|
||||
return fmt.Sprintf("hasher limit reached, chunk hash: %x", self.Hash)
|
||||
}
|
||||
|
||||
// NewEOC creates new end of chunk error with the hash
|
||||
func NewEOC(hash []byte) *EOC {
|
||||
return &EOC{hash}
|
||||
}
|
|
@ -0,0 +1,85 @@
|
|||
// Copyright 2017 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
// simple nonconcurrent reference implementation for hashsize segment based
|
||||
// Binary Merkle tree hash on arbitrary but fixed maximum chunksize
|
||||
//
|
||||
// This implementation does not take advantage of any paralellisms and uses
|
||||
// far more memory than necessary, but it is easy to see that it is correct.
|
||||
// It can be used for generating test cases for optimized implementations.
|
||||
// see testBMTHasherCorrectness function in bmt_test.go
|
||||
package bmt
|
||||
|
||||
import (
|
||||
"hash"
|
||||
)
|
||||
|
||||
// RefHasher is the non-optimized easy to read reference implementation of BMT
|
||||
type RefHasher struct {
|
||||
span int
|
||||
section int
|
||||
cap int
|
||||
h hash.Hash
|
||||
}
|
||||
|
||||
// NewRefHasher returns a new RefHasher
|
||||
func NewRefHasher(hasher BaseHasher, count int) *RefHasher {
|
||||
h := hasher()
|
||||
hashsize := h.Size()
|
||||
maxsize := hashsize * count
|
||||
c := 2
|
||||
for ; c < count; c *= 2 {
|
||||
}
|
||||
if c > 2 {
|
||||
c /= 2
|
||||
}
|
||||
return &RefHasher{
|
||||
section: 2 * hashsize,
|
||||
span: c * hashsize,
|
||||
cap: maxsize,
|
||||
h: h,
|
||||
}
|
||||
}
|
||||
|
||||
// Hash returns the BMT hash of the byte slice
|
||||
// implements the SwarmHash interface
|
||||
func (rh *RefHasher) Hash(d []byte) []byte {
|
||||
if len(d) > rh.cap {
|
||||
d = d[:rh.cap]
|
||||
}
|
||||
|
||||
return rh.hash(d, rh.span)
|
||||
}
|
||||
|
||||
func (rh *RefHasher) hash(d []byte, s int) []byte {
|
||||
l := len(d)
|
||||
left := d
|
||||
var right []byte
|
||||
if l > rh.section {
|
||||
for ; s >= l; s /= 2 {
|
||||
}
|
||||
left = rh.hash(d[:s], s)
|
||||
right = d[s:]
|
||||
if l-s > rh.section/2 {
|
||||
right = rh.hash(right, s)
|
||||
}
|
||||
}
|
||||
defer rh.h.Reset()
|
||||
rh.h.Write(left)
|
||||
rh.h.Write(right)
|
||||
h := rh.h.Sum(nil)
|
||||
return h
|
||||
}
|
|
@ -0,0 +1,481 @@
|
|||
// Copyright 2017 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
package bmt
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
crand "crypto/rand"
|
||||
"fmt"
|
||||
"hash"
|
||||
"io"
|
||||
"math/rand"
|
||||
"sync"
|
||||
"sync/atomic"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ethereum/go-ethereum/crypto/sha3"
|
||||
)
|
||||
|
||||
const (
|
||||
maxproccnt = 8
|
||||
)
|
||||
|
||||
// TestRefHasher tests that the RefHasher computes the expected BMT hash for
|
||||
// all data lengths between 0 and 256 bytes
|
||||
func TestRefHasher(t *testing.T) {
|
||||
hashFunc := sha3.NewKeccak256
|
||||
|
||||
sha3 := func(data ...[]byte) []byte {
|
||||
h := hashFunc()
|
||||
for _, v := range data {
|
||||
h.Write(v)
|
||||
}
|
||||
return h.Sum(nil)
|
||||
}
|
||||
|
||||
// the test struct is used to specify the expected BMT hash for data
|
||||
// lengths between "from" and "to"
|
||||
type test struct {
|
||||
from int64
|
||||
to int64
|
||||
expected func([]byte) []byte
|
||||
}
|
||||
|
||||
var tests []*test
|
||||
|
||||
// all lengths in [0,64] should be:
|
||||
//
|
||||
// sha3(data)
|
||||
//
|
||||
tests = append(tests, &test{
|
||||
from: 0,
|
||||
to: 64,
|
||||
expected: func(data []byte) []byte {
|
||||
return sha3(data)
|
||||
},
|
||||
})
|
||||
|
||||
// all lengths in [65,96] should be:
|
||||
//
|
||||
// sha3(
|
||||
// sha3(data[:64])
|
||||
// data[64:]
|
||||
// )
|
||||
//
|
||||
tests = append(tests, &test{
|
||||
from: 65,
|
||||
to: 96,
|
||||
expected: func(data []byte) []byte {
|
||||
return sha3(sha3(data[:64]), data[64:])
|
||||
},
|
||||
})
|
||||
|
||||
// all lengths in [97,128] should be:
|
||||
//
|
||||
// sha3(
|
||||
// sha3(data[:64])
|
||||
// sha3(data[64:])
|
||||
// )
|
||||
//
|
||||
tests = append(tests, &test{
|
||||
from: 97,
|
||||
to: 128,
|
||||
expected: func(data []byte) []byte {
|
||||
return sha3(sha3(data[:64]), sha3(data[64:]))
|
||||
},
|
||||
})
|
||||
|
||||
// all lengths in [129,160] should be:
|
||||
//
|
||||
// sha3(
|
||||
// sha3(
|
||||
// sha3(data[:64])
|
||||
// sha3(data[64:128])
|
||||
// )
|
||||
// data[128:]
|
||||
// )
|
||||
//
|
||||
tests = append(tests, &test{
|
||||
from: 129,
|
||||
to: 160,
|
||||
expected: func(data []byte) []byte {
|
||||
return sha3(sha3(sha3(data[:64]), sha3(data[64:128])), data[128:])
|
||||
},
|
||||
})
|
||||
|
||||
// all lengths in [161,192] should be:
|
||||
//
|
||||
// sha3(
|
||||
// sha3(
|
||||
// sha3(data[:64])
|
||||
// sha3(data[64:128])
|
||||
// )
|
||||
// sha3(data[128:])
|
||||
// )
|
||||
//
|
||||
tests = append(tests, &test{
|
||||
from: 161,
|
||||
to: 192,
|
||||
expected: func(data []byte) []byte {
|
||||
return sha3(sha3(sha3(data[:64]), sha3(data[64:128])), sha3(data[128:]))
|
||||
},
|
||||
})
|
||||
|
||||
// all lengths in [193,224] should be:
|
||||
//
|
||||
// sha3(
|
||||
// sha3(
|
||||
// sha3(data[:64])
|
||||
// sha3(data[64:128])
|
||||
// )
|
||||
// sha3(
|
||||
// sha3(data[128:192])
|
||||
// data[192:]
|
||||
// )
|
||||
// )
|
||||
//
|
||||
tests = append(tests, &test{
|
||||
from: 193,
|
||||
to: 224,
|
||||
expected: func(data []byte) []byte {
|
||||
return sha3(sha3(sha3(data[:64]), sha3(data[64:128])), sha3(sha3(data[128:192]), data[192:]))
|
||||
},
|
||||
})
|
||||
|
||||
// all lengths in [225,256] should be:
|
||||
//
|
||||
// sha3(
|
||||
// sha3(
|
||||
// sha3(data[:64])
|
||||
// sha3(data[64:128])
|
||||
// )
|
||||
// sha3(
|
||||
// sha3(data[128:192])
|
||||
// sha3(data[192:])
|
||||
// )
|
||||
// )
|
||||
//
|
||||
tests = append(tests, &test{
|
||||
from: 225,
|
||||
to: 256,
|
||||
expected: func(data []byte) []byte {
|
||||
return sha3(sha3(sha3(data[:64]), sha3(data[64:128])), sha3(sha3(data[128:192]), sha3(data[192:])))
|
||||
},
|
||||
})
|
||||
|
||||
// run the tests
|
||||
for _, x := range tests {
|
||||
for length := x.from; length <= x.to; length++ {
|
||||
t.Run(fmt.Sprintf("%d_bytes", length), func(t *testing.T) {
|
||||
data := make([]byte, length)
|
||||
if _, err := io.ReadFull(crand.Reader, data); err != nil && err != io.EOF {
|
||||
t.Fatal(err)
|
||||
}
|
||||
expected := x.expected(data)
|
||||
actual := NewRefHasher(hashFunc, 128).Hash(data)
|
||||
if !bytes.Equal(actual, expected) {
|
||||
t.Fatalf("expected %x, got %x", expected, actual)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func testDataReader(l int) (r io.Reader) {
|
||||
return io.LimitReader(crand.Reader, int64(l))
|
||||
}
|
||||
|
||||
func TestHasherCorrectness(t *testing.T) {
|
||||
err := testHasher(testBaseHasher)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
func testHasher(f func(BaseHasher, []byte, int, int) error) error {
|
||||
tdata := testDataReader(4128)
|
||||
data := make([]byte, 4128)
|
||||
tdata.Read(data)
|
||||
hasher := sha3.NewKeccak256
|
||||
size := hasher().Size()
|
||||
counts := []int{1, 2, 3, 4, 5, 8, 16, 32, 64, 128}
|
||||
|
||||
var err error
|
||||
for _, count := range counts {
|
||||
max := count * size
|
||||
incr := 1
|
||||
for n := 0; n <= max+incr; n += incr {
|
||||
err = f(hasher, data, n, count)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func TestHasherReuseWithoutRelease(t *testing.T) {
|
||||
testHasherReuse(1, t)
|
||||
}
|
||||
|
||||
func TestHasherReuseWithRelease(t *testing.T) {
|
||||
testHasherReuse(maxproccnt, t)
|
||||
}
|
||||
|
||||
func testHasherReuse(i int, t *testing.T) {
|
||||
hasher := sha3.NewKeccak256
|
||||
pool := NewTreePool(hasher, 128, i)
|
||||
defer pool.Drain(0)
|
||||
bmt := New(pool)
|
||||
|
||||
for i := 0; i < 500; i++ {
|
||||
n := rand.Intn(4096)
|
||||
tdata := testDataReader(n)
|
||||
data := make([]byte, n)
|
||||
tdata.Read(data)
|
||||
|
||||
err := testHasherCorrectness(bmt, hasher, data, n, 128)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestHasherConcurrency(t *testing.T) {
|
||||
hasher := sha3.NewKeccak256
|
||||
pool := NewTreePool(hasher, 128, maxproccnt)
|
||||
defer pool.Drain(0)
|
||||
wg := sync.WaitGroup{}
|
||||
cycles := 100
|
||||
wg.Add(maxproccnt * cycles)
|
||||
errc := make(chan error)
|
||||
|
||||
for p := 0; p < maxproccnt; p++ {
|
||||
for i := 0; i < cycles; i++ {
|
||||
go func() {
|
||||
bmt := New(pool)
|
||||
n := rand.Intn(4096)
|
||||
tdata := testDataReader(n)
|
||||
data := make([]byte, n)
|
||||
tdata.Read(data)
|
||||
err := testHasherCorrectness(bmt, hasher, data, n, 128)
|
||||
wg.Done()
|
||||
if err != nil {
|
||||
errc <- err
|
||||
}
|
||||
}()
|
||||
}
|
||||
}
|
||||
go func() {
|
||||
wg.Wait()
|
||||
close(errc)
|
||||
}()
|
||||
var err error
|
||||
select {
|
||||
case <-time.NewTimer(5 * time.Second).C:
|
||||
err = fmt.Errorf("timed out")
|
||||
case err = <-errc:
|
||||
}
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
func testBaseHasher(hasher BaseHasher, d []byte, n, count int) error {
|
||||
pool := NewTreePool(hasher, count, 1)
|
||||
defer pool.Drain(0)
|
||||
bmt := New(pool)
|
||||
return testHasherCorrectness(bmt, hasher, d, n, count)
|
||||
}
|
||||
|
||||
func testHasherCorrectness(bmt hash.Hash, hasher BaseHasher, d []byte, n, count int) (err error) {
|
||||
data := d[:n]
|
||||
rbmt := NewRefHasher(hasher, count)
|
||||
exp := rbmt.Hash(data)
|
||||
timeout := time.NewTimer(time.Second)
|
||||
c := make(chan error)
|
||||
|
||||
go func() {
|
||||
bmt.Reset()
|
||||
bmt.Write(data)
|
||||
got := bmt.Sum(nil)
|
||||
if !bytes.Equal(got, exp) {
|
||||
c <- fmt.Errorf("wrong hash: expected %x, got %x", exp, got)
|
||||
}
|
||||
close(c)
|
||||
}()
|
||||
select {
|
||||
case <-timeout.C:
|
||||
err = fmt.Errorf("BMT hash calculation timed out")
|
||||
case err = <-c:
|
||||
}
|
||||
return err
|
||||
}
|
||||
|
||||
func BenchmarkSHA3_4k(t *testing.B) { benchmarkSHA3(4096, t) }
|
||||
func BenchmarkSHA3_2k(t *testing.B) { benchmarkSHA3(4096/2, t) }
|
||||
func BenchmarkSHA3_1k(t *testing.B) { benchmarkSHA3(4096/4, t) }
|
||||
func BenchmarkSHA3_512b(t *testing.B) { benchmarkSHA3(4096/8, t) }
|
||||
func BenchmarkSHA3_256b(t *testing.B) { benchmarkSHA3(4096/16, t) }
|
||||
func BenchmarkSHA3_128b(t *testing.B) { benchmarkSHA3(4096/32, t) }
|
||||
|
||||
func BenchmarkBMTBaseline_4k(t *testing.B) { benchmarkBMTBaseline(4096, t) }
|
||||
func BenchmarkBMTBaseline_2k(t *testing.B) { benchmarkBMTBaseline(4096/2, t) }
|
||||
func BenchmarkBMTBaseline_1k(t *testing.B) { benchmarkBMTBaseline(4096/4, t) }
|
||||
func BenchmarkBMTBaseline_512b(t *testing.B) { benchmarkBMTBaseline(4096/8, t) }
|
||||
func BenchmarkBMTBaseline_256b(t *testing.B) { benchmarkBMTBaseline(4096/16, t) }
|
||||
func BenchmarkBMTBaseline_128b(t *testing.B) { benchmarkBMTBaseline(4096/32, t) }
|
||||
|
||||
func BenchmarkRefHasher_4k(t *testing.B) { benchmarkRefHasher(4096, t) }
|
||||
func BenchmarkRefHasher_2k(t *testing.B) { benchmarkRefHasher(4096/2, t) }
|
||||
func BenchmarkRefHasher_1k(t *testing.B) { benchmarkRefHasher(4096/4, t) }
|
||||
func BenchmarkRefHasher_512b(t *testing.B) { benchmarkRefHasher(4096/8, t) }
|
||||
func BenchmarkRefHasher_256b(t *testing.B) { benchmarkRefHasher(4096/16, t) }
|
||||
func BenchmarkRefHasher_128b(t *testing.B) { benchmarkRefHasher(4096/32, t) }
|
||||
|
||||
func BenchmarkHasher_4k(t *testing.B) { benchmarkHasher(4096, t) }
|
||||
func BenchmarkHasher_2k(t *testing.B) { benchmarkHasher(4096/2, t) }
|
||||
func BenchmarkHasher_1k(t *testing.B) { benchmarkHasher(4096/4, t) }
|
||||
func BenchmarkHasher_512b(t *testing.B) { benchmarkHasher(4096/8, t) }
|
||||
func BenchmarkHasher_256b(t *testing.B) { benchmarkHasher(4096/16, t) }
|
||||
func BenchmarkHasher_128b(t *testing.B) { benchmarkHasher(4096/32, t) }
|
||||
|
||||
func BenchmarkHasherNoReuse_4k(t *testing.B) { benchmarkHasherReuse(1, 4096, t) }
|
||||
func BenchmarkHasherNoReuse_2k(t *testing.B) { benchmarkHasherReuse(1, 4096/2, t) }
|
||||
func BenchmarkHasherNoReuse_1k(t *testing.B) { benchmarkHasherReuse(1, 4096/4, t) }
|
||||
func BenchmarkHasherNoReuse_512b(t *testing.B) { benchmarkHasherReuse(1, 4096/8, t) }
|
||||
func BenchmarkHasherNoReuse_256b(t *testing.B) { benchmarkHasherReuse(1, 4096/16, t) }
|
||||
func BenchmarkHasherNoReuse_128b(t *testing.B) { benchmarkHasherReuse(1, 4096/32, t) }
|
||||
|
||||
func BenchmarkHasherReuse_4k(t *testing.B) { benchmarkHasherReuse(16, 4096, t) }
|
||||
func BenchmarkHasherReuse_2k(t *testing.B) { benchmarkHasherReuse(16, 4096/2, t) }
|
||||
func BenchmarkHasherReuse_1k(t *testing.B) { benchmarkHasherReuse(16, 4096/4, t) }
|
||||
func BenchmarkHasherReuse_512b(t *testing.B) { benchmarkHasherReuse(16, 4096/8, t) }
|
||||
func BenchmarkHasherReuse_256b(t *testing.B) { benchmarkHasherReuse(16, 4096/16, t) }
|
||||
func BenchmarkHasherReuse_128b(t *testing.B) { benchmarkHasherReuse(16, 4096/32, t) }
|
||||
|
||||
// benchmarks the minimum hashing time for a balanced (for simplicity) BMT
|
||||
// by doing count/segmentsize parallel hashings of 2*segmentsize bytes
|
||||
// doing it on n maxproccnt each reusing the base hasher
|
||||
// the premise is that this is the minimum computation needed for a BMT
|
||||
// therefore this serves as a theoretical optimum for concurrent implementations
|
||||
func benchmarkBMTBaseline(n int, t *testing.B) {
|
||||
tdata := testDataReader(64)
|
||||
data := make([]byte, 64)
|
||||
tdata.Read(data)
|
||||
hasher := sha3.NewKeccak256
|
||||
|
||||
t.ReportAllocs()
|
||||
t.ResetTimer()
|
||||
for i := 0; i < t.N; i++ {
|
||||
count := int32((n-1)/hasher().Size() + 1)
|
||||
wg := sync.WaitGroup{}
|
||||
wg.Add(maxproccnt)
|
||||
var i int32
|
||||
for j := 0; j < maxproccnt; j++ {
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
h := hasher()
|
||||
for atomic.AddInt32(&i, 1) < count {
|
||||
h.Reset()
|
||||
h.Write(data)
|
||||
h.Sum(nil)
|
||||
}
|
||||
}()
|
||||
}
|
||||
wg.Wait()
|
||||
}
|
||||
}
|
||||
|
||||
func benchmarkHasher(n int, t *testing.B) {
|
||||
tdata := testDataReader(n)
|
||||
data := make([]byte, n)
|
||||
tdata.Read(data)
|
||||
|
||||
size := 1
|
||||
hasher := sha3.NewKeccak256
|
||||
segmentCount := 128
|
||||
pool := NewTreePool(hasher, segmentCount, size)
|
||||
bmt := New(pool)
|
||||
|
||||
t.ReportAllocs()
|
||||
t.ResetTimer()
|
||||
for i := 0; i < t.N; i++ {
|
||||
bmt.Reset()
|
||||
bmt.Write(data)
|
||||
bmt.Sum(nil)
|
||||
}
|
||||
}
|
||||
|
||||
func benchmarkHasherReuse(poolsize, n int, t *testing.B) {
|
||||
tdata := testDataReader(n)
|
||||
data := make([]byte, n)
|
||||
tdata.Read(data)
|
||||
|
||||
hasher := sha3.NewKeccak256
|
||||
segmentCount := 128
|
||||
pool := NewTreePool(hasher, segmentCount, poolsize)
|
||||
cycles := 200
|
||||
|
||||
t.ReportAllocs()
|
||||
t.ResetTimer()
|
||||
for i := 0; i < t.N; i++ {
|
||||
wg := sync.WaitGroup{}
|
||||
wg.Add(cycles)
|
||||
for j := 0; j < cycles; j++ {
|
||||
bmt := New(pool)
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
bmt.Reset()
|
||||
bmt.Write(data)
|
||||
bmt.Sum(nil)
|
||||
}()
|
||||
}
|
||||
wg.Wait()
|
||||
}
|
||||
}
|
||||
|
||||
func benchmarkSHA3(n int, t *testing.B) {
|
||||
data := make([]byte, n)
|
||||
tdata := testDataReader(n)
|
||||
tdata.Read(data)
|
||||
hasher := sha3.NewKeccak256
|
||||
h := hasher()
|
||||
|
||||
t.ReportAllocs()
|
||||
t.ResetTimer()
|
||||
for i := 0; i < t.N; i++ {
|
||||
h.Reset()
|
||||
h.Write(data)
|
||||
h.Sum(nil)
|
||||
}
|
||||
}
|
||||
|
||||
func benchmarkRefHasher(n int, t *testing.B) {
|
||||
data := make([]byte, n)
|
||||
tdata := testDataReader(n)
|
||||
tdata.Read(data)
|
||||
hasher := sha3.NewKeccak256
|
||||
rbmt := NewRefHasher(hasher, 128)
|
||||
|
||||
t.ReportAllocs()
|
||||
t.ResetTimer()
|
||||
for i := 0; i < t.N; i++ {
|
||||
rbmt.Hash(data)
|
||||
}
|
||||
}
|
|
@ -51,7 +51,8 @@ data_{i} := size(subtree_{i}) || key_{j} || key_{j+1} .... || key_{j+n-1}
|
|||
*/
|
||||
|
||||
const (
|
||||
defaultHash = "SHA3" // http://golang.org/pkg/hash/#Hash
|
||||
defaultHash = "SHA3"
|
||||
// defaultHash = "BMTSHA3" // http://golang.org/pkg/hash/#Hash
|
||||
// defaultHash = "SHA256" // http://golang.org/pkg/hash/#Hash
|
||||
defaultBranches int64 = 128
|
||||
// hashSize int64 = hasherfunc.New().Size() // hasher knows about its own length in bytes
|
||||
|
|
|
@ -24,6 +24,7 @@ import (
|
|||
"io"
|
||||
"sync"
|
||||
|
||||
// "github.com/ethereum/go-ethereum/bmt"
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/ethereum/go-ethereum/crypto/sha3"
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue