mirror of https://github.com/status-im/op-geth.git
Merge pull request #863 from karalabe/ordered-block-download
eth/downloader: prioritize block fetch based on chain position, cap memo...
This commit is contained in:
commit
0214cbe0fb
|
@ -98,6 +98,10 @@
|
|||
"Comment": "v0.1.0-3-g27c4092",
|
||||
"Rev": "27c40922c40b43fe04554d8223a402af3ea333f3"
|
||||
},
|
||||
{
|
||||
"ImportPath": "gopkg.in/karalabe/cookiejar.v2/collections/prque",
|
||||
"Rev": "0b2e270613f5d7ba262a5749b9e32270131497a2"
|
||||
},
|
||||
{
|
||||
"ImportPath": "gopkg.in/qml.v1/cdata",
|
||||
"Rev": "1116cb9cd8dee23f8d444ded354eb53122739f99"
|
||||
|
|
44
Godeps/_workspace/src/gopkg.in/karalabe/cookiejar.v2/collections/prque/example_test.go
generated
vendored
Normal file
44
Godeps/_workspace/src/gopkg.in/karalabe/cookiejar.v2/collections/prque/example_test.go
generated
vendored
Normal file
|
@ -0,0 +1,44 @@
|
|||
// CookieJar - A contestant's algorithm toolbox
|
||||
// Copyright (c) 2013 Peter Szilagyi. All rights reserved.
|
||||
//
|
||||
// CookieJar is dual licensed: you can redistribute it and/or modify it under
|
||||
// the terms of the GNU General Public License as published by the Free Software
|
||||
// Foundation, either version 3 of the License, or (at your option) any later
|
||||
// version.
|
||||
//
|
||||
// The toolbox is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// Alternatively, the CookieJar toolbox may be used in accordance with the terms
|
||||
// and conditions contained in a signed written agreement between you and the
|
||||
// author(s).
|
||||
|
||||
package prque_test
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"gopkg.in/karalabe/cookiejar.v2/collections/prque"
|
||||
)
|
||||
|
||||
// Insert some data into a priority queue and pop them out in prioritized order.
|
||||
func Example_usage() {
|
||||
// Define some data to push into the priority queue
|
||||
prio := []float32{77.7, 22.2, 44.4, 55.5, 11.1, 88.8, 33.3, 99.9, 0.0, 66.6}
|
||||
data := []string{"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"}
|
||||
|
||||
// Create the priority queue and insert the prioritized data
|
||||
pq := prque.New()
|
||||
for i := 0; i < len(data); i++ {
|
||||
pq.Push(data[i], prio[i])
|
||||
}
|
||||
// Pop out the data and print them
|
||||
for !pq.Empty() {
|
||||
val, prio := pq.Pop()
|
||||
fmt.Printf("%.1f:%s ", prio, val)
|
||||
}
|
||||
// Output:
|
||||
// 99.9:seven 88.8:five 77.7:zero 66.6:nine 55.5:three 44.4:two 33.3:six 22.2:one 11.1:four 0.0:eight
|
||||
}
|
75
Godeps/_workspace/src/gopkg.in/karalabe/cookiejar.v2/collections/prque/prque.go
generated
vendored
Normal file
75
Godeps/_workspace/src/gopkg.in/karalabe/cookiejar.v2/collections/prque/prque.go
generated
vendored
Normal file
|
@ -0,0 +1,75 @@
|
|||
// CookieJar - A contestant's algorithm toolbox
|
||||
// Copyright (c) 2013 Peter Szilagyi. All rights reserved.
|
||||
//
|
||||
// CookieJar is dual licensed: you can redistribute it and/or modify it under
|
||||
// the terms of the GNU General Public License as published by the Free Software
|
||||
// Foundation, either version 3 of the License, or (at your option) any later
|
||||
// version.
|
||||
//
|
||||
// The toolbox is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// Alternatively, the CookieJar toolbox may be used in accordance with the terms
|
||||
// and conditions contained in a signed written agreement between you and the
|
||||
// author(s).
|
||||
|
||||
// Package prque implements a priority queue data structure supporting arbitrary
|
||||
// value types and float priorities.
|
||||
//
|
||||
// The reasoning behind using floats for the priorities vs. ints or interfaces
|
||||
// was larger flexibility without sacrificing too much performance or code
|
||||
// complexity.
|
||||
//
|
||||
// If you would like to use a min-priority queue, simply negate the priorities.
|
||||
//
|
||||
// Internally the queue is based on the standard heap package working on a
|
||||
// sortable version of the block based stack.
|
||||
package prque
|
||||
|
||||
import (
|
||||
"container/heap"
|
||||
)
|
||||
|
||||
// Priority queue data structure.
|
||||
type Prque struct {
|
||||
cont *sstack
|
||||
}
|
||||
|
||||
// Creates a new priority queue.
|
||||
func New() *Prque {
|
||||
return &Prque{newSstack()}
|
||||
}
|
||||
|
||||
// Pushes a value with a given priority into the queue, expanding if necessary.
|
||||
func (p *Prque) Push(data interface{}, priority float32) {
|
||||
heap.Push(p.cont, &item{data, priority})
|
||||
}
|
||||
|
||||
// Pops the value with the greates priority off the stack and returns it.
|
||||
// Currently no shrinking is done.
|
||||
func (p *Prque) Pop() (interface{}, float32) {
|
||||
item := heap.Pop(p.cont).(*item)
|
||||
return item.value, item.priority
|
||||
}
|
||||
|
||||
// Pops only the item from the queue, dropping the associated priority value.
|
||||
func (p *Prque) PopItem() interface{} {
|
||||
return heap.Pop(p.cont).(*item).value
|
||||
}
|
||||
|
||||
// Checks whether the priority queue is empty.
|
||||
func (p *Prque) Empty() bool {
|
||||
return p.cont.Len() == 0
|
||||
}
|
||||
|
||||
// Returns the number of element in the priority queue.
|
||||
func (p *Prque) Size() int {
|
||||
return p.cont.Len()
|
||||
}
|
||||
|
||||
// Clears the contents of the priority queue.
|
||||
func (p *Prque) Reset() {
|
||||
*p = *New()
|
||||
}
|
139
Godeps/_workspace/src/gopkg.in/karalabe/cookiejar.v2/collections/prque/prque_test.go
generated
vendored
Normal file
139
Godeps/_workspace/src/gopkg.in/karalabe/cookiejar.v2/collections/prque/prque_test.go
generated
vendored
Normal file
|
@ -0,0 +1,139 @@
|
|||
// CookieJar - A contestant's algorithm toolbox
|
||||
// Copyright (c) 2013 Peter Szilagyi. All rights reserved.
|
||||
//
|
||||
// CookieJar is dual licensed: you can redistribute it and/or modify it under
|
||||
// the terms of the GNU General Public License as published by the Free Software
|
||||
// Foundation, either version 3 of the License, or (at your option) any later
|
||||
// version.
|
||||
//
|
||||
// The toolbox is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// Alternatively, the CookieJar toolbox may be used in accordance with the terms
|
||||
// and conditions contained in a signed written agreement between you and the
|
||||
// author(s).
|
||||
|
||||
package prque
|
||||
|
||||
import (
|
||||
"math/rand"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestPrque(t *testing.T) {
|
||||
// Generate a batch of random data and a specific priority order
|
||||
size := 16 * blockSize
|
||||
prio := rand.Perm(size)
|
||||
data := make([]int, size)
|
||||
for i := 0; i < size; i++ {
|
||||
data[i] = rand.Int()
|
||||
}
|
||||
queue := New()
|
||||
for rep := 0; rep < 2; rep++ {
|
||||
// Fill a priority queue with the above data
|
||||
for i := 0; i < size; i++ {
|
||||
queue.Push(data[i], float32(prio[i]))
|
||||
if queue.Size() != i+1 {
|
||||
t.Errorf("queue size mismatch: have %v, want %v.", queue.Size(), i+1)
|
||||
}
|
||||
}
|
||||
// Create a map the values to the priorities for easier verification
|
||||
dict := make(map[float32]int)
|
||||
for i := 0; i < size; i++ {
|
||||
dict[float32(prio[i])] = data[i]
|
||||
}
|
||||
// Pop out the elements in priority order and verify them
|
||||
prevPrio := float32(size + 1)
|
||||
for !queue.Empty() {
|
||||
val, prio := queue.Pop()
|
||||
if prio > prevPrio {
|
||||
t.Errorf("invalid priority order: %v after %v.", prio, prevPrio)
|
||||
}
|
||||
prevPrio = prio
|
||||
if val != dict[prio] {
|
||||
t.Errorf("push/pop mismatch: have %v, want %v.", val, dict[prio])
|
||||
}
|
||||
delete(dict, prio)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestReset(t *testing.T) {
|
||||
// Generate a batch of random data and a specific priority order
|
||||
size := 16 * blockSize
|
||||
prio := rand.Perm(size)
|
||||
data := make([]int, size)
|
||||
for i := 0; i < size; i++ {
|
||||
data[i] = rand.Int()
|
||||
}
|
||||
queue := New()
|
||||
for rep := 0; rep < 2; rep++ {
|
||||
// Fill a priority queue with the above data
|
||||
for i := 0; i < size; i++ {
|
||||
queue.Push(data[i], float32(prio[i]))
|
||||
if queue.Size() != i+1 {
|
||||
t.Errorf("queue size mismatch: have %v, want %v.", queue.Size(), i+1)
|
||||
}
|
||||
}
|
||||
// Create a map the values to the priorities for easier verification
|
||||
dict := make(map[float32]int)
|
||||
for i := 0; i < size; i++ {
|
||||
dict[float32(prio[i])] = data[i]
|
||||
}
|
||||
// Pop out half the elements in priority order and verify them
|
||||
prevPrio := float32(size + 1)
|
||||
for i := 0; i < size/2; i++ {
|
||||
val, prio := queue.Pop()
|
||||
if prio > prevPrio {
|
||||
t.Errorf("invalid priority order: %v after %v.", prio, prevPrio)
|
||||
}
|
||||
prevPrio = prio
|
||||
if val != dict[prio] {
|
||||
t.Errorf("push/pop mismatch: have %v, want %v.", val, dict[prio])
|
||||
}
|
||||
delete(dict, prio)
|
||||
}
|
||||
// Reset and ensure it's empty
|
||||
queue.Reset()
|
||||
if !queue.Empty() {
|
||||
t.Errorf("priority queue not empty after reset: %v", queue)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPush(b *testing.B) {
|
||||
// Create some initial data
|
||||
data := make([]int, b.N)
|
||||
prio := make([]float32, b.N)
|
||||
for i := 0; i < len(data); i++ {
|
||||
data[i] = rand.Int()
|
||||
prio[i] = rand.Float32()
|
||||
}
|
||||
// Execute the benchmark
|
||||
b.ResetTimer()
|
||||
queue := New()
|
||||
for i := 0; i < len(data); i++ {
|
||||
queue.Push(data[i], prio[i])
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPop(b *testing.B) {
|
||||
// Create some initial data
|
||||
data := make([]int, b.N)
|
||||
prio := make([]float32, b.N)
|
||||
for i := 0; i < len(data); i++ {
|
||||
data[i] = rand.Int()
|
||||
prio[i] = rand.Float32()
|
||||
}
|
||||
queue := New()
|
||||
for i := 0; i < len(data); i++ {
|
||||
queue.Push(data[i], prio[i])
|
||||
}
|
||||
// Execute the benchmark
|
||||
b.ResetTimer()
|
||||
for !queue.Empty() {
|
||||
queue.Pop()
|
||||
}
|
||||
}
|
100
Godeps/_workspace/src/gopkg.in/karalabe/cookiejar.v2/collections/prque/sstack.go
generated
vendored
Normal file
100
Godeps/_workspace/src/gopkg.in/karalabe/cookiejar.v2/collections/prque/sstack.go
generated
vendored
Normal file
|
@ -0,0 +1,100 @@
|
|||
// CookieJar - A contestant's algorithm toolbox
|
||||
// Copyright (c) 2013 Peter Szilagyi. All rights reserved.
|
||||
//
|
||||
// CookieJar is dual licensed: you can redistribute it and/or modify it under
|
||||
// the terms of the GNU General Public License as published by the Free Software
|
||||
// Foundation, either version 3 of the License, or (at your option) any later
|
||||
// version.
|
||||
//
|
||||
// The toolbox is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// Alternatively, the CookieJar toolbox may be used in accordance with the terms
|
||||
// and conditions contained in a signed written agreement between you and the
|
||||
// author(s).
|
||||
|
||||
package prque
|
||||
|
||||
// The size of a block of data
|
||||
const blockSize = 4096
|
||||
|
||||
// A prioritized item in the sorted stack.
|
||||
type item struct {
|
||||
value interface{}
|
||||
priority float32
|
||||
}
|
||||
|
||||
// Internal sortable stack data structure. Implements the Push and Pop ops for
|
||||
// the stack (heap) functionality and the Len, Less and Swap methods for the
|
||||
// sortability requirements of the heaps.
|
||||
type sstack struct {
|
||||
size int
|
||||
capacity int
|
||||
offset int
|
||||
|
||||
blocks [][]*item
|
||||
active []*item
|
||||
}
|
||||
|
||||
// Creates a new, empty stack.
|
||||
func newSstack() *sstack {
|
||||
result := new(sstack)
|
||||
result.active = make([]*item, blockSize)
|
||||
result.blocks = [][]*item{result.active}
|
||||
result.capacity = blockSize
|
||||
return result
|
||||
}
|
||||
|
||||
// Pushes a value onto the stack, expanding it if necessary. Required by
|
||||
// heap.Interface.
|
||||
func (s *sstack) Push(data interface{}) {
|
||||
if s.size == s.capacity {
|
||||
s.active = make([]*item, blockSize)
|
||||
s.blocks = append(s.blocks, s.active)
|
||||
s.capacity += blockSize
|
||||
s.offset = 0
|
||||
} else if s.offset == blockSize {
|
||||
s.active = s.blocks[s.size/blockSize]
|
||||
s.offset = 0
|
||||
}
|
||||
s.active[s.offset] = data.(*item)
|
||||
s.offset++
|
||||
s.size++
|
||||
}
|
||||
|
||||
// Pops a value off the stack and returns it. Currently no shrinking is done.
|
||||
// Required by heap.Interface.
|
||||
func (s *sstack) Pop() (res interface{}) {
|
||||
s.size--
|
||||
s.offset--
|
||||
if s.offset < 0 {
|
||||
s.offset = blockSize - 1
|
||||
s.active = s.blocks[s.size/blockSize]
|
||||
}
|
||||
res, s.active[s.offset] = s.active[s.offset], nil
|
||||
return
|
||||
}
|
||||
|
||||
// Returns the length of the stack. Required by sort.Interface.
|
||||
func (s *sstack) Len() int {
|
||||
return s.size
|
||||
}
|
||||
|
||||
// Compares the priority of two elements of the stack (higher is first).
|
||||
// Required by sort.Interface.
|
||||
func (s *sstack) Less(i, j int) bool {
|
||||
return s.blocks[i/blockSize][i%blockSize].priority > s.blocks[j/blockSize][j%blockSize].priority
|
||||
}
|
||||
|
||||
// Swaps two elements in the stack. Required by sort.Interface.
|
||||
func (s *sstack) Swap(i, j int) {
|
||||
ib, io, jb, jo := i/blockSize, i%blockSize, j/blockSize, j%blockSize
|
||||
s.blocks[ib][io], s.blocks[jb][jo] = s.blocks[jb][jo], s.blocks[ib][io]
|
||||
}
|
||||
|
||||
// Resets the stack, effectively clearing its contents.
|
||||
func (s *sstack) Reset() {
|
||||
*s = *newSstack()
|
||||
}
|
109
Godeps/_workspace/src/gopkg.in/karalabe/cookiejar.v2/collections/prque/sstack_test.go
generated
vendored
Normal file
109
Godeps/_workspace/src/gopkg.in/karalabe/cookiejar.v2/collections/prque/sstack_test.go
generated
vendored
Normal file
|
@ -0,0 +1,109 @@
|
|||
// CookieJar - A contestant's algorithm toolbox
|
||||
// Copyright (c) 2013 Peter Szilagyi. All rights reserved.
|
||||
//
|
||||
// CookieJar is dual licensed: you can redistribute it and/or modify it under
|
||||
// the terms of the GNU General Public License as published by the Free Software
|
||||
// Foundation, either version 3 of the License, or (at your option) any later
|
||||
// version.
|
||||
//
|
||||
// The toolbox is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// Alternatively, the CookieJar toolbox may be used in accordance with the terms
|
||||
// and conditions contained in a signed written agreement between you and the
|
||||
// author(s).
|
||||
|
||||
package prque
|
||||
|
||||
import (
|
||||
"math/rand"
|
||||
"sort"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestSstack(t *testing.T) {
|
||||
// Create some initial data
|
||||
size := 16 * blockSize
|
||||
data := make([]*item, size)
|
||||
for i := 0; i < size; i++ {
|
||||
data[i] = &item{rand.Int(), rand.Float32()}
|
||||
}
|
||||
stack := newSstack()
|
||||
for rep := 0; rep < 2; rep++ {
|
||||
// Push all the data into the stack, pop out every second
|
||||
secs := []*item{}
|
||||
for i := 0; i < size; i++ {
|
||||
stack.Push(data[i])
|
||||
if i%2 == 0 {
|
||||
secs = append(secs, stack.Pop().(*item))
|
||||
}
|
||||
}
|
||||
rest := []*item{}
|
||||
for stack.Len() > 0 {
|
||||
rest = append(rest, stack.Pop().(*item))
|
||||
}
|
||||
// Make sure the contents of the resulting slices are ok
|
||||
for i := 0; i < size; i++ {
|
||||
if i%2 == 0 && data[i] != secs[i/2] {
|
||||
t.Errorf("push/pop mismatch: have %v, want %v.", secs[i/2], data[i])
|
||||
}
|
||||
if i%2 == 1 && data[i] != rest[len(rest)-i/2-1] {
|
||||
t.Errorf("push/pop mismatch: have %v, want %v.", rest[len(rest)-i/2-1], data[i])
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestSstackSort(t *testing.T) {
|
||||
// Create some initial data
|
||||
size := 16 * blockSize
|
||||
data := make([]*item, size)
|
||||
for i := 0; i < size; i++ {
|
||||
data[i] = &item{rand.Int(), float32(i)}
|
||||
}
|
||||
// Push all the data into the stack
|
||||
stack := newSstack()
|
||||
for _, val := range data {
|
||||
stack.Push(val)
|
||||
}
|
||||
// Sort and pop the stack contents (should reverse the order)
|
||||
sort.Sort(stack)
|
||||
for _, val := range data {
|
||||
out := stack.Pop()
|
||||
if out != val {
|
||||
t.Errorf("push/pop mismatch after sort: have %v, want %v.", out, val)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestSstackReset(t *testing.T) {
|
||||
// Create some initial data
|
||||
size := 16 * blockSize
|
||||
data := make([]*item, size)
|
||||
for i := 0; i < size; i++ {
|
||||
data[i] = &item{rand.Int(), rand.Float32()}
|
||||
}
|
||||
stack := newSstack()
|
||||
for rep := 0; rep < 2; rep++ {
|
||||
// Push all the data into the stack, pop out every second
|
||||
secs := []*item{}
|
||||
for i := 0; i < size; i++ {
|
||||
stack.Push(data[i])
|
||||
if i%2 == 0 {
|
||||
secs = append(secs, stack.Pop().(*item))
|
||||
}
|
||||
}
|
||||
// Reset and verify both pulled and stack contents
|
||||
stack.Reset()
|
||||
if stack.Len() != 0 {
|
||||
t.Errorf("stack not empty after reset: %v", stack)
|
||||
}
|
||||
for i := 0; i < size; i++ {
|
||||
if i%2 == 0 && data[i] != secs[i/2] {
|
||||
t.Errorf("push/pop mismatch: have %v, want %v.", secs[i/2], data[i])
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -11,11 +11,10 @@ import (
|
|||
"github.com/ethereum/go-ethereum/core/types"
|
||||
"github.com/ethereum/go-ethereum/logger"
|
||||
"github.com/ethereum/go-ethereum/logger/glog"
|
||||
"gopkg.in/fatih/set.v0"
|
||||
)
|
||||
|
||||
const (
|
||||
maxBlockFetch = 256 // Amount of max blocks to be fetched per chunk
|
||||
maxBlockFetch = 128 // Amount of max blocks to be fetched per chunk
|
||||
peerCountTimeout = 12 * time.Second // Amount of time it takes for the peer handler to ignore minDesiredPeerCount
|
||||
hashTtl = 20 * time.Second // The amount of time it takes for a hash request to time out
|
||||
)
|
||||
|
@ -25,12 +24,12 @@ var (
|
|||
blockTtl = 20 * time.Second // The amount of time it takes for a block request to time out
|
||||
|
||||
errLowTd = errors.New("peer's TD is too low")
|
||||
errBusy = errors.New("busy")
|
||||
ErrBusy = errors.New("busy")
|
||||
errUnknownPeer = errors.New("peer's unknown or unhealthy")
|
||||
ErrBadPeer = errors.New("action from bad peer ignored")
|
||||
errBadPeer = errors.New("action from bad peer ignored")
|
||||
errNoPeers = errors.New("no peers to keep download active")
|
||||
errPendingQueue = errors.New("pending items in queue")
|
||||
errTimeout = errors.New("timeout")
|
||||
ErrTimeout = errors.New("timeout")
|
||||
errEmptyHashSet = errors.New("empty hash set by peer")
|
||||
errPeersUnavailable = errors.New("no peers available or all peers tried for block download process")
|
||||
errAlreadyInPool = errors.New("hash already in pool")
|
||||
|
@ -69,8 +68,7 @@ type Downloader struct {
|
|||
getBlock getBlockFn
|
||||
|
||||
// Status
|
||||
fetchingHashes int32
|
||||
downloadingBlocks int32
|
||||
synchronising int32
|
||||
|
||||
// Channels
|
||||
newPeerCh chan *peer
|
||||
|
@ -80,7 +78,7 @@ type Downloader struct {
|
|||
|
||||
func New(hasBlock hashCheckFn, getBlock getBlockFn) *Downloader {
|
||||
downloader := &Downloader{
|
||||
queue: newqueue(),
|
||||
queue: newQueue(),
|
||||
peers: make(peers),
|
||||
hasBlock: hasBlock,
|
||||
getBlock: getBlock,
|
||||
|
@ -93,7 +91,7 @@ func New(hasBlock hashCheckFn, getBlock getBlockFn) *Downloader {
|
|||
}
|
||||
|
||||
func (d *Downloader) Stats() (current int, max int) {
|
||||
return d.queue.blockHashes.Size(), d.queue.fetchPool.Size() + d.queue.hashPool.Size()
|
||||
return d.queue.Size()
|
||||
}
|
||||
|
||||
func (d *Downloader) RegisterPeer(id string, hash common.Hash, getHashes hashFetcherFn, getBlocks blockFetcherFn) error {
|
||||
|
@ -111,7 +109,7 @@ func (d *Downloader) RegisterPeer(id string, hash common.Hash, getHashes hashFet
|
|||
return nil
|
||||
}
|
||||
|
||||
// UnregisterPeer unregister's a peer. This will prevent any action from the specified peer.
|
||||
// UnregisterPeer unregisters a peer. This will prevent any action from the specified peer.
|
||||
func (d *Downloader) UnregisterPeer(id string) {
|
||||
d.mu.Lock()
|
||||
defer d.mu.Unlock()
|
||||
|
@ -121,104 +119,58 @@ func (d *Downloader) UnregisterPeer(id string) {
|
|||
delete(d.peers, id)
|
||||
}
|
||||
|
||||
// SynchroniseWithPeer will select the peer and use it for synchronising. If an empty string is given
|
||||
// it will use the best peer possible and synchronise if it's TD is higher than our own. If any of the
|
||||
// Synchronise will select the peer and use it for synchronising. If an empty string is given
|
||||
// it will use the best peer possible and synchronize if it's TD is higher than our own. If any of the
|
||||
// checks fail an error will be returned. This method is synchronous
|
||||
func (d *Downloader) Synchronise(id string, hash common.Hash) error {
|
||||
// Make sure it's doing neither. Once done we can restart the
|
||||
// downloading process if the TD is higher. For now just get on
|
||||
// with whatever is going on. This prevents unecessary switching.
|
||||
if d.isBusy() {
|
||||
return errBusy
|
||||
// Make sure only one goroutine is ever allowed past this point at once
|
||||
if !atomic.CompareAndSwapInt32(&d.synchronising, 0, 1) {
|
||||
return ErrBusy
|
||||
}
|
||||
defer atomic.StoreInt32(&d.synchronising, 0)
|
||||
|
||||
// When a synchronisation attempt is made while the queue stil
|
||||
// contains items we abort the sync attempt
|
||||
if d.queue.size() > 0 {
|
||||
// Abort if the queue still contains some leftover data
|
||||
if _, cached := d.queue.Size(); cached > 0 && d.queue.GetHeadBlock() != nil {
|
||||
return errPendingQueue
|
||||
}
|
||||
// Reset the queue to clean any internal leftover state
|
||||
d.queue.Reset()
|
||||
|
||||
// Fetch the peer using the id or throw an error if the peer couldn't be found
|
||||
// Retrieve the origin peer and initiate the downloading process
|
||||
p := d.peers[id]
|
||||
if p == nil {
|
||||
return errUnknownPeer
|
||||
}
|
||||
|
||||
// Get the hash from the peer and initiate the downloading progress.
|
||||
err := d.getFromPeer(p, hash, false)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// Done lets the downloader know that whatever previous hashes were taken
|
||||
// are processed. If the block count reaches zero and done is called
|
||||
// we reset the queue for the next batch of incoming hashes and blocks.
|
||||
func (d *Downloader) Done() {
|
||||
d.queue.mu.Lock()
|
||||
defer d.queue.mu.Unlock()
|
||||
|
||||
if len(d.queue.blocks) == 0 {
|
||||
d.queue.resetNoTS()
|
||||
}
|
||||
return d.getFromPeer(p, hash, false)
|
||||
}
|
||||
|
||||
// TakeBlocks takes blocks from the queue and yields them to the blockTaker handler
|
||||
// it's possible it yields no blocks
|
||||
func (d *Downloader) TakeBlocks() types.Blocks {
|
||||
d.queue.mu.Lock()
|
||||
defer d.queue.mu.Unlock()
|
||||
|
||||
var blocks types.Blocks
|
||||
if len(d.queue.blocks) > 0 {
|
||||
// Make sure the parent hash is known
|
||||
if d.queue.blocks[0] != nil && !d.hasBlock(d.queue.blocks[0].ParentHash()) {
|
||||
// Check that there are blocks available and its parents are known
|
||||
head := d.queue.GetHeadBlock()
|
||||
if head == nil || !d.hasBlock(head.ParentHash()) {
|
||||
return nil
|
||||
}
|
||||
|
||||
for _, block := range d.queue.blocks {
|
||||
if block == nil {
|
||||
break
|
||||
}
|
||||
|
||||
blocks = append(blocks, block)
|
||||
}
|
||||
d.queue.blockOffset += len(blocks)
|
||||
// delete the blocks from the slice and let them be garbage collected
|
||||
// without this slice trick the blocks would stay in memory until nil
|
||||
// would be assigned to d.queue.blocks
|
||||
copy(d.queue.blocks, d.queue.blocks[len(blocks):])
|
||||
for k, n := len(d.queue.blocks)-len(blocks), len(d.queue.blocks); k < n; k++ {
|
||||
d.queue.blocks[k] = nil
|
||||
}
|
||||
d.queue.blocks = d.queue.blocks[:len(d.queue.blocks)-len(blocks)]
|
||||
|
||||
//d.queue.blocks = d.queue.blocks[len(blocks):]
|
||||
if len(d.queue.blocks) == 0 {
|
||||
d.queue.blocks = nil
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return blocks
|
||||
// Retrieve a full batch of blocks
|
||||
return d.queue.TakeBlocks(head)
|
||||
}
|
||||
|
||||
func (d *Downloader) Has(hash common.Hash) bool {
|
||||
return d.queue.has(hash)
|
||||
return d.queue.Has(hash)
|
||||
}
|
||||
|
||||
func (d *Downloader) getFromPeer(p *peer, hash common.Hash, ignoreInitial bool) (err error) {
|
||||
|
||||
d.activePeer = p.id
|
||||
defer func() {
|
||||
// reset on error
|
||||
if err != nil {
|
||||
d.queue.reset()
|
||||
d.queue.Reset()
|
||||
}
|
||||
}()
|
||||
|
||||
glog.V(logger.Detail).Infoln("Synchronising with the network using:", p.id)
|
||||
glog.V(logger.Debug).Infoln("Synchronizing with the network using:", p.id)
|
||||
// Start the fetcher. This will block the update entirely
|
||||
// interupts need to be send to the appropriate channels
|
||||
// respectively.
|
||||
|
@ -234,20 +186,13 @@ func (d *Downloader) getFromPeer(p *peer, hash common.Hash, ignoreInitial bool)
|
|||
return err
|
||||
}
|
||||
|
||||
glog.V(logger.Detail).Infoln("Sync completed")
|
||||
glog.V(logger.Debug).Infoln("Synchronization completed")
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// XXX Make synchronous
|
||||
func (d *Downloader) startFetchingHashes(p *peer, h common.Hash, ignoreInitial bool) error {
|
||||
atomic.StoreInt32(&d.fetchingHashes, 1)
|
||||
defer atomic.StoreInt32(&d.fetchingHashes, 0)
|
||||
|
||||
if d.queue.has(h) {
|
||||
return errAlreadyInPool
|
||||
}
|
||||
|
||||
glog.V(logger.Debug).Infof("Downloading hashes (%x) from %s", h[:4], p.id)
|
||||
|
||||
start := time.Now()
|
||||
|
@ -256,7 +201,7 @@ func (d *Downloader) startFetchingHashes(p *peer, h common.Hash, ignoreInitial b
|
|||
// In such circumstances we don't need to download the block so don't add it to the queue.
|
||||
if !ignoreInitial {
|
||||
// Add the hash to the queue first
|
||||
d.queue.hashPool.Add(h)
|
||||
d.queue.Insert([]common.Hash{h})
|
||||
}
|
||||
// Get the first batch of hashes
|
||||
p.getHashes(h)
|
||||
|
@ -273,7 +218,7 @@ out:
|
|||
for {
|
||||
select {
|
||||
case hashPack := <-d.hashCh:
|
||||
// make sure the active peer is giving us the hashes
|
||||
// Make sure the active peer is giving us the hashes
|
||||
if hashPack.peerId != activePeer.id {
|
||||
glog.V(logger.Debug).Infof("Received hashes from incorrect peer(%s)\n", hashPack.peerId)
|
||||
break
|
||||
|
@ -281,43 +226,37 @@ out:
|
|||
|
||||
failureResponseTimer.Reset(hashTtl)
|
||||
|
||||
var (
|
||||
hashes = hashPack.hashes
|
||||
done bool // determines whether we're done fetching hashes (i.e. common hash found)
|
||||
)
|
||||
hashSet := set.New()
|
||||
for _, hash = range hashes {
|
||||
if d.hasBlock(hash) || d.queue.blockHashes.Has(hash) {
|
||||
glog.V(logger.Debug).Infof("Found common hash %x\n", hash[:4])
|
||||
// Make sure the peer actually gave something valid
|
||||
if len(hashPack.hashes) == 0 {
|
||||
glog.V(logger.Debug).Infof("Peer (%s) responded with empty hash set\n", activePeer.id)
|
||||
d.queue.Reset()
|
||||
|
||||
return errEmptyHashSet
|
||||
}
|
||||
// Determine if we're done fetching hashes (queue up all pending), and continue if not done
|
||||
done, index := false, 0
|
||||
for index, hash = range hashPack.hashes {
|
||||
if d.hasBlock(hash) || d.queue.GetBlock(hash) != nil {
|
||||
glog.V(logger.Debug).Infof("Found common hash %x\n", hash[:4])
|
||||
hashPack.hashes = hashPack.hashes[:index]
|
||||
done = true
|
||||
break
|
||||
}
|
||||
|
||||
hashSet.Add(hash)
|
||||
}
|
||||
d.queue.put(hashSet)
|
||||
d.queue.Insert(hashPack.hashes)
|
||||
|
||||
// Add hashes to the chunk set
|
||||
if len(hashes) == 0 { // Make sure the peer actually gave you something valid
|
||||
glog.V(logger.Debug).Infof("Peer (%s) responded with empty hash set\n", activePeer.id)
|
||||
d.queue.reset()
|
||||
|
||||
return errEmptyHashSet
|
||||
} else if !done { // Check if we're done fetching
|
||||
// Get the next set of hashes
|
||||
if !done {
|
||||
activePeer.getHashes(hash)
|
||||
} else { // we're done
|
||||
// The offset of the queue is determined by the highest known block
|
||||
var offset int
|
||||
continue
|
||||
}
|
||||
// We're done, allocate the download cache and proceed pulling the blocks
|
||||
offset := 0
|
||||
if block := d.getBlock(hash); block != nil {
|
||||
offset = int(block.NumberU64() + 1)
|
||||
}
|
||||
// allocate proper size for the queueue
|
||||
d.queue.alloc(offset, d.queue.hashPool.Size())
|
||||
|
||||
d.queue.Alloc(offset)
|
||||
break out
|
||||
}
|
||||
|
||||
case <-failureResponseTimer.C:
|
||||
glog.V(logger.Debug).Infof("Peer (%s) didn't respond in time for hash request\n", p.id)
|
||||
|
||||
|
@ -326,7 +265,7 @@ out:
|
|||
// already fetched hash list. This can't guarantee 100% correctness but does
|
||||
// a fair job. This is always either correct or false incorrect.
|
||||
for id, peer := range d.peers {
|
||||
if d.queue.hashPool.Has(peer.recentHash) && !attemptedPeers[id] {
|
||||
if d.queue.Has(peer.recentHash) && !attemptedPeers[id] {
|
||||
p = peer
|
||||
break
|
||||
}
|
||||
|
@ -335,8 +274,8 @@ out:
|
|||
// if all peers have been tried, abort the process entirely or if the hash is
|
||||
// the zero hash.
|
||||
if p == nil || (hash == common.Hash{}) {
|
||||
d.queue.reset()
|
||||
return errTimeout
|
||||
d.queue.Reset()
|
||||
return ErrTimeout
|
||||
}
|
||||
|
||||
// set p to the active peer. this will invalidate any hashes that may be returned
|
||||
|
@ -346,15 +285,14 @@ out:
|
|||
glog.V(logger.Debug).Infof("Hash fetching switched to new peer(%s)\n", p.id)
|
||||
}
|
||||
}
|
||||
glog.V(logger.Detail).Infof("Downloaded hashes (%d) in %v\n", d.queue.hashPool.Size(), time.Since(start))
|
||||
glog.V(logger.Debug).Infof("Downloaded hashes (%d) in %v\n", d.queue.Pending(), time.Since(start))
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (d *Downloader) startFetchingBlocks(p *peer) error {
|
||||
glog.V(logger.Detail).Infoln("Downloading", d.queue.hashPool.Size(), "block(s)")
|
||||
atomic.StoreInt32(&d.downloadingBlocks, 1)
|
||||
defer atomic.StoreInt32(&d.downloadingBlocks, 0)
|
||||
glog.V(logger.Debug).Infoln("Downloading", d.queue.Pending(), "block(s)")
|
||||
|
||||
// Defer the peer reset. This will empty the peer requested set
|
||||
// and makes sure there are no lingering peers with an incorrect
|
||||
// state
|
||||
|
@ -371,7 +309,7 @@ out:
|
|||
// If the peer was previously banned and failed to deliver it's pack
|
||||
// in a reasonable time frame, ignore it's message.
|
||||
if d.peers[blockPack.peerId] != nil {
|
||||
err := d.queue.deliver(blockPack.peerId, blockPack.blocks)
|
||||
err := d.queue.Deliver(blockPack.peerId, blockPack.blocks)
|
||||
if err != nil {
|
||||
glog.V(logger.Debug).Infof("deliver failed for peer %s: %v\n", blockPack.peerId, err)
|
||||
// FIXME d.UnregisterPeer(blockPack.peerId)
|
||||
|
@ -385,86 +323,70 @@ out:
|
|||
d.peers.setState(blockPack.peerId, idleState)
|
||||
}
|
||||
case <-ticker.C:
|
||||
// after removing bad peers make sure we actually have suffucient peer left to keep downlading
|
||||
if len(d.peers) == 0 {
|
||||
d.queue.reset()
|
||||
|
||||
return errNoPeers
|
||||
}
|
||||
|
||||
// If there are unrequested hashes left start fetching
|
||||
// from the available peers.
|
||||
if d.queue.hashPool.Size() > 0 {
|
||||
availablePeers := d.peers.get(idleState)
|
||||
for _, peer := range availablePeers {
|
||||
// Get a possible chunk. If nil is returned no chunk
|
||||
// could be returned due to no hashes available.
|
||||
chunk := d.queue.get(peer, maxBlockFetch)
|
||||
if chunk == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
// XXX make fetch blocking.
|
||||
// Fetch the chunk and check for error. If the peer was somehow
|
||||
// already fetching a chunk due to a bug, it will be returned to
|
||||
// the queue
|
||||
if err := peer.fetch(chunk); err != nil {
|
||||
// log for tracing
|
||||
glog.V(logger.Debug).Infof("peer %s received double work (state = %v)\n", peer.id, peer.state)
|
||||
d.queue.put(chunk.hashes)
|
||||
}
|
||||
}
|
||||
|
||||
// make sure that we have peers available for fetching. If all peers have been tried
|
||||
// and all failed throw an error
|
||||
if len(d.queue.fetching) == 0 {
|
||||
d.queue.reset()
|
||||
|
||||
return fmt.Errorf("%v peers avaialable = %d. total peers = %d. hashes needed = %d", errPeersUnavailable, len(availablePeers), len(d.peers), d.queue.hashPool.Size())
|
||||
}
|
||||
|
||||
} else if len(d.queue.fetching) == 0 {
|
||||
// When there are no more queue and no more `fetching`. We can
|
||||
// safely assume we're done. Another part of the process will check
|
||||
// for parent errors and will re-request anything that's missing
|
||||
break out
|
||||
} else {
|
||||
// Check for bad peers. Bad peers may indicate a peer not responding
|
||||
// to a `getBlocks` message. A timeout of 5 seconds is set. Peers
|
||||
// that badly or poorly behave are removed from the peer set (not banned).
|
||||
// Bad peers are excluded from the available peer set and therefor won't be
|
||||
// reused. XXX We could re-introduce peers after X time.
|
||||
d.queue.mu.Lock()
|
||||
var badPeers []string
|
||||
for pid, chunk := range d.queue.fetching {
|
||||
if time.Since(chunk.itime) > blockTtl {
|
||||
badPeers = append(badPeers, pid)
|
||||
// remove peer as good peer from peer list
|
||||
// FIXME d.UnregisterPeer(pid)
|
||||
}
|
||||
}
|
||||
d.queue.mu.Unlock()
|
||||
|
||||
badPeers := d.queue.Expire(blockTtl)
|
||||
for _, pid := range badPeers {
|
||||
// A nil chunk is delivered so that the chunk's hashes are given
|
||||
// back to the queue objects. When hashes are put back in the queue
|
||||
// other (decent) peers can pick them up.
|
||||
// XXX We could make use of a reputation system here ranking peers
|
||||
// in their performance
|
||||
// 1) Time for them to respond;
|
||||
// 2) Measure their speed;
|
||||
// 3) Amount and availability.
|
||||
d.queue.deliver(pid, nil)
|
||||
if peer := d.peers[pid]; peer != nil {
|
||||
peer.demote()
|
||||
peer.reset()
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
// After removing bad peers make sure we actually have sufficient peer left to keep downloading
|
||||
if len(d.peers) == 0 {
|
||||
d.queue.Reset()
|
||||
return errNoPeers
|
||||
}
|
||||
// If there are unrequested hashes left start fetching
|
||||
// from the available peers.
|
||||
if d.queue.Pending() > 0 {
|
||||
// Throttle the download if block cache is full and waiting processing
|
||||
if d.queue.Throttle() {
|
||||
continue
|
||||
}
|
||||
|
||||
availablePeers := d.peers.get(idleState)
|
||||
for _, peer := range availablePeers {
|
||||
// Get a possible chunk. If nil is returned no chunk
|
||||
// could be returned due to no hashes available.
|
||||
request := d.queue.Reserve(peer, maxBlockFetch)
|
||||
if request == nil {
|
||||
continue
|
||||
}
|
||||
// XXX make fetch blocking.
|
||||
// Fetch the chunk and check for error. If the peer was somehow
|
||||
// already fetching a chunk due to a bug, it will be returned to
|
||||
// the queue
|
||||
if err := peer.fetch(request); err != nil {
|
||||
// log for tracing
|
||||
glog.V(logger.Debug).Infof("peer %s received double work (state = %v)\n", peer.id, peer.state)
|
||||
d.queue.Cancel(request)
|
||||
}
|
||||
}
|
||||
// make sure that we have peers available for fetching. If all peers have been tried
|
||||
// and all failed throw an error
|
||||
if d.queue.InFlight() == 0 {
|
||||
d.queue.Reset()
|
||||
|
||||
return fmt.Errorf("%v peers avaialable = %d. total peers = %d. hashes needed = %d", errPeersUnavailable, len(availablePeers), len(d.peers), d.queue.Pending())
|
||||
}
|
||||
|
||||
} else if d.queue.InFlight() == 0 {
|
||||
// When there are no more queue and no more in flight, We can
|
||||
// safely assume we're done. Another part of the process will check
|
||||
// for parent errors and will re-request anything that's missing
|
||||
break out
|
||||
}
|
||||
}
|
||||
}
|
||||
glog.V(logger.Detail).Infoln("Downloaded block(s) in", time.Since(start))
|
||||
|
||||
return nil
|
||||
|
@ -484,28 +406,11 @@ func (d *Downloader) AddHashes(id string, hashes []common.Hash) error {
|
|||
return fmt.Errorf("received hashes from %s while active peer is %s", id, d.activePeer)
|
||||
}
|
||||
|
||||
if glog.V(logger.Detail) && len(hashes) != 0 {
|
||||
if glog.V(logger.Debug) && len(hashes) != 0 {
|
||||
from, to := hashes[0], hashes[len(hashes)-1]
|
||||
glog.Infof("adding %d (T=%d) hashes [ %x / %x ] from: %s\n", len(hashes), d.queue.hashPool.Size(), from[:4], to[:4], id)
|
||||
glog.V(logger.Debug).Infof("adding %d (T=%d) hashes [ %x / %x ] from: %s\n", len(hashes), d.queue.Pending(), from[:4], to[:4], id)
|
||||
}
|
||||
|
||||
d.hashCh <- hashPack{id, hashes}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (d *Downloader) isFetchingHashes() bool {
|
||||
return atomic.LoadInt32(&d.fetchingHashes) == 1
|
||||
}
|
||||
|
||||
func (d *Downloader) isDownloadingBlocks() bool {
|
||||
return atomic.LoadInt32(&d.downloadingBlocks) == 1
|
||||
}
|
||||
|
||||
func (d *Downloader) isBusy() bool {
|
||||
return d.isFetchingHashes() || d.isDownloadingBlocks()
|
||||
}
|
||||
|
||||
func (d *Downloader) IsBusy() bool {
|
||||
return d.isBusy()
|
||||
}
|
||||
|
|
|
@ -128,7 +128,7 @@ func TestDownload(t *testing.T) {
|
|||
t.Error("download error", err)
|
||||
}
|
||||
|
||||
inqueue := len(tester.downloader.queue.blocks)
|
||||
inqueue := len(tester.downloader.queue.blockCache)
|
||||
if inqueue != targetBlocks {
|
||||
t.Error("expected", targetBlocks, "have", inqueue)
|
||||
}
|
||||
|
@ -151,7 +151,7 @@ func TestMissing(t *testing.T) {
|
|||
t.Error("download error", err)
|
||||
}
|
||||
|
||||
inqueue := len(tester.downloader.queue.blocks)
|
||||
inqueue := len(tester.downloader.queue.blockCache)
|
||||
if inqueue != targetBlocks {
|
||||
t.Error("expected", targetBlocks, "have", inqueue)
|
||||
}
|
||||
|
@ -181,3 +181,51 @@ func TestTaking(t *testing.T) {
|
|||
t.Error("expected to take 1000, got", len(bs1))
|
||||
}
|
||||
}
|
||||
|
||||
func TestThrottling(t *testing.T) {
|
||||
minDesiredPeerCount = 4
|
||||
blockTtl = 1 * time.Second
|
||||
|
||||
targetBlocks := 4 * blockCacheLimit
|
||||
hashes := createHashes(0, targetBlocks)
|
||||
blocks := createBlocksFromHashes(hashes)
|
||||
tester := newTester(t, hashes, blocks)
|
||||
|
||||
tester.newPeer("peer1", big.NewInt(10000), hashes[0])
|
||||
tester.newPeer("peer2", big.NewInt(0), common.Hash{})
|
||||
tester.badBlocksPeer("peer3", big.NewInt(0), common.Hash{})
|
||||
tester.badBlocksPeer("peer4", big.NewInt(0), common.Hash{})
|
||||
|
||||
// Concurrently download and take the blocks
|
||||
errc := make(chan error, 1)
|
||||
go func() {
|
||||
errc <- tester.sync("peer1", hashes[0])
|
||||
}()
|
||||
|
||||
done := make(chan struct{})
|
||||
took := []*types.Block{}
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
case <-done:
|
||||
took = append(took, tester.downloader.TakeBlocks()...)
|
||||
done <- struct{}{}
|
||||
return
|
||||
default:
|
||||
took = append(took, tester.downloader.TakeBlocks()...)
|
||||
}
|
||||
}
|
||||
}()
|
||||
|
||||
// Synchronise the two threads and verify
|
||||
err := <-errc
|
||||
done <- struct{}{}
|
||||
<-done
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("failed to synchronise blocks: %v", err)
|
||||
}
|
||||
if len(took) != targetBlocks {
|
||||
t.Fatalf("downloaded block mismatch: have %v, want %v", len(took), targetBlocks)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -78,7 +78,7 @@ func newPeer(id string, hash common.Hash, getHashes hashFetcherFn, getBlocks blo
|
|||
}
|
||||
|
||||
// fetch a chunk using the peer
|
||||
func (p *peer) fetch(chunk *chunk) error {
|
||||
func (p *peer) fetch(request *fetchRequest) error {
|
||||
p.mu.Lock()
|
||||
defer p.mu.Unlock()
|
||||
|
||||
|
@ -88,13 +88,12 @@ func (p *peer) fetch(chunk *chunk) error {
|
|||
|
||||
// set working state
|
||||
p.state = workingState
|
||||
// convert the set to a fetchable slice
|
||||
hashes, i := make([]common.Hash, chunk.hashes.Size()), 0
|
||||
chunk.hashes.Each(func(v interface{}) bool {
|
||||
hashes[i] = v.(common.Hash)
|
||||
i++
|
||||
return true
|
||||
})
|
||||
|
||||
// Convert the hash set to a fetchable slice
|
||||
hashes := make([]common.Hash, 0, len(request.Hashes))
|
||||
for hash, _ := range request.Hashes {
|
||||
hashes = append(hashes, hash)
|
||||
}
|
||||
p.getBlocks(hashes)
|
||||
|
||||
return nil
|
||||
|
|
|
@ -1,201 +1,341 @@
|
|||
package downloader
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"math"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/ethereum/go-ethereum/core/types"
|
||||
"gopkg.in/fatih/set.v0"
|
||||
"gopkg.in/karalabe/cookiejar.v2/collections/prque"
|
||||
)
|
||||
|
||||
const (
|
||||
blockCacheLimit = 1024 // Maximum number of blocks to cache before throttling the download
|
||||
)
|
||||
|
||||
// fetchRequest is a currently running block retrieval operation.
|
||||
type fetchRequest struct {
|
||||
Peer *peer // Peer to which the request was sent
|
||||
Hashes map[common.Hash]int // Requested hashes with their insertion index (priority)
|
||||
Time time.Time // Time when the request was made
|
||||
}
|
||||
|
||||
// queue represents hashes that are either need fetching or are being fetched
|
||||
type queue struct {
|
||||
hashPool *set.Set
|
||||
fetchPool *set.Set
|
||||
blockHashes *set.Set
|
||||
hashPool map[common.Hash]int // Pending hashes, mapping to their insertion index (priority)
|
||||
hashQueue *prque.Prque // Priority queue of the block hashes to fetch
|
||||
hashCounter int // Counter indexing the added hashes to ensure retrieval order
|
||||
|
||||
mu sync.Mutex
|
||||
fetching map[string]*chunk
|
||||
pendPool map[string]*fetchRequest // Currently pending block retrieval operations
|
||||
|
||||
blockOffset int
|
||||
blocks []*types.Block
|
||||
blockPool map[common.Hash]int // Hash-set of the downloaded data blocks, mapping to cache indexes
|
||||
blockCache []*types.Block // Downloaded but not yet delivered blocks
|
||||
blockOffset int // Offset of the first cached block in the block-chain
|
||||
|
||||
lock sync.RWMutex
|
||||
}
|
||||
|
||||
func newqueue() *queue {
|
||||
// newQueue creates a new download queue for scheduling block retrieval.
|
||||
func newQueue() *queue {
|
||||
return &queue{
|
||||
hashPool: set.New(),
|
||||
fetchPool: set.New(),
|
||||
blockHashes: set.New(),
|
||||
fetching: make(map[string]*chunk),
|
||||
hashPool: make(map[common.Hash]int),
|
||||
hashQueue: prque.New(),
|
||||
pendPool: make(map[string]*fetchRequest),
|
||||
blockPool: make(map[common.Hash]int),
|
||||
}
|
||||
}
|
||||
|
||||
func (c *queue) reset() {
|
||||
c.mu.Lock()
|
||||
defer c.mu.Unlock()
|
||||
// Reset clears out the queue contents.
|
||||
func (q *queue) Reset() {
|
||||
q.lock.Lock()
|
||||
defer q.lock.Unlock()
|
||||
|
||||
c.resetNoTS()
|
||||
}
|
||||
func (c *queue) resetNoTS() {
|
||||
c.blockOffset = 0
|
||||
c.hashPool.Clear()
|
||||
c.fetchPool.Clear()
|
||||
c.blockHashes.Clear()
|
||||
c.blocks = nil
|
||||
c.fetching = make(map[string]*chunk)
|
||||
q.hashPool = make(map[common.Hash]int)
|
||||
q.hashQueue.Reset()
|
||||
q.hashCounter = 0
|
||||
|
||||
q.pendPool = make(map[string]*fetchRequest)
|
||||
|
||||
q.blockPool = make(map[common.Hash]int)
|
||||
q.blockOffset = 0
|
||||
q.blockCache = nil
|
||||
}
|
||||
|
||||
func (c *queue) size() int {
|
||||
return c.hashPool.Size() + c.blockHashes.Size() + c.fetchPool.Size()
|
||||
// Size retrieves the number of hashes in the queue, returning separately for
|
||||
// pending and already downloaded.
|
||||
func (q *queue) Size() (int, int) {
|
||||
q.lock.RLock()
|
||||
defer q.lock.RUnlock()
|
||||
|
||||
return len(q.hashPool), len(q.blockPool)
|
||||
}
|
||||
|
||||
// reserve a `max` set of hashes for `p` peer.
|
||||
func (c *queue) get(p *peer, max int) *chunk {
|
||||
c.mu.Lock()
|
||||
defer c.mu.Unlock()
|
||||
// Pending retrieves the number of hashes pending for retrieval.
|
||||
func (q *queue) Pending() int {
|
||||
q.lock.RLock()
|
||||
defer q.lock.RUnlock()
|
||||
|
||||
// return nothing if the pool has been depleted
|
||||
if c.hashPool.Size() == 0 {
|
||||
return nil
|
||||
return q.hashQueue.Size()
|
||||
}
|
||||
|
||||
limit := int(math.Min(float64(max), float64(c.hashPool.Size())))
|
||||
// Create a new set of hashes
|
||||
hashes, i := set.New(), 0
|
||||
c.hashPool.Each(func(v interface{}) bool {
|
||||
// break on limit
|
||||
if i == limit {
|
||||
// InFlight retrieves the number of fetch requests currently in flight.
|
||||
func (q *queue) InFlight() int {
|
||||
q.lock.RLock()
|
||||
defer q.lock.RUnlock()
|
||||
|
||||
return len(q.pendPool)
|
||||
}
|
||||
|
||||
// Throttle checks if the download should be throttled (active block fetches
|
||||
// exceed block cache).
|
||||
func (q *queue) Throttle() bool {
|
||||
q.lock.RLock()
|
||||
defer q.lock.RUnlock()
|
||||
|
||||
// Calculate the currently in-flight block requests
|
||||
pending := 0
|
||||
for _, request := range q.pendPool {
|
||||
pending += len(request.Hashes)
|
||||
}
|
||||
// Throttle if more blocks are in-flight than free space in the cache
|
||||
return pending >= len(q.blockCache)-len(q.blockPool)
|
||||
}
|
||||
|
||||
// Has checks if a hash is within the download queue or not.
|
||||
func (q *queue) Has(hash common.Hash) bool {
|
||||
q.lock.RLock()
|
||||
defer q.lock.RUnlock()
|
||||
|
||||
if _, ok := q.hashPool[hash]; ok {
|
||||
return true
|
||||
}
|
||||
if _, ok := q.blockPool[hash]; ok {
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
// skip any hashes that have previously been requested from the peer
|
||||
if p.ignored.Has(v) {
|
||||
return true
|
||||
|
||||
// Insert adds a set of hashes for the download queue for scheduling.
|
||||
func (q *queue) Insert(hashes []common.Hash) {
|
||||
q.lock.Lock()
|
||||
defer q.lock.Unlock()
|
||||
|
||||
// Insert all the hashes prioritized in the arrival order
|
||||
for i, hash := range hashes {
|
||||
index := q.hashCounter + i
|
||||
|
||||
q.hashPool[hash] = index
|
||||
q.hashQueue.Push(hash, float32(index)) // Highest gets schedules first
|
||||
}
|
||||
// Update the hash counter for the next batch of inserts
|
||||
q.hashCounter += len(hashes)
|
||||
}
|
||||
|
||||
hashes.Add(v)
|
||||
i++
|
||||
// GetHeadBlock retrieves the first block from the cache, or nil if it hasn't
|
||||
// been downloaded yet (or simply non existent).
|
||||
func (q *queue) GetHeadBlock() *types.Block {
|
||||
q.lock.RLock()
|
||||
defer q.lock.RUnlock()
|
||||
|
||||
return true
|
||||
})
|
||||
// if no hashes can be requested return a nil chunk
|
||||
if hashes.Size() == 0 {
|
||||
if len(q.blockCache) == 0 {
|
||||
return nil
|
||||
}
|
||||
|
||||
// remove the fetchable hashes from hash pool
|
||||
c.hashPool.Separate(hashes)
|
||||
c.fetchPool.Merge(hashes)
|
||||
|
||||
// Create a new chunk for the seperated hashes. The time is being used
|
||||
// to reset the chunk (timeout)
|
||||
chunk := &chunk{p, hashes, time.Now()}
|
||||
// register as 'fetching' state
|
||||
c.fetching[p.id] = chunk
|
||||
|
||||
// create new chunk for peer
|
||||
return chunk
|
||||
return q.blockCache[0]
|
||||
}
|
||||
|
||||
func (c *queue) has(hash common.Hash) bool {
|
||||
return c.hashPool.Has(hash) || c.fetchPool.Has(hash) || c.blockHashes.Has(hash)
|
||||
}
|
||||
// GetBlock retrieves a downloaded block, or nil if non-existent.
|
||||
func (q *queue) GetBlock(hash common.Hash) *types.Block {
|
||||
q.lock.RLock()
|
||||
defer q.lock.RUnlock()
|
||||
|
||||
func (c *queue) getBlock(hash common.Hash) *types.Block {
|
||||
c.mu.Lock()
|
||||
defer c.mu.Unlock()
|
||||
|
||||
if !c.blockHashes.Has(hash) {
|
||||
// Short circuit if the block hasn't been downloaded yet
|
||||
index, ok := q.blockPool[hash]
|
||||
if !ok {
|
||||
return nil
|
||||
}
|
||||
|
||||
for _, block := range c.blocks {
|
||||
if block.Hash() == hash {
|
||||
return block
|
||||
}
|
||||
// Return the block if it's still available in the cache
|
||||
if q.blockOffset <= index && index < q.blockOffset+len(q.blockCache) {
|
||||
return q.blockCache[index-q.blockOffset]
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// deliver delivers a chunk to the queue that was requested of the peer
|
||||
func (c *queue) deliver(id string, blocks []*types.Block) (err error) {
|
||||
c.mu.Lock()
|
||||
defer c.mu.Unlock()
|
||||
// TakeBlocks retrieves and permanently removes a batch of blocks from the cache.
|
||||
// The head parameter is required to prevent a race condition where concurrent
|
||||
// takes may fail parent verifications.
|
||||
func (q *queue) TakeBlocks(head *types.Block) types.Blocks {
|
||||
q.lock.Lock()
|
||||
defer q.lock.Unlock()
|
||||
|
||||
chunk := c.fetching[id]
|
||||
// If the chunk was never requested simply ignore it
|
||||
if chunk != nil {
|
||||
delete(c.fetching, id)
|
||||
// check the length of the returned blocks. If the length of blocks is 0
|
||||
// we'll assume the peer doesn't know about the chain.
|
||||
if len(blocks) == 0 {
|
||||
// So we can ignore the blocks we didn't know about
|
||||
chunk.peer.ignored.Merge(chunk.hashes)
|
||||
// Short circuit if the head block's different
|
||||
if len(q.blockCache) == 0 || q.blockCache[0] != head {
|
||||
return nil
|
||||
}
|
||||
|
||||
// Add the blocks
|
||||
for i, block := range blocks {
|
||||
// See (1) for future limitation
|
||||
n := int(block.NumberU64()) - c.blockOffset
|
||||
if n > len(c.blocks) || n < 0 {
|
||||
// set the error and set the blocks which could be processed
|
||||
// abort the rest of the blocks (FIXME this could be improved)
|
||||
err = fmt.Errorf("received block which overflow (N=%v O=%v)", block.Number(), c.blockOffset)
|
||||
blocks = blocks[:i]
|
||||
// Otherwise accumulate all available blocks
|
||||
var blocks types.Blocks
|
||||
for _, block := range q.blockCache {
|
||||
if block == nil {
|
||||
break
|
||||
}
|
||||
c.blocks[n] = block
|
||||
blocks = append(blocks, block)
|
||||
delete(q.blockPool, block.Hash())
|
||||
}
|
||||
// seperate the blocks and the hashes
|
||||
blockHashes := chunk.fetchedHashes(blocks)
|
||||
// merge block hashes
|
||||
c.blockHashes.Merge(blockHashes)
|
||||
// Add back whatever couldn't be delivered
|
||||
c.hashPool.Merge(chunk.hashes)
|
||||
// Remove the hashes from the fetch pool
|
||||
c.fetchPool.Separate(chunk.hashes)
|
||||
// Delete the blocks from the slice and let them be garbage collected
|
||||
// without this slice trick the blocks would stay in memory until nil
|
||||
// would be assigned to q.blocks
|
||||
copy(q.blockCache, q.blockCache[len(blocks):])
|
||||
for k, n := len(q.blockCache)-len(blocks), len(q.blockCache); k < n; k++ {
|
||||
q.blockCache[k] = nil
|
||||
}
|
||||
q.blockOffset += len(blocks)
|
||||
|
||||
return blocks
|
||||
}
|
||||
|
||||
return
|
||||
// Reserve reserves a set of hashes for the given peer, skipping any previously
|
||||
// failed download.
|
||||
func (q *queue) Reserve(p *peer, max int) *fetchRequest {
|
||||
q.lock.Lock()
|
||||
defer q.lock.Unlock()
|
||||
|
||||
// Short circuit if the pool has been depleted, or if the peer's already
|
||||
// downloading something (sanity check not to corrupt state)
|
||||
if q.hashQueue.Empty() {
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c *queue) alloc(offset, size int) {
|
||||
c.mu.Lock()
|
||||
defer c.mu.Unlock()
|
||||
|
||||
if c.blockOffset < offset {
|
||||
c.blockOffset = offset
|
||||
if _, ok := q.pendPool[p.id]; ok {
|
||||
return nil
|
||||
}
|
||||
// Retrieve a batch of hashes, skipping previously failed ones
|
||||
send := make(map[common.Hash]int)
|
||||
skip := make(map[common.Hash]int)
|
||||
|
||||
// (1) XXX at some point we could limit allocation to memory and use the disk
|
||||
// to store future blocks.
|
||||
if len(c.blocks) < size {
|
||||
c.blocks = append(c.blocks, make([]*types.Block, size)...)
|
||||
for len(send) < max && !q.hashQueue.Empty() {
|
||||
hash, priority := q.hashQueue.Pop()
|
||||
if p.ignored.Has(hash) {
|
||||
skip[hash.(common.Hash)] = int(priority)
|
||||
} else {
|
||||
send[hash.(common.Hash)] = int(priority)
|
||||
}
|
||||
}
|
||||
// Merge all the skipped hashes back
|
||||
for hash, index := range skip {
|
||||
q.hashQueue.Push(hash, float32(index))
|
||||
}
|
||||
// Assemble and return the block download request
|
||||
if len(send) == 0 {
|
||||
return nil
|
||||
}
|
||||
request := &fetchRequest{
|
||||
Peer: p,
|
||||
Hashes: send,
|
||||
Time: time.Now(),
|
||||
}
|
||||
q.pendPool[p.id] = request
|
||||
|
||||
// puts puts sets of hashes on to the queue for fetching
|
||||
func (c *queue) put(hashes *set.Set) {
|
||||
c.mu.Lock()
|
||||
defer c.mu.Unlock()
|
||||
|
||||
c.hashPool.Merge(hashes)
|
||||
return request
|
||||
}
|
||||
|
||||
type chunk struct {
|
||||
peer *peer
|
||||
hashes *set.Set
|
||||
itime time.Time
|
||||
// Cancel aborts a fetch request, returning all pending hashes to the queue.
|
||||
func (q *queue) Cancel(request *fetchRequest) {
|
||||
q.lock.Lock()
|
||||
defer q.lock.Unlock()
|
||||
|
||||
for hash, index := range request.Hashes {
|
||||
q.hashQueue.Push(hash, float32(index))
|
||||
}
|
||||
delete(q.pendPool, request.Peer.id)
|
||||
}
|
||||
|
||||
func (ch *chunk) fetchedHashes(blocks []*types.Block) *set.Set {
|
||||
fhashes := set.New()
|
||||
// Expire checks for in flight requests that exceeded a timeout allowance,
|
||||
// canceling them and returning the responsible peers for penalization.
|
||||
func (q *queue) Expire(timeout time.Duration) []string {
|
||||
q.lock.Lock()
|
||||
defer q.lock.Unlock()
|
||||
|
||||
// Iterate over the expired requests and return each to the queue
|
||||
peers := []string{}
|
||||
for id, request := range q.pendPool {
|
||||
if time.Since(request.Time) > timeout {
|
||||
for hash, index := range request.Hashes {
|
||||
q.hashQueue.Push(hash, float32(index))
|
||||
}
|
||||
peers = append(peers, id)
|
||||
}
|
||||
}
|
||||
// Remove the expired requests from the pending pool
|
||||
for _, id := range peers {
|
||||
delete(q.pendPool, id)
|
||||
}
|
||||
return peers
|
||||
}
|
||||
|
||||
// Deliver injects a block retrieval response into the download queue.
|
||||
func (q *queue) Deliver(id string, blocks []*types.Block) (err error) {
|
||||
q.lock.Lock()
|
||||
defer q.lock.Unlock()
|
||||
|
||||
// Short circuit if the blocks were never requested
|
||||
request := q.pendPool[id]
|
||||
if request == nil {
|
||||
return errors.New("no fetches pending")
|
||||
}
|
||||
delete(q.pendPool, id)
|
||||
|
||||
// If no blocks were retrieved, mark them as unavailable for the origin peer
|
||||
if len(blocks) == 0 {
|
||||
for hash, _ := range request.Hashes {
|
||||
request.Peer.ignored.Add(hash)
|
||||
}
|
||||
}
|
||||
// Iterate over the downloaded blocks and add each of them
|
||||
errs := make([]error, 0)
|
||||
for _, block := range blocks {
|
||||
fhashes.Add(block.Hash())
|
||||
// Skip any blocks that fall outside the cache range
|
||||
index := int(block.NumberU64()) - q.blockOffset
|
||||
if index >= len(q.blockCache) || index < 0 {
|
||||
//fmt.Printf("block cache overflown (N=%v O=%v, C=%v)", block.Number(), q.blockOffset, len(q.blockCache))
|
||||
continue
|
||||
}
|
||||
ch.hashes.Separate(fhashes)
|
||||
// Skip any blocks that were not requested
|
||||
hash := block.Hash()
|
||||
if _, ok := request.Hashes[hash]; !ok {
|
||||
errs = append(errs, fmt.Errorf("non-requested block %v", hash))
|
||||
continue
|
||||
}
|
||||
// Otherwise merge the block and mark the hash block
|
||||
q.blockCache[index] = block
|
||||
|
||||
return fhashes
|
||||
delete(request.Hashes, hash)
|
||||
delete(q.hashPool, hash)
|
||||
q.blockPool[hash] = int(block.NumberU64())
|
||||
}
|
||||
// Return all failed fetches to the queue
|
||||
for hash, index := range request.Hashes {
|
||||
q.hashQueue.Push(hash, float32(index))
|
||||
}
|
||||
if len(errs) != 0 {
|
||||
return fmt.Errorf("multiple failures: %v", errs)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Alloc ensures that the block cache is the correct size, given a starting
|
||||
// offset, and a memory cap.
|
||||
func (q *queue) Alloc(offset int) {
|
||||
q.lock.Lock()
|
||||
defer q.lock.Unlock()
|
||||
|
||||
if q.blockOffset < offset {
|
||||
q.blockOffset = offset
|
||||
}
|
||||
size := len(q.hashPool)
|
||||
if size > blockCacheLimit {
|
||||
size = blockCacheLimit
|
||||
}
|
||||
if len(q.blockCache) < size {
|
||||
q.blockCache = append(q.blockCache, make([]*types.Block, size-len(q.blockCache))...)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -32,31 +32,30 @@ func createBlocksFromHashSet(hashes *set.Set) []*types.Block {
|
|||
}
|
||||
|
||||
func TestChunking(t *testing.T) {
|
||||
queue := newqueue()
|
||||
queue := newQueue()
|
||||
peer1 := newPeer("peer1", common.Hash{}, nil, nil)
|
||||
peer2 := newPeer("peer2", common.Hash{}, nil, nil)
|
||||
|
||||
// 99 + 1 (1 == known genesis hash)
|
||||
hashes := createHashes(0, 99)
|
||||
hashSet := createHashSet(hashes)
|
||||
queue.put(hashSet)
|
||||
queue.Insert(hashes)
|
||||
|
||||
chunk1 := queue.get(peer1, 99)
|
||||
chunk1 := queue.Reserve(peer1, 99)
|
||||
if chunk1 == nil {
|
||||
t.Errorf("chunk1 is nil")
|
||||
t.FailNow()
|
||||
}
|
||||
chunk2 := queue.get(peer2, 99)
|
||||
chunk2 := queue.Reserve(peer2, 99)
|
||||
if chunk2 == nil {
|
||||
t.Errorf("chunk2 is nil")
|
||||
t.FailNow()
|
||||
}
|
||||
|
||||
if chunk1.hashes.Size() != 99 {
|
||||
t.Error("expected chunk1 hashes to be 99, got", chunk1.hashes.Size())
|
||||
if len(chunk1.Hashes) != 99 {
|
||||
t.Error("expected chunk1 hashes to be 99, got", len(chunk1.Hashes))
|
||||
}
|
||||
|
||||
if chunk2.hashes.Size() != 1 {
|
||||
t.Error("expected chunk1 hashes to be 1, got", chunk2.hashes.Size())
|
||||
if len(chunk2.Hashes) != 1 {
|
||||
t.Error("expected chunk1 hashes to be 1, got", len(chunk2.Hashes))
|
||||
}
|
||||
}
|
||||
|
|
|
@ -19,8 +19,8 @@ import (
|
|||
)
|
||||
|
||||
const (
|
||||
peerCountTimeout = 12 * time.Second // Amount of time it takes for the peer handler to ignore minDesiredPeerCount
|
||||
blockProcTimer = 500 * time.Millisecond
|
||||
forceSyncCycle = 10 * time.Second // Time interval to force syncs, even if few peers are available
|
||||
blockProcCycle = 500 * time.Millisecond // Time interval to check for new blocks to process
|
||||
minDesiredPeerCount = 5 // Amount of peers desired to start syncing
|
||||
blockProcAmount = 256
|
||||
)
|
||||
|
@ -307,7 +307,7 @@ func (self *ProtocolManager) handleMsg(p *peer) error {
|
|||
|
||||
// Attempt to insert the newly received by checking if the parent exists.
|
||||
// if the parent exists we process the block and propagate to our peers
|
||||
// otherwise synchronise with the peer
|
||||
// otherwise synchronize with the peer
|
||||
if self.chainman.HasBlock(request.Block.ParentHash()) {
|
||||
if _, err := self.chainman.InsertChain(types.Blocks{request.Block}); err != nil {
|
||||
glog.V(logger.Error).Infoln("removed peer (", p.id, ") due to block error")
|
||||
|
|
56
eth/sync.go
56
eth/sync.go
|
@ -12,10 +12,8 @@ import (
|
|||
// Sync contains all synchronisation code for the eth protocol
|
||||
|
||||
func (pm *ProtocolManager) update() {
|
||||
// itimer is used to determine when to start ignoring `minDesiredPeerCount`
|
||||
itimer := time.NewTimer(peerCountTimeout)
|
||||
// btimer is used for picking of blocks from the downloader
|
||||
btimer := time.Tick(blockProcTimer)
|
||||
forceSync := time.Tick(forceSyncCycle)
|
||||
blockProc := time.Tick(blockProcCycle)
|
||||
|
||||
for {
|
||||
select {
|
||||
|
@ -24,27 +22,22 @@ func (pm *ProtocolManager) update() {
|
|||
if len(pm.peers) < minDesiredPeerCount {
|
||||
break
|
||||
}
|
||||
|
||||
// Find the best peer
|
||||
// Find the best peer and synchronise with it
|
||||
peer := getBestPeer(pm.peers)
|
||||
if peer == nil {
|
||||
glog.V(logger.Debug).Infoln("Sync attempt cancelled. No peers available")
|
||||
glog.V(logger.Debug).Infoln("Sync attempt canceled. No peers available")
|
||||
}
|
||||
|
||||
itimer.Stop()
|
||||
go pm.synchronise(peer)
|
||||
case <-itimer.C:
|
||||
// The timer will make sure that the downloader keeps an active state
|
||||
// in which it attempts to always check the network for highest td peers
|
||||
// Either select the peer or restart the timer if no peers could
|
||||
// be selected.
|
||||
|
||||
case <-forceSync:
|
||||
// Force a sync even if not enough peers are present
|
||||
if peer := getBestPeer(pm.peers); peer != nil {
|
||||
go pm.synchronise(peer)
|
||||
} else {
|
||||
itimer.Reset(5 * time.Second)
|
||||
}
|
||||
case <-btimer:
|
||||
case <-blockProc:
|
||||
// Try to pull some blocks from the downloaded
|
||||
go pm.processBlocks()
|
||||
|
||||
case <-pm.quitSync:
|
||||
return
|
||||
}
|
||||
|
@ -59,12 +52,11 @@ func (pm *ProtocolManager) processBlocks() error {
|
|||
pm.wg.Add(1)
|
||||
defer pm.wg.Done()
|
||||
|
||||
// Take a batch of blocks (will return nil if a previous batch has not reached the chain yet)
|
||||
blocks := pm.downloader.TakeBlocks()
|
||||
if len(blocks) == 0 {
|
||||
return nil
|
||||
}
|
||||
defer pm.downloader.Done()
|
||||
|
||||
glog.V(logger.Debug).Infof("Inserting chain with %d blocks (#%v - #%v)\n", len(blocks), blocks[0].Number(), blocks[len(blocks)-1].Number())
|
||||
|
||||
for len(blocks) != 0 && !pm.quit {
|
||||
|
@ -83,26 +75,28 @@ func (pm *ProtocolManager) synchronise(peer *peer) {
|
|||
if peer.td.Cmp(pm.chainman.Td()) <= 0 {
|
||||
return
|
||||
}
|
||||
// Check downloader if it's busy so it doesn't show the sync message
|
||||
// for every attempty
|
||||
if pm.downloader.IsBusy() {
|
||||
return
|
||||
}
|
||||
|
||||
// FIXME if we have the hash in our chain and the TD of the peer is
|
||||
// much higher than ours, something is wrong with us or the peer.
|
||||
// Check if the hash is on our own chain
|
||||
if pm.chainman.HasBlock(peer.recentHash) {
|
||||
return
|
||||
}
|
||||
|
||||
// Get the hashes from the peer (synchronously)
|
||||
glog.V(logger.Debug).Infof("Attempting synchronisation: %v, 0x%x", peer.id, peer.recentHash)
|
||||
|
||||
err := pm.downloader.Synchronise(peer.id, peer.recentHash)
|
||||
if err != nil && err == downloader.ErrBadPeer {
|
||||
glog.V(logger.Debug).Infoln("removed peer from peer set due to bad action")
|
||||
switch err {
|
||||
case nil:
|
||||
glog.V(logger.Debug).Infof("Synchronisation completed")
|
||||
|
||||
case downloader.ErrBusy:
|
||||
glog.V(logger.Debug).Infof("Synchronisation already in progress")
|
||||
|
||||
case downloader.ErrTimeout:
|
||||
glog.V(logger.Debug).Infof("Removing peer %v due to sync timeout", peer.id)
|
||||
pm.removePeer(peer)
|
||||
} else if err != nil {
|
||||
// handle error
|
||||
glog.V(logger.Detail).Infoln("error downloading:", err)
|
||||
|
||||
default:
|
||||
glog.V(logger.Warn).Infof("Synchronisation failed: %v", err)
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue