op-geth/crypto/bls12381/swu.go

159 lines
4.8 KiB
Go
Raw Normal View History

core/vm, crypto/bls12381, params: add bls12-381 elliptic curve precompiles (#21018) * crypto: add bls12-381 elliptic curve wrapper * params: add bls12-381 precompile gas parameters * core/vm: add bls12-381 precompiles * core/vm: add bls12-381 precompile tests * go.mod, go.sum: use latest bls12381 lib * core/vm: move point encode/decode functions to base library * crypto/bls12381: introduce bls12-381 library init function * crypto/bls12381: import bls12381 elliptic curve implementation * go.mod, go.sum: remove bls12-381 library * remove unsued frobenious coeffs supress warning for inp that used in asm * add mappings tests for zero inputs fix swu g2 minus z inverse constant * crypto/bls12381: fix typo * crypto/bls12381: better comments for bls12381 constants * crypto/bls12381: swu, use single conditional for e2 * crypto/bls12381: utils, delete empty line * crypto/bls12381: utils, use FromHex for string to big * crypto/bls12381: g1, g2, strict length check for FromBytes * crypto/bls12381: field_element, comparision changes * crypto/bls12381: change swu, isogeny constants with hex values * core/vm: fix point multiplication comments * core/vm: fix multiexp gas calculation and lookup for g1 and g2 * core/vm: simpler imput length check for multiexp and pairing precompiles * core/vm: rm empty multiexp result declarations * crypto/bls12381: remove modulus type definition * crypto/bls12381: use proper init function * crypto/bls12381: get rid of new lines at fatal desciprtions * crypto/bls12-381: fix no-adx assembly multiplication * crypto/bls12-381: remove old config function * crypto/bls12381: update multiplication backend this commit changes mul backend to 6limb eip1962 backend mul assign operations are dropped * core/vm/contracts_tests: externalize test vectors for precompiles * core/vm/contracts_test: externalize failure-cases for precompiles * core/vm: linting * go.mod: tiny up sum file * core/vm: fix goimports linter issues * crypto/bls12381: build tags for plain ASM or ADX implementation Co-authored-by: Martin Holst Swende <martin@swende.se> Co-authored-by: Péter Szilágyi <peterke@gmail.com>
2020-06-03 06:44:32 +00:00
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
// swuMapG1 is implementation of Simplified Shallue-van de Woestijne-Ulas Method
// follows the implmentation at draft-irtf-cfrg-hash-to-curve-06.
func swuMapG1(u *fe) (*fe, *fe) {
var params = swuParamsForG1
var tv [4]*fe
for i := 0; i < 4; i++ {
tv[i] = new(fe)
}
square(tv[0], u)
mul(tv[0], tv[0], params.z)
square(tv[1], tv[0])
x1 := new(fe)
add(x1, tv[0], tv[1])
inverse(x1, x1)
e1 := x1.isZero()
one := new(fe).one()
add(x1, x1, one)
if e1 {
x1.set(params.zInv)
}
mul(x1, x1, params.minusBOverA)
gx1 := new(fe)
square(gx1, x1)
add(gx1, gx1, params.a)
mul(gx1, gx1, x1)
add(gx1, gx1, params.b)
x2 := new(fe)
mul(x2, tv[0], x1)
mul(tv[1], tv[0], tv[1])
gx2 := new(fe)
mul(gx2, gx1, tv[1])
e2 := !isQuadraticNonResidue(gx1)
x, y2 := new(fe), new(fe)
if e2 {
x.set(x1)
y2.set(gx1)
} else {
x.set(x2)
y2.set(gx2)
}
y := new(fe)
sqrt(y, y2)
if y.sign() != u.sign() {
neg(y, y)
}
return x, y
}
// swuMapG2 is implementation of Simplified Shallue-van de Woestijne-Ulas Method
// defined at draft-irtf-cfrg-hash-to-curve-06.
func swuMapG2(e *fp2, u *fe2) (*fe2, *fe2) {
if e == nil {
e = newFp2()
}
params := swuParamsForG2
var tv [4]*fe2
for i := 0; i < 4; i++ {
tv[i] = e.new()
}
e.square(tv[0], u)
e.mul(tv[0], tv[0], params.z)
e.square(tv[1], tv[0])
x1 := e.new()
e.add(x1, tv[0], tv[1])
e.inverse(x1, x1)
e1 := x1.isZero()
e.add(x1, x1, e.one())
if e1 {
x1.set(params.zInv)
}
e.mul(x1, x1, params.minusBOverA)
gx1 := e.new()
e.square(gx1, x1)
e.add(gx1, gx1, params.a)
e.mul(gx1, gx1, x1)
e.add(gx1, gx1, params.b)
x2 := e.new()
e.mul(x2, tv[0], x1)
e.mul(tv[1], tv[0], tv[1])
gx2 := e.new()
e.mul(gx2, gx1, tv[1])
e2 := !e.isQuadraticNonResidue(gx1)
x, y2 := e.new(), e.new()
if e2 {
x.set(x1)
y2.set(gx1)
} else {
x.set(x2)
y2.set(gx2)
}
y := e.new()
e.sqrt(y, y2)
if y.sign() != u.sign() {
e.neg(y, y)
}
return x, y
}
var swuParamsForG1 = struct {
z *fe
zInv *fe
a *fe
b *fe
minusBOverA *fe
}{
a: &fe{0x2f65aa0e9af5aa51, 0x86464c2d1e8416c3, 0xb85ce591b7bd31e2, 0x27e11c91b5f24e7c, 0x28376eda6bfc1835, 0x155455c3e5071d85},
b: &fe{0xfb996971fe22a1e0, 0x9aa93eb35b742d6f, 0x8c476013de99c5c4, 0x873e27c3a221e571, 0xca72b5e45a52d888, 0x06824061418a386b},
z: &fe{0x886c00000023ffdc, 0x0f70008d3090001d, 0x77672417ed5828c3, 0x9dac23e943dc1740, 0x50553f1b9c131521, 0x078c712fbe0ab6e8},
zInv: &fe{0x0e8a2e8ba2e83e10, 0x5b28ba2ca4d745d1, 0x678cd5473847377a, 0x4c506dd8a8076116, 0x9bcb227d79284139, 0x0e8d3154b0ba099a},
minusBOverA: &fe{0x052583c93555a7fe, 0x3b40d72430f93c82, 0x1b75faa0105ec983, 0x2527e7dc63851767, 0x99fffd1f34fc181d, 0x097cab54770ca0d3},
}
var swuParamsForG2 = struct {
z *fe2
zInv *fe2
a *fe2
b *fe2
minusBOverA *fe2
}{
a: &fe2{
fe{0, 0, 0, 0, 0, 0},
fe{0xe53a000003135242, 0x01080c0fdef80285, 0xe7889edbe340f6bd, 0x0b51375126310601, 0x02d6985717c744ab, 0x1220b4e979ea5467},
},
b: &fe2{
fe{0x22ea00000cf89db2, 0x6ec832df71380aa4, 0x6e1b94403db5a66e, 0x75bf3c53a79473ba, 0x3dd3a569412c0a34, 0x125cdb5e74dc4fd1},
fe{0x22ea00000cf89db2, 0x6ec832df71380aa4, 0x6e1b94403db5a66e, 0x75bf3c53a79473ba, 0x3dd3a569412c0a34, 0x125cdb5e74dc4fd1},
},
z: &fe2{
fe{0x87ebfffffff9555c, 0x656fffe5da8ffffa, 0x0fd0749345d33ad2, 0xd951e663066576f4, 0xde291a3d41e980d3, 0x0815664c7dfe040d},
fe{0x43f5fffffffcaaae, 0x32b7fff2ed47fffd, 0x07e83a49a2e99d69, 0xeca8f3318332bb7a, 0xef148d1ea0f4c069, 0x040ab3263eff0206},
},
zInv: &fe2{
fe{0xacd0000000011110, 0x9dd9999dc88ccccd, 0xb5ca2ac9b76352bf, 0xf1b574bcf4bc90ce, 0x42dab41f28a77081, 0x132fc6ac14cd1e12},
fe{0xe396ffffffff2223, 0x4fbf332fcd0d9998, 0x0c4bbd3c1aff4cc4, 0x6b9c91267926ca58, 0x29ae4da6aef7f496, 0x10692e942f195791},
},
minusBOverA: &fe2{
fe{0x903c555555474fb3, 0x5f98cc95ce451105, 0x9f8e582eefe0fade, 0xc68946b6aebbd062, 0x467a4ad10ee6de53, 0x0e7146f483e23a05},
fe{0x29c2aaaaaab85af8, 0xbf133368e30eeefa, 0xc7a27a7206cffb45, 0x9dee04ce44c9425c, 0x04a15ce53464ce83, 0x0b8fcaf5b59dac95},
},
}