op-geth/swarm/pot/pot.go

804 lines
16 KiB
Go
Raw Normal View History

2018-06-20 14:06:27 +02:00
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package pot see doc.go
package pot
import (
"fmt"
"sync"
)
const (
maxkeylen = 256
)
// Pot is the node type (same for root, branching node and leaf)
type Pot struct {
pin Val
bins []*Pot
size int
po int
}
// Val is the element type for Pots
type Val interface{}
// Pof is the proximity order comparison operator function
type Pof func(Val, Val, int) (int, bool)
// NewPot constructor. Requires a value of type Val to pin
// and po to point to a span in the Val key
// The pinned item counts towards the size
func NewPot(v Val, po int) *Pot {
var size int
if v != nil {
size++
}
return &Pot{
pin: v,
po: po,
size: size,
}
}
// Pin returns the pinned element (key) of the Pot
func (t *Pot) Pin() Val {
return t.pin
}
// Size returns the number of values in the Pot
func (t *Pot) Size() int {
if t == nil {
return 0
}
return t.size
}
// Add inserts a new value into the Pot and
// returns the proximity order of v and a boolean
// indicating if the item was found
// Add called on (t, v) returns a new Pot that contains all the elements of t
// plus the value v, using the applicative add
// the second return value is the proximity order of the inserted element
// the third is boolean indicating if the item was found
func Add(t *Pot, val Val, pof Pof) (*Pot, int, bool) {
return add(t, val, pof)
}
func (t *Pot) clone() *Pot {
return &Pot{
pin: t.pin,
size: t.size,
po: t.po,
bins: t.bins,
}
}
func add(t *Pot, val Val, pof Pof) (*Pot, int, bool) {
var r *Pot
if t == nil || t.pin == nil {
r = t.clone()
r.pin = val
r.size++
return r, 0, false
}
po, found := pof(t.pin, val, t.po)
if found {
r = t.clone()
r.pin = val
return r, po, true
}
var p *Pot
var i, j int
size := t.size
for i < len(t.bins) {
n := t.bins[i]
if n.po == po {
p, _, found = add(n, val, pof)
if !found {
size++
}
j++
break
}
if n.po > po {
break
}
i++
j++
}
if p == nil {
size++
p = &Pot{
pin: val,
size: 1,
po: po,
}
}
bins := append([]*Pot{}, t.bins[:i]...)
bins = append(bins, p)
bins = append(bins, t.bins[j:]...)
r = &Pot{
pin: t.pin,
size: size,
po: t.po,
bins: bins,
}
return r, po, found
}
// Remove called on (v) deletes v from the Pot and returns
// the proximity order of v and a boolean value indicating
// if the value was found
// Remove called on (t, v) returns a new Pot that contains all the elements of t
// minus the value v, using the applicative remove
// the second return value is the proximity order of the inserted element
// the third is boolean indicating if the item was found
func Remove(t *Pot, v Val, pof Pof) (*Pot, int, bool) {
return remove(t, v, pof)
}
func remove(t *Pot, val Val, pof Pof) (r *Pot, po int, found bool) {
size := t.size
po, found = pof(t.pin, val, t.po)
if found {
size--
if size == 0 {
r = &Pot{
po: t.po,
}
return r, po, true
}
i := len(t.bins) - 1
last := t.bins[i]
r = &Pot{
pin: last.pin,
bins: append(t.bins[:i], last.bins...),
size: size,
po: t.po,
}
return r, t.po, true
}
var p *Pot
var i, j int
for i < len(t.bins) {
n := t.bins[i]
if n.po == po {
p, po, found = remove(n, val, pof)
if found {
size--
}
j++
break
}
if n.po > po {
return t, po, false
}
i++
j++
}
bins := t.bins[:i]
if p != nil && p.pin != nil {
bins = append(bins, p)
}
bins = append(bins, t.bins[j:]...)
r = &Pot{
pin: val,
size: size,
po: t.po,
bins: bins,
}
return r, po, found
}
// Swap called on (k, f) looks up the item at k
// and applies the function f to the value v at k or to nil if the item is not found
// if f(v) returns nil, the element is removed
// if f(v) returns v' <> v then v' is inserted into the Pot
// if (v) == v the Pot is not changed
// it panics if Pof(f(v), k) show that v' and v are not key-equal
func Swap(t *Pot, k Val, pof Pof, f func(v Val) Val) (r *Pot, po int, found bool, change bool) {
var val Val
if t.pin == nil {
val = f(nil)
if val == nil {
return nil, 0, false, false
}
return NewPot(val, t.po), 0, false, true
}
size := t.size
po, found = pof(k, t.pin, t.po)
if found {
val = f(t.pin)
// remove element
if val == nil {
size--
if size == 0 {
r = &Pot{
po: t.po,
}
// return empty pot
return r, po, true, true
}
// actually remove pin, by merging last bin
i := len(t.bins) - 1
last := t.bins[i]
r = &Pot{
pin: last.pin,
bins: append(t.bins[:i], last.bins...),
size: size,
po: t.po,
}
return r, po, true, true
}
// element found but no change
if val == t.pin {
return t, po, true, false
}
// actually modify the pinned element, but no change in structure
r = t.clone()
r.pin = val
return r, po, true, true
}
// recursive step
var p *Pot
n, i := t.getPos(po)
if n != nil {
p, po, found, change = Swap(n, k, pof, f)
// recursive no change
if !change {
return t, po, found, false
}
// recursive change
bins := append([]*Pot{}, t.bins[:i]...)
if p.size == 0 {
size--
} else {
size += p.size - n.size
bins = append(bins, p)
}
i++
if i < len(t.bins) {
bins = append(bins, t.bins[i:]...)
}
r = t.clone()
r.bins = bins
r.size = size
return r, po, found, true
}
// key does not exist
val = f(nil)
if val == nil {
// and it should not be created
return t, po, false, false
}
// otherwise check val if equal to k
if _, eq := pof(val, k, po); !eq {
panic("invalid value")
}
///
size++
p = &Pot{
pin: val,
size: 1,
po: po,
}
bins := append([]*Pot{}, t.bins[:i]...)
bins = append(bins, p)
if i < len(t.bins) {
bins = append(bins, t.bins[i:]...)
}
r = t.clone()
r.bins = bins
r.size = size
return r, po, found, true
}
// Union called on (t0, t1, pof) returns the union of t0 and t1
// calculates the union using the applicative union
// the second return value is the number of common elements
func Union(t0, t1 *Pot, pof Pof) (*Pot, int) {
return union(t0, t1, pof)
}
func union(t0, t1 *Pot, pof Pof) (*Pot, int) {
if t0 == nil || t0.size == 0 {
return t1, 0
}
if t1 == nil || t1.size == 0 {
return t0, 0
}
var pin Val
var bins []*Pot
var mis []int
wg := &sync.WaitGroup{}
wg.Add(1)
pin0 := t0.pin
pin1 := t1.pin
bins0 := t0.bins
bins1 := t1.bins
var i0, i1 int
var common int
po, eq := pof(pin0, pin1, 0)
for {
l0 := len(bins0)
l1 := len(bins1)
var n0, n1 *Pot
var p0, p1 int
var a0, a1 bool
for {
if !a0 && i0 < l0 && bins0[i0] != nil && bins0[i0].po <= po {
n0 = bins0[i0]
p0 = n0.po
a0 = p0 == po
} else {
a0 = true
}
if !a1 && i1 < l1 && bins1[i1] != nil && bins1[i1].po <= po {
n1 = bins1[i1]
p1 = n1.po
a1 = p1 == po
} else {
a1 = true
}
if a0 && a1 {
break
}
switch {
case (p0 < p1 || a1) && !a0:
bins = append(bins, n0)
i0++
n0 = nil
case (p1 < p0 || a0) && !a1:
bins = append(bins, n1)
i1++
n1 = nil
case p1 < po:
bl := len(bins)
bins = append(bins, nil)
ml := len(mis)
mis = append(mis, 0)
// wg.Add(1)
// go func(b, m int, m0, m1 *Pot) {
// defer wg.Done()
// bins[b], mis[m] = union(m0, m1, pof)
// }(bl, ml, n0, n1)
bins[bl], mis[ml] = union(n0, n1, pof)
i0++
i1++
n0 = nil
n1 = nil
}
}
if eq {
common++
pin = pin1
break
}
i := i0
if len(bins0) > i && bins0[i].po == po {
i++
}
var size0 int
for _, n := range bins0[i:] {
size0 += n.size
}
np := &Pot{
pin: pin0,
bins: bins0[i:],
size: size0 + 1,
po: po,
}
bins2 := []*Pot{np}
if n0 == nil {
pin0 = pin1
po = maxkeylen + 1
eq = true
common--
} else {
bins2 = append(bins2, n0.bins...)
pin0 = pin1
pin1 = n0.pin
po, eq = pof(pin0, pin1, n0.po)
}
bins0 = bins1
bins1 = bins2
i0 = i1
i1 = 0
}
wg.Done()
wg.Wait()
for _, c := range mis {
common += c
}
n := &Pot{
pin: pin,
bins: bins,
size: t0.size + t1.size - common,
po: t0.po,
}
return n, common
}
// Each called with (f) is a synchronous iterator over the bins of a node
// respecting an ordering
// proximity > pinnedness
func (t *Pot) Each(f func(Val, int) bool) bool {
return t.each(f)
}
func (t *Pot) each(f func(Val, int) bool) bool {
var next bool
for _, n := range t.bins {
if n == nil {
return true
}
next = n.each(f)
if !next {
return false
}
}
if t.size == 0 {
return false
}
return f(t.pin, t.po)
}
// eachFrom called with (f, start) is a synchronous iterator over the elements of a Pot
2018-06-20 14:06:27 +02:00
// within the inclusive range starting from proximity order start
// the function argument is passed the value and the proximity order wrt the root pin
// it does NOT include the pinned item of the root
// respecting an ordering
// proximity > pinnedness
// the iteration ends if the function return false or there are no more elements
// end of a po range can be implemented since po is passed to the function
func (t *Pot) eachFrom(f func(Val, int) bool, po int) bool {
var next bool
_, lim := t.getPos(po)
for i := lim; i < len(t.bins); i++ {
n := t.bins[i]
next = n.each(f)
if !next {
return false
}
}
return f(t.pin, t.po)
}
// EachBin iterates over bins of the pivot node and offers iterators to the caller on each
// subtree passing the proximity order and the size
// the iteration continues until the function's return value is false
// or there are no more subtries
func (t *Pot) EachBin(val Val, pof Pof, po int, f func(int, int, func(func(val Val, i int) bool) bool) bool) {
t.eachBin(val, pof, po, f)
}
func (t *Pot) eachBin(val Val, pof Pof, po int, f func(int, int, func(func(val Val, i int) bool) bool) bool) {
if t == nil || t.size == 0 {
return
}
spr, _ := pof(t.pin, val, t.po)
_, lim := t.getPos(spr)
var size int
var n *Pot
for i := 0; i < lim; i++ {
n = t.bins[i]
size += n.size
if n.po < po {
continue
}
if !f(n.po, n.size, n.each) {
return
}
}
if lim == len(t.bins) {
if spr >= po {
f(spr, 1, func(g func(Val, int) bool) bool {
return g(t.pin, spr)
})
}
return
}
n = t.bins[lim]
spo := spr
if n.po == spr {
spo++
size += n.size
}
if spr >= po {
if !f(spr, t.size-size, func(g func(Val, int) bool) bool {
return t.eachFrom(func(v Val, j int) bool {
return g(v, spr)
}, spo)
}) {
return
}
}
if n.po == spr {
n.eachBin(val, pof, po, f)
}
}
// EachNeighbour is a synchronous iterator over neighbours of any target val
// the order of elements retrieved reflect proximity order to the target
// TODO: add maximum proxbin to start range of iteration
func (t *Pot) EachNeighbour(val Val, pof Pof, f func(Val, int) bool) bool {
return t.eachNeighbour(val, pof, f)
}
func (t *Pot) eachNeighbour(val Val, pof Pof, f func(Val, int) bool) bool {
if t == nil || t.size == 0 {
return false
}
var next bool
l := len(t.bins)
var n *Pot
ir := l
il := l
po, eq := pof(t.pin, val, t.po)
if !eq {
n, il = t.getPos(po)
if n != nil {
next = n.eachNeighbour(val, pof, f)
if !next {
return false
}
ir = il
} else {
ir = il - 1
}
}
next = f(t.pin, po)
if !next {
return false
}
for i := l - 1; i > ir; i-- {
next = t.bins[i].each(func(v Val, _ int) bool {
return f(v, po)
})
if !next {
return false
}
}
for i := il - 1; i >= 0; i-- {
n := t.bins[i]
next = n.each(func(v Val, _ int) bool {
return f(v, n.po)
})
if !next {
return false
}
}
return true
}
// EachNeighbourAsync called on (val, max, maxPos, f, wait) is an asynchronous iterator
// over elements not closer than maxPos wrt val.
// val does not need to be match an element of the Pot, but if it does, and
// maxPos is keylength than it is included in the iteration
// Calls to f are parallelised, the order of calls is undefined.
// proximity order is respected in that there is no element in the Pot that
// is not visited if a closer node is visited.
// The iteration is finished when max number of nearest nodes is visited
// or if the entire there are no nodes not closer than maxPos that is not visited
// if wait is true, the iterator returns only if all calls to f are finished
// TODO: implement minPos for proper prox range iteration
func (t *Pot) EachNeighbourAsync(val Val, pof Pof, max int, maxPos int, f func(Val, int), wait bool) {
if max > t.size {
max = t.size
}
var wg *sync.WaitGroup
if wait {
wg = &sync.WaitGroup{}
}
t.eachNeighbourAsync(val, pof, max, maxPos, f, wg)
if wait {
wg.Wait()
}
}
func (t *Pot) eachNeighbourAsync(val Val, pof Pof, max int, maxPos int, f func(Val, int), wg *sync.WaitGroup) (extra int) {
l := len(t.bins)
po, eq := pof(t.pin, val, t.po)
// if po is too close, set the pivot branch (pom) to maxPos
pom := po
if pom > maxPos {
pom = maxPos
}
n, il := t.getPos(pom)
ir := il
// if pivot branch exists and po is not too close, iterate on the pivot branch
if pom == po {
if n != nil {
m := n.size
if max < m {
m = max
}
max -= m
extra = n.eachNeighbourAsync(val, pof, m, maxPos, f, wg)
} else {
if !eq {
ir--
}
}
} else {
extra++
max--
if n != nil {
il++
}
// before checking max, add up the extra elements
// on the close branches that are skipped (if po is too close)
for i := l - 1; i >= il; i-- {
s := t.bins[i]
m := s.size
if max < m {
m = max
}
max -= m
extra += m
}
}
var m int
if pom == po {
m, max, extra = need(1, max, extra)
if m <= 0 {
return
}
if wg != nil {
wg.Add(1)
}
go func() {
if wg != nil {
defer wg.Done()
}
f(t.pin, po)
}()
// otherwise iterats
for i := l - 1; i > ir; i-- {
n := t.bins[i]
m, max, extra = need(n.size, max, extra)
if m <= 0 {
return
}
if wg != nil {
wg.Add(m)
}
go func(pn *Pot, pm int) {
pn.each(func(v Val, _ int) bool {
if wg != nil {
defer wg.Done()
}
f(v, po)
pm--
return pm > 0
})
}(n, m)
}
}
// iterate branches that are farther tham pom with their own po
for i := il - 1; i >= 0; i-- {
n := t.bins[i]
// the first time max is less than the size of the entire branch
// wait for the pivot thread to release extra elements
m, max, extra = need(n.size, max, extra)
if m <= 0 {
return
}
if wg != nil {
wg.Add(m)
}
go func(pn *Pot, pm int) {
pn.each(func(v Val, _ int) bool {
if wg != nil {
defer wg.Done()
}
f(v, pn.po)
pm--
return pm > 0
})
}(n, m)
}
return max + extra
}
// getPos called on (n) returns the forking node at PO n and its index if it exists
// otherwise nil
// caller is supposed to hold the lock
func (t *Pot) getPos(po int) (n *Pot, i int) {
for i, n = range t.bins {
if po > n.po {
continue
}
if po < n.po {
return nil, i
}
return n, i
}
return nil, len(t.bins)
}
// need called on (m, max, extra) uses max m out of extra, and then max
// if needed, returns the adjusted counts
func need(m, max, extra int) (int, int, int) {
if m <= extra {
return m, max, extra - m
}
max += extra - m
if max <= 0 {
return m + max, 0, 0
}
return m, max, 0
}
func (t *Pot) String() string {
return t.sstring("")
}
func (t *Pot) sstring(indent string) string {
if t == nil {
return "<nil>"
}
var s string
indent += " "
s += fmt.Sprintf("%v%v (%v) %v \n", indent, t.pin, t.po, t.size)
for _, n := range t.bins {
s += fmt.Sprintf("%v%v\n", indent, n.sstring(indent))
}
return s
}