op-geth/swarm/storage/chunker_test.go

553 lines
18 KiB
Go
Raw Normal View History

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package storage
import (
"bytes"
"crypto/rand"
"encoding/binary"
"errors"
"fmt"
"io"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/crypto/sha3"
)
/*
Tests TreeChunker by splitting and joining a random byte slice
*/
type test interface {
Fatalf(string, ...interface{})
Logf(string, ...interface{})
}
type chunkerTester struct {
inputs map[uint64][]byte
chunks map[string]*Chunk
t test
}
func (self *chunkerTester) Split(chunker Splitter, data io.Reader, size int64, chunkC chan *Chunk, swg *sync.WaitGroup, expectedError error) (key Key, err error) {
// reset
self.chunks = make(map[string]*Chunk)
if self.inputs == nil {
self.inputs = make(map[uint64][]byte)
}
quitC := make(chan bool)
timeout := time.After(600 * time.Second)
if chunkC != nil {
go func() error {
for {
select {
case <-timeout:
return errors.New("Split timeout error")
case <-quitC:
return nil
case chunk := <-chunkC:
// self.chunks = append(self.chunks, chunk)
self.chunks[chunk.Key.String()] = chunk
if chunk.wg != nil {
chunk.wg.Done()
}
}
}
}()
}
key, err = chunker.Split(data, size, chunkC, swg, nil)
if err != nil && expectedError == nil {
err = fmt.Errorf("Split error: %v", err)
}
if chunkC != nil {
if swg != nil {
swg.Wait()
}
close(quitC)
}
return key, err
}
func (self *chunkerTester) Append(chunker Splitter, rootKey Key, data io.Reader, chunkC chan *Chunk, swg *sync.WaitGroup, expectedError error) (key Key, err error) {
quitC := make(chan bool)
timeout := time.After(60 * time.Second)
if chunkC != nil {
go func() error {
for {
select {
case <-timeout:
return errors.New("Append timeout error")
case <-quitC:
return nil
case chunk := <-chunkC:
if chunk != nil {
stored, success := self.chunks[chunk.Key.String()]
if !success {
// Requesting data
self.chunks[chunk.Key.String()] = chunk
if chunk.wg != nil {
chunk.wg.Done()
}
} else {
// getting data
chunk.SData = stored.SData
chunk.Size = int64(binary.LittleEndian.Uint64(chunk.SData[0:8]))
close(chunk.C)
}
}
}
}
}()
}
key, err = chunker.Append(rootKey, data, chunkC, swg, nil)
if err != nil && expectedError == nil {
err = fmt.Errorf("Append error: %v", err)
}
if chunkC != nil {
if swg != nil {
swg.Wait()
}
close(quitC)
}
return key, err
}
func (self *chunkerTester) Join(chunker Chunker, key Key, c int, chunkC chan *Chunk, quitC chan bool) LazySectionReader {
// reset but not the chunks
reader := chunker.Join(key, chunkC)
timeout := time.After(600 * time.Second)
i := 0
go func() error {
for {
select {
case <-timeout:
return errors.New("Join timeout error")
case chunk, ok := <-chunkC:
if !ok {
close(quitC)
return nil
}
// this just mocks the behaviour of a chunk store retrieval
stored, success := self.chunks[chunk.Key.String()]
if !success {
return errors.New("Not found")
}
chunk.SData = stored.SData
chunk.Size = int64(binary.LittleEndian.Uint64(chunk.SData[0:8]))
close(chunk.C)
i++
}
}
}()
return reader
}
func testRandomBrokenData(splitter Splitter, n int, tester *chunkerTester) {
data := io.LimitReader(rand.Reader, int64(n))
brokendata := brokenLimitReader(data, n, n/2)
buf := make([]byte, n)
_, err := brokendata.Read(buf)
if err == nil || err.Error() != "Broken reader" {
tester.t.Fatalf("Broken reader is not broken, hence broken. Returns: %v", err)
}
data = io.LimitReader(rand.Reader, int64(n))
brokendata = brokenLimitReader(data, n, n/2)
chunkC := make(chan *Chunk, 1000)
swg := &sync.WaitGroup{}
expectedError := fmt.Errorf("Broken reader")
key, err := tester.Split(splitter, brokendata, int64(n), chunkC, swg, expectedError)
if err == nil || err.Error() != expectedError.Error() {
tester.t.Fatalf("Not receiving the correct error! Expected %v, received %v", expectedError, err)
}
tester.t.Logf(" Key = %v\n", key)
}
func testRandomData(splitter Splitter, n int, tester *chunkerTester) Key {
if tester.inputs == nil {
tester.inputs = make(map[uint64][]byte)
}
input, found := tester.inputs[uint64(n)]
var data io.Reader
if !found {
data, input = testDataReaderAndSlice(n)
tester.inputs[uint64(n)] = input
} else {
data = io.LimitReader(bytes.NewReader(input), int64(n))
}
chunkC := make(chan *Chunk, 1000)
swg := &sync.WaitGroup{}
key, err := tester.Split(splitter, data, int64(n), chunkC, swg, nil)
if err != nil {
tester.t.Fatalf(err.Error())
}
tester.t.Logf(" Key = %v\n", key)
chunkC = make(chan *Chunk, 1000)
quitC := make(chan bool)
chunker := NewTreeChunker(NewChunkerParams())
reader := tester.Join(chunker, key, 0, chunkC, quitC)
output := make([]byte, n)
r, err := reader.Read(output)
if r != n || err != io.EOF {
tester.t.Fatalf("read error read: %v n = %v err = %v\n", r, n, err)
}
if input != nil {
if !bytes.Equal(output, input) {
tester.t.Fatalf("input and output mismatch\n IN: %v\nOUT: %v\n", input, output)
}
}
close(chunkC)
<-quitC
return key
}
func testRandomDataAppend(splitter Splitter, n, m int, tester *chunkerTester) {
if tester.inputs == nil {
tester.inputs = make(map[uint64][]byte)
}
input, found := tester.inputs[uint64(n)]
var data io.Reader
if !found {
data, input = testDataReaderAndSlice(n)
tester.inputs[uint64(n)] = input
} else {
data = io.LimitReader(bytes.NewReader(input), int64(n))
}
chunkC := make(chan *Chunk, 1000)
swg := &sync.WaitGroup{}
key, err := tester.Split(splitter, data, int64(n), chunkC, swg, nil)
if err != nil {
tester.t.Fatalf(err.Error())
}
tester.t.Logf(" Key = %v\n", key)
//create a append data stream
appendInput, found := tester.inputs[uint64(m)]
var appendData io.Reader
if !found {
appendData, appendInput = testDataReaderAndSlice(m)
tester.inputs[uint64(m)] = appendInput
} else {
appendData = io.LimitReader(bytes.NewReader(appendInput), int64(m))
}
chunkC = make(chan *Chunk, 1000)
swg = &sync.WaitGroup{}
newKey, err := tester.Append(splitter, key, appendData, chunkC, swg, nil)
if err != nil {
tester.t.Fatalf(err.Error())
}
tester.t.Logf(" NewKey = %v\n", newKey)
chunkC = make(chan *Chunk, 1000)
quitC := make(chan bool)
chunker := NewTreeChunker(NewChunkerParams())
reader := tester.Join(chunker, newKey, 0, chunkC, quitC)
newOutput := make([]byte, n+m)
r, err := reader.Read(newOutput)
if r != (n + m) {
tester.t.Fatalf("read error read: %v n = %v err = %v\n", r, n, err)
}
newInput := append(input, appendInput...)
if !bytes.Equal(newOutput, newInput) {
tester.t.Fatalf("input and output mismatch\n IN: %v\nOUT: %v\n", newInput, newOutput)
}
close(chunkC)
}
func TestSha3ForCorrectness(t *testing.T) {
tester := &chunkerTester{t: t}
size := 4096
input := make([]byte, size+8)
binary.LittleEndian.PutUint64(input[:8], uint64(size))
io.LimitReader(bytes.NewReader(input[8:]), int64(size))
rawSha3 := sha3.NewKeccak256()
rawSha3.Reset()
rawSha3.Write(input)
rawSha3Output := rawSha3.Sum(nil)
sha3FromMakeFunc := MakeHashFunc(SHA3Hash)()
sha3FromMakeFunc.ResetWithLength(input[:8])
sha3FromMakeFunc.Write(input[8:])
sha3FromMakeFuncOutput := sha3FromMakeFunc.Sum(nil)
if len(rawSha3Output) != len(sha3FromMakeFuncOutput) {
tester.t.Fatalf("Original SHA3 and abstracted Sha3 has different length %v:%v\n", len(rawSha3Output), len(sha3FromMakeFuncOutput))
}
if !bytes.Equal(rawSha3Output, sha3FromMakeFuncOutput) {
tester.t.Fatalf("Original SHA3 and abstracted Sha3 mismatch %v:%v\n", rawSha3Output, sha3FromMakeFuncOutput)
}
}
func TestDataAppend(t *testing.T) {
sizes := []int{1, 1, 1, 4095, 4096, 4097, 1, 1, 1, 123456, 2345678, 2345678}
appendSizes := []int{4095, 4096, 4097, 1, 1, 1, 8191, 8192, 8193, 9000, 3000, 5000}
tester := &chunkerTester{t: t}
chunker := NewPyramidChunker(NewChunkerParams())
for i, s := range sizes {
testRandomDataAppend(chunker, s, appendSizes[i], tester)
}
}
func TestRandomData(t *testing.T) {
sizes := []int{1, 60, 83, 179, 253, 1024, 4095, 4096, 4097, 8191, 8192, 8193, 12287, 12288, 12289, 123456, 2345678}
tester := &chunkerTester{t: t}
chunker := NewTreeChunker(NewChunkerParams())
pyramid := NewPyramidChunker(NewChunkerParams())
for _, s := range sizes {
treeChunkerKey := testRandomData(chunker, s, tester)
pyramidChunkerKey := testRandomData(pyramid, s, tester)
if treeChunkerKey.String() != pyramidChunkerKey.String() {
tester.t.Fatalf("tree chunker and pyramid chunker key mismatch for size %v\n TC: %v\n PC: %v\n", s, treeChunkerKey.String(), pyramidChunkerKey.String())
}
}
cp := NewChunkerParams()
cp.Hash = BMTHash
chunker = NewTreeChunker(cp)
pyramid = NewPyramidChunker(cp)
for _, s := range sizes {
treeChunkerKey := testRandomData(chunker, s, tester)
pyramidChunkerKey := testRandomData(pyramid, s, tester)
if treeChunkerKey.String() != pyramidChunkerKey.String() {
tester.t.Fatalf("tree chunker BMT and pyramid chunker BMT key mismatch for size %v \n TC: %v\n PC: %v\n", s, treeChunkerKey.String(), pyramidChunkerKey.String())
}
}
}
func XTestRandomBrokenData(t *testing.T) {
sizes := []int{1, 60, 83, 179, 253, 1024, 4095, 4096, 4097, 8191, 8192, 8193, 12287, 12288, 12289, 123456, 2345678}
tester := &chunkerTester{t: t}
chunker := NewTreeChunker(NewChunkerParams())
for _, s := range sizes {
testRandomBrokenData(chunker, s, tester)
}
}
func benchReadAll(reader LazySectionReader) {
size, _ := reader.Size(nil)
output := make([]byte, 1000)
for pos := int64(0); pos < size; pos += 1000 {
reader.ReadAt(output, pos)
}
}
func benchmarkJoin(n int, t *testing.B) {
t.ReportAllocs()
for i := 0; i < t.N; i++ {
chunker := NewTreeChunker(NewChunkerParams())
tester := &chunkerTester{t: t}
data := testDataReader(n)
chunkC := make(chan *Chunk, 1000)
swg := &sync.WaitGroup{}
key, err := tester.Split(chunker, data, int64(n), chunkC, swg, nil)
if err != nil {
tester.t.Fatalf(err.Error())
}
chunkC = make(chan *Chunk, 1000)
quitC := make(chan bool)
reader := tester.Join(chunker, key, i, chunkC, quitC)
benchReadAll(reader)
close(chunkC)
<-quitC
}
}
func benchmarkSplitTreeSHA3(n int, t *testing.B) {
t.ReportAllocs()
for i := 0; i < t.N; i++ {
chunker := NewTreeChunker(NewChunkerParams())
tester := &chunkerTester{t: t}
data := testDataReader(n)
_, err := tester.Split(chunker, data, int64(n), nil, nil, nil)
if err != nil {
tester.t.Fatalf(err.Error())
}
}
}
func benchmarkSplitTreeBMT(n int, t *testing.B) {
t.ReportAllocs()
for i := 0; i < t.N; i++ {
cp := NewChunkerParams()
cp.Hash = BMTHash
chunker := NewTreeChunker(cp)
tester := &chunkerTester{t: t}
data := testDataReader(n)
_, err := tester.Split(chunker, data, int64(n), nil, nil, nil)
if err != nil {
tester.t.Fatalf(err.Error())
}
}
}
func benchmarkSplitPyramidSHA3(n int, t *testing.B) {
t.ReportAllocs()
for i := 0; i < t.N; i++ {
splitter := NewPyramidChunker(NewChunkerParams())
tester := &chunkerTester{t: t}
data := testDataReader(n)
_, err := tester.Split(splitter, data, int64(n), nil, nil, nil)
if err != nil {
tester.t.Fatalf(err.Error())
}
}
}
func benchmarkSplitPyramidBMT(n int, t *testing.B) {
t.ReportAllocs()
for i := 0; i < t.N; i++ {
cp := NewChunkerParams()
cp.Hash = BMTHash
splitter := NewPyramidChunker(cp)
tester := &chunkerTester{t: t}
data := testDataReader(n)
_, err := tester.Split(splitter, data, int64(n), nil, nil, nil)
if err != nil {
tester.t.Fatalf(err.Error())
}
}
}
func benchmarkAppendPyramid(n, m int, t *testing.B) {
t.ReportAllocs()
for i := 0; i < t.N; i++ {
chunker := NewPyramidChunker(NewChunkerParams())
tester := &chunkerTester{t: t}
data := testDataReader(n)
data1 := testDataReader(m)
chunkC := make(chan *Chunk, 1000)
swg := &sync.WaitGroup{}
key, err := tester.Split(chunker, data, int64(n), chunkC, swg, nil)
if err != nil {
tester.t.Fatalf(err.Error())
}
chunkC = make(chan *Chunk, 1000)
swg = &sync.WaitGroup{}
_, err = tester.Append(chunker, key, data1, chunkC, swg, nil)
if err != nil {
tester.t.Fatalf(err.Error())
}
close(chunkC)
}
}
func BenchmarkJoin_2(t *testing.B) { benchmarkJoin(100, t) }
func BenchmarkJoin_3(t *testing.B) { benchmarkJoin(1000, t) }
func BenchmarkJoin_4(t *testing.B) { benchmarkJoin(10000, t) }
func BenchmarkJoin_5(t *testing.B) { benchmarkJoin(100000, t) }
func BenchmarkJoin_6(t *testing.B) { benchmarkJoin(1000000, t) }
func BenchmarkJoin_7(t *testing.B) { benchmarkJoin(10000000, t) }
func BenchmarkJoin_8(t *testing.B) { benchmarkJoin(100000000, t) }
func BenchmarkSplitTreeSHA3_2(t *testing.B) { benchmarkSplitTreeSHA3(100, t) }
func BenchmarkSplitTreeSHA3_2h(t *testing.B) { benchmarkSplitTreeSHA3(500, t) }
func BenchmarkSplitTreeSHA3_3(t *testing.B) { benchmarkSplitTreeSHA3(1000, t) }
func BenchmarkSplitTreeSHA3_3h(t *testing.B) { benchmarkSplitTreeSHA3(5000, t) }
func BenchmarkSplitTreeSHA3_4(t *testing.B) { benchmarkSplitTreeSHA3(10000, t) }
func BenchmarkSplitTreeSHA3_4h(t *testing.B) { benchmarkSplitTreeSHA3(50000, t) }
func BenchmarkSplitTreeSHA3_5(t *testing.B) { benchmarkSplitTreeSHA3(100000, t) }
func BenchmarkSplitTreeSHA3_6(t *testing.B) { benchmarkSplitTreeSHA3(1000000, t) }
func BenchmarkSplitTreeSHA3_7(t *testing.B) { benchmarkSplitTreeSHA3(10000000, t) }
func BenchmarkSplitTreeSHA3_8(t *testing.B) { benchmarkSplitTreeSHA3(100000000, t) }
func BenchmarkSplitTreeBMT_2(t *testing.B) { benchmarkSplitTreeBMT(100, t) }
func BenchmarkSplitTreeBMT_2h(t *testing.B) { benchmarkSplitTreeBMT(500, t) }
func BenchmarkSplitTreeBMT_3(t *testing.B) { benchmarkSplitTreeBMT(1000, t) }
func BenchmarkSplitTreeBMT_3h(t *testing.B) { benchmarkSplitTreeBMT(5000, t) }
func BenchmarkSplitTreeBMT_4(t *testing.B) { benchmarkSplitTreeBMT(10000, t) }
func BenchmarkSplitTreeBMT_4h(t *testing.B) { benchmarkSplitTreeBMT(50000, t) }
func BenchmarkSplitTreeBMT_5(t *testing.B) { benchmarkSplitTreeBMT(100000, t) }
func BenchmarkSplitTreeBMT_6(t *testing.B) { benchmarkSplitTreeBMT(1000000, t) }
func BenchmarkSplitTreeBMT_7(t *testing.B) { benchmarkSplitTreeBMT(10000000, t) }
func BenchmarkSplitTreeBMT_8(t *testing.B) { benchmarkSplitTreeBMT(100000000, t) }
func BenchmarkSplitPyramidSHA3_2(t *testing.B) { benchmarkSplitPyramidSHA3(100, t) }
func BenchmarkSplitPyramidSHA3_2h(t *testing.B) { benchmarkSplitPyramidSHA3(500, t) }
func BenchmarkSplitPyramidSHA3_3(t *testing.B) { benchmarkSplitPyramidSHA3(1000, t) }
func BenchmarkSplitPyramidSHA3_3h(t *testing.B) { benchmarkSplitPyramidSHA3(5000, t) }
func BenchmarkSplitPyramidSHA3_4(t *testing.B) { benchmarkSplitPyramidSHA3(10000, t) }
func BenchmarkSplitPyramidSHA3_4h(t *testing.B) { benchmarkSplitPyramidSHA3(50000, t) }
func BenchmarkSplitPyramidSHA3_5(t *testing.B) { benchmarkSplitPyramidSHA3(100000, t) }
func BenchmarkSplitPyramidSHA3_6(t *testing.B) { benchmarkSplitPyramidSHA3(1000000, t) }
func BenchmarkSplitPyramidSHA3_7(t *testing.B) { benchmarkSplitPyramidSHA3(10000000, t) }
func BenchmarkSplitPyramidSHA3_8(t *testing.B) { benchmarkSplitPyramidSHA3(100000000, t) }
func BenchmarkSplitPyramidBMT_2(t *testing.B) { benchmarkSplitPyramidBMT(100, t) }
func BenchmarkSplitPyramidBMT_2h(t *testing.B) { benchmarkSplitPyramidBMT(500, t) }
func BenchmarkSplitPyramidBMT_3(t *testing.B) { benchmarkSplitPyramidBMT(1000, t) }
func BenchmarkSplitPyramidBMT_3h(t *testing.B) { benchmarkSplitPyramidBMT(5000, t) }
func BenchmarkSplitPyramidBMT_4(t *testing.B) { benchmarkSplitPyramidBMT(10000, t) }
func BenchmarkSplitPyramidBMT_4h(t *testing.B) { benchmarkSplitPyramidBMT(50000, t) }
func BenchmarkSplitPyramidBMT_5(t *testing.B) { benchmarkSplitPyramidBMT(100000, t) }
func BenchmarkSplitPyramidBMT_6(t *testing.B) { benchmarkSplitPyramidBMT(1000000, t) }
func BenchmarkSplitPyramidBMT_7(t *testing.B) { benchmarkSplitPyramidBMT(10000000, t) }
func BenchmarkSplitPyramidBMT_8(t *testing.B) { benchmarkSplitPyramidBMT(100000000, t) }
func BenchmarkAppendPyramid_2(t *testing.B) { benchmarkAppendPyramid(100, 1000, t) }
func BenchmarkAppendPyramid_2h(t *testing.B) { benchmarkAppendPyramid(500, 1000, t) }
func BenchmarkAppendPyramid_3(t *testing.B) { benchmarkAppendPyramid(1000, 1000, t) }
func BenchmarkAppendPyramid_4(t *testing.B) { benchmarkAppendPyramid(10000, 1000, t) }
func BenchmarkAppendPyramid_4h(t *testing.B) { benchmarkAppendPyramid(50000, 1000, t) }
func BenchmarkAppendPyramid_5(t *testing.B) { benchmarkAppendPyramid(1000000, 1000, t) }
func BenchmarkAppendPyramid_6(t *testing.B) { benchmarkAppendPyramid(1000000, 1000, t) }
func BenchmarkAppendPyramid_7(t *testing.B) { benchmarkAppendPyramid(10000000, 1000, t) }
func BenchmarkAppendPyramid_8(t *testing.B) { benchmarkAppendPyramid(100000000, 1000, t) }
// go test -timeout 20m -cpu 4 -bench=./swarm/storage -run no
// If you dont add the timeout argument above .. the benchmark will timeout and dump