op-geth/les/server.go

366 lines
11 KiB
Go
Raw Normal View History

2016-11-09 02:01:56 +01:00
// Copyright 2016 The go-ethereum Authors
2016-10-14 05:51:29 +02:00
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"crypto/ecdsa"
2016-10-14 05:51:29 +02:00
"sync"
"time"
2016-10-14 05:51:29 +02:00
"github.com/ethereum/go-ethereum/common"
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
"github.com/ethereum/go-ethereum/common/mclock"
2016-10-14 05:51:29 +02:00
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/rawdb"
2016-10-14 05:51:29 +02:00
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/eth"
"github.com/ethereum/go-ethereum/les/csvlogger"
2016-10-14 05:51:29 +02:00
"github.com/ethereum/go-ethereum/les/flowcontrol"
"github.com/ethereum/go-ethereum/light"
"github.com/ethereum/go-ethereum/log"
2016-10-14 05:51:29 +02:00
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/discv5"
"github.com/ethereum/go-ethereum/params"
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
"github.com/ethereum/go-ethereum/rpc"
2016-10-14 05:51:29 +02:00
)
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
const bufLimitRatio = 6000 // fixed bufLimit/MRR ratio
const (
logFileName = "" // csv log file name (disabled if empty)
logClientPoolMetrics = true // log client pool metrics
logClientPoolEvents = false // detailed client pool event logging
logRequestServing = true // log request serving metrics and events
logBlockProcEvents = true // log block processing events
logProtocolHandler = true // log protocol handler events
)
2016-10-14 05:51:29 +02:00
type LesServer struct {
lesCommons
archiveMode bool // Flag whether the ethereum node runs in archive mode.
fcManager *flowcontrol.ClientManager // nil if our node is client only
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
costTracker *costTracker
testCost uint64
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
defParams flowcontrol.ServerParams
lesTopics []discv5.Topic
privateKey *ecdsa.PrivateKey
quitSync chan struct{}
onlyAnnounce bool
csvLogger *csvlogger.Logger
logTotalCap *csvlogger.Channel
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
thcNormal, thcBlockProcessing int // serving thread count for normal operation and block processing mode
maxPeers int
minCapacity, freeClientCap uint64
freeClientPool *freeClientPool
priorityClientPool *priorityClientPool
2016-10-14 05:51:29 +02:00
}
func NewLesServer(eth *eth.Ethereum, config *eth.Config) (*LesServer, error) {
var csvLogger *csvlogger.Logger
if logFileName != "" {
csvLogger = csvlogger.NewLogger(logFileName, time.Second*10, "event, peerId")
}
quitSync := make(chan struct{})
pm, err := NewProtocolManager(
eth.BlockChain().Config(),
light.DefaultServerIndexerConfig,
false,
config.NetworkId,
eth.EventMux(),
eth.Engine(),
newPeerSet(),
eth.BlockChain(),
eth.TxPool(),
eth.ChainDb(),
nil,
nil,
nil,
quitSync,
new(sync.WaitGroup),
config.ULC,
eth.Synced)
2016-10-14 05:51:29 +02:00
if err != nil {
return nil, err
}
if logProtocolHandler {
pm.logger = csvLogger
}
requestLogger := csvLogger
if !logRequestServing {
requestLogger = nil
}
pm.servingQueue = newServingQueue(int64(time.Millisecond*10), float64(config.LightServ)/100, requestLogger)
lesTopics := make([]discv5.Topic, len(AdvertiseProtocolVersions))
for i, pv := range AdvertiseProtocolVersions {
lesTopics[i] = lesTopic(eth.BlockChain().Genesis().Hash(), pv)
}
2016-10-14 05:51:29 +02:00
srv := &LesServer{
lesCommons: lesCommons{
config: config,
chainDb: eth.ChainDb(),
iConfig: light.DefaultServerIndexerConfig,
chtIndexer: light.NewChtIndexer(eth.ChainDb(), nil, params.CHTFrequency, params.HelperTrieProcessConfirmations),
bloomTrieIndexer: light.NewBloomTrieIndexer(eth.ChainDb(), nil, params.BloomBitsBlocks, params.BloomTrieFrequency),
protocolManager: pm,
},
archiveMode: eth.ArchiveMode(),
quitSync: quitSync,
lesTopics: lesTopics,
onlyAnnounce: config.OnlyAnnounce,
csvLogger: csvLogger,
logTotalCap: requestLogger.NewChannel("totalCapacity", 0.01),
}
srv.costTracker, srv.minCapacity = newCostTracker(eth.ChainDb(), config, requestLogger)
logger := log.New()
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
pm.server = srv
srv.thcNormal = config.LightServ * 4 / 100
if srv.thcNormal < 4 {
srv.thcNormal = 4
}
srv.thcBlockProcessing = config.LightServ/100 + 1
srv.fcManager = flowcontrol.NewClientManager(nil, &mclock.System{})
chtSectionCount, _, _ := srv.chtIndexer.Sections()
if chtSectionCount != 0 {
chtLastSection := chtSectionCount - 1
chtSectionHead := srv.chtIndexer.SectionHead(chtLastSection)
chtRoot := light.GetChtRoot(pm.chainDb, chtLastSection, chtSectionHead)
logger.Info("Loaded CHT", "section", chtLastSection, "head", chtSectionHead, "root", chtRoot)
}
bloomTrieSectionCount, _, _ := srv.bloomTrieIndexer.Sections()
if bloomTrieSectionCount != 0 {
bloomTrieLastSection := bloomTrieSectionCount - 1
bloomTrieSectionHead := srv.bloomTrieIndexer.SectionHead(bloomTrieLastSection)
bloomTrieRoot := light.GetBloomTrieRoot(pm.chainDb, bloomTrieLastSection, bloomTrieSectionHead)
logger.Info("Loaded bloom trie", "section", bloomTrieLastSection, "head", bloomTrieSectionHead, "root", bloomTrieRoot)
}
srv.chtIndexer.Start(eth.BlockChain())
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
return srv, nil
}
2016-10-14 05:51:29 +02:00
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
func (s *LesServer) APIs() []rpc.API {
return []rpc.API{
{
Namespace: "les",
Version: "1.0",
Service: NewPrivateLightServerAPI(s),
Public: false,
},
2016-10-14 05:51:29 +02:00
}
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
}
// startEventLoop starts an event handler loop that updates the recharge curve of
// the client manager and adjusts the client pool's size according to the total
// capacity updates coming from the client manager
func (s *LesServer) startEventLoop() {
s.protocolManager.wg.Add(1)
blockProcLogger := s.csvLogger
if !logBlockProcEvents {
blockProcLogger = nil
}
var processing, procLast bool
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
blockProcFeed := make(chan bool, 100)
s.protocolManager.blockchain.(*core.BlockChain).SubscribeBlockProcessingEvent(blockProcFeed)
totalRechargeCh := make(chan uint64, 100)
totalRecharge := s.costTracker.subscribeTotalRecharge(totalRechargeCh)
totalCapacityCh := make(chan uint64, 100)
updateRecharge := func() {
if processing {
if !procLast {
blockProcLogger.Event("block processing started")
}
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
s.protocolManager.servingQueue.setThreads(s.thcBlockProcessing)
s.fcManager.SetRechargeCurve(flowcontrol.PieceWiseLinear{{0, 0}, {totalRecharge, totalRecharge}})
} else {
if procLast {
blockProcLogger.Event("block processing finished")
}
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
s.protocolManager.servingQueue.setThreads(s.thcNormal)
s.fcManager.SetRechargeCurve(flowcontrol.PieceWiseLinear{{0, 0}, {totalRecharge / 16, totalRecharge / 2}, {totalRecharge / 2, totalRecharge / 2}, {totalRecharge, totalRecharge}})
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
}
procLast = processing
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
}
updateRecharge()
totalCapacity := s.fcManager.SubscribeTotalCapacity(totalCapacityCh)
s.priorityClientPool.setLimits(s.maxPeers, totalCapacity)
var maxFreePeers uint64
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
go func() {
for {
select {
case processing = <-blockProcFeed:
updateRecharge()
case totalRecharge = <-totalRechargeCh:
updateRecharge()
case totalCapacity = <-totalCapacityCh:
s.logTotalCap.Update(float64(totalCapacity))
newFreePeers := totalCapacity / s.freeClientCap
if newFreePeers < maxFreePeers && newFreePeers < uint64(s.maxPeers) {
log.Warn("Reduced total capacity", "maxFreePeers", newFreePeers)
}
maxFreePeers = newFreePeers
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
s.priorityClientPool.setLimits(s.maxPeers, totalCapacity)
case <-s.protocolManager.quitSync:
s.protocolManager.wg.Done()
return
}
}
}()
2016-10-14 05:51:29 +02:00
}
func (s *LesServer) Protocols() []p2p.Protocol {
return s.makeProtocols(ServerProtocolVersions)
2016-10-14 05:51:29 +02:00
}
// Start starts the LES server
func (s *LesServer) Start(srvr *p2p.Server) {
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
s.maxPeers = s.config.LightPeers
totalRecharge := s.costTracker.totalRecharge()
if s.maxPeers > 0 {
s.freeClientCap = s.minCapacity //totalRecharge / uint64(s.maxPeers)
if s.freeClientCap < s.minCapacity {
s.freeClientCap = s.minCapacity
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
}
if s.freeClientCap > 0 {
s.defParams = flowcontrol.ServerParams{
BufLimit: s.freeClientCap * bufLimitRatio,
MinRecharge: s.freeClientCap,
}
}
}
maxCapacity := s.freeClientCap * uint64(s.maxPeers)
if totalRecharge > maxCapacity {
maxCapacity = totalRecharge
}
s.fcManager.SetCapacityLimits(s.freeClientCap, maxCapacity, s.freeClientCap*2)
poolMetricsLogger := s.csvLogger
if !logClientPoolMetrics {
poolMetricsLogger = nil
}
poolEventLogger := s.csvLogger
if !logClientPoolEvents {
poolEventLogger = nil
}
s.freeClientPool = newFreeClientPool(s.chainDb, s.freeClientCap, 10000, mclock.System{}, func(id string) { go s.protocolManager.removePeer(id) }, poolMetricsLogger, poolEventLogger)
s.priorityClientPool = newPriorityClientPool(s.freeClientCap, s.protocolManager.peers, s.freeClientPool, poolMetricsLogger, poolEventLogger)
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
s.protocolManager.peers.notify(s.priorityClientPool)
s.csvLogger.Start()
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
s.startEventLoop()
s.protocolManager.Start(s.config.LightPeers)
if srvr.DiscV5 != nil {
for _, topic := range s.lesTopics {
topic := topic
go func() {
logger := log.New("topic", topic)
logger.Info("Starting topic registration")
defer logger.Info("Terminated topic registration")
srvr.DiscV5.RegisterTopic(topic, s.quitSync)
}()
}
}
s.privateKey = srvr.PrivateKey
s.protocolManager.blockLoop()
}
func (s *LesServer) SetBloomBitsIndexer(bloomIndexer *core.ChainIndexer) {
bloomIndexer.AddChildIndexer(s.bloomTrieIndexer)
2016-10-14 05:51:29 +02:00
}
// Stop stops the LES service
2016-10-14 05:51:29 +02:00
func (s *LesServer) Stop() {
s.fcManager.Stop()
s.chtIndexer.Close()
// bloom trie indexer is closed by parent bloombits indexer
2016-10-14 05:51:29 +02:00
go func() {
<-s.protocolManager.noMorePeers
}()
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
s.freeClientPool.stop()
s.costTracker.stop()
2016-10-14 05:51:29 +02:00
s.protocolManager.Stop()
s.csvLogger.Stop()
2016-10-14 05:51:29 +02:00
}
// todo(rjl493456442) separate client and server implementation.
2016-10-14 05:51:29 +02:00
func (pm *ProtocolManager) blockLoop() {
pm.wg.Add(1)
headCh := make(chan core.ChainHeadEvent, 10)
headSub := pm.blockchain.SubscribeChainHeadEvent(headCh)
2016-10-14 05:51:29 +02:00
go func() {
var lastHead *types.Header
lastBroadcastTd := common.Big0
for {
select {
case ev := <-headCh:
2016-10-14 05:51:29 +02:00
peers := pm.peers.AllPeers()
if len(peers) > 0 {
header := ev.Block.Header()
2016-10-14 05:51:29 +02:00
hash := header.Hash()
number := header.Number.Uint64()
td := rawdb.ReadTd(pm.chainDb, hash, number)
2016-10-14 05:51:29 +02:00
if td != nil && td.Cmp(lastBroadcastTd) > 0 {
var reorg uint64
if lastHead != nil {
reorg = lastHead.Number.Uint64() - rawdb.FindCommonAncestor(pm.chainDb, header, lastHead).Number.Uint64()
2016-10-14 05:51:29 +02:00
}
lastHead = header
lastBroadcastTd = td
2016-11-13 12:34:50 +01:00
log.Debug("Announcing block to peers", "number", number, "hash", hash, "td", td, "reorg", reorg)
2016-11-13 12:34:50 +01:00
2016-10-14 05:51:29 +02:00
announce := announceData{Hash: hash, Number: number, Td: td, ReorgDepth: reorg}
var (
signed bool
signedAnnounce announceData
)
2016-10-14 05:51:29 +02:00
for _, p := range peers {
2019-03-25 08:17:55 +01:00
p := p
switch p.announceType {
case announceTypeSimple:
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
p.queueSend(func() { p.SendAnnounce(announce) })
case announceTypeSigned:
if !signed {
signedAnnounce = announce
signedAnnounce.sign(pm.server.privateKey)
signed = true
}
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
2019-02-26 12:32:48 +01:00
p.queueSend(func() { p.SendAnnounce(signedAnnounce) })
2016-10-14 05:51:29 +02:00
}
}
}
}
case <-pm.quitSync:
headSub.Unsubscribe()
2016-10-14 05:51:29 +02:00
pm.wg.Done()
return
}
}
}()
}