op-geth/eth/downloader/queue.go

1281 lines
44 KiB
Go
Raw Normal View History

2015-07-07 00:54:22 +00:00
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-07 00:54:22 +00:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-07 00:54:22 +00:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-07 00:54:22 +00:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-07 00:54:22 +00:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-07 00:54:22 +00:00
// Contains the block download scheduler to collect download tasks and schedule
// them in an ordered, and throttled way.
2015-04-12 10:38:25 +00:00
package downloader
import (
"errors"
"fmt"
2015-04-12 10:38:25 +00:00
"sync"
"sync/atomic"
2015-04-12 10:38:25 +00:00
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/state"
2015-04-12 10:38:25 +00:00
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/trie"
"github.com/rcrowley/go-metrics"
"gopkg.in/karalabe/cookiejar.v2/collections/prque"
2015-04-12 10:38:25 +00:00
)
var (
2016-05-17 08:12:57 +00:00
blockCacheLimit = 8192 // Maximum number of blocks to cache before throttling the download
maxInFlightStates = 8192 // Maximum number of state downloads to allow concurrently
)
var (
errNoFetchesPending = errors.New("no fetches pending")
errStateSyncPending = errors.New("state trie sync already scheduled")
errStaleDelivery = errors.New("stale delivery")
)
// fetchRequest is a currently running data retrieval operation.
type fetchRequest struct {
Peer *peer // Peer to which the request was sent
From uint64 // [eth/62] Requested chain element index (used for skeleton fills only)
Hashes map[common.Hash]int // [eth/61] Requested hashes with their insertion index (priority)
Headers []*types.Header // [eth/62] Requested headers, sorted by request order
Time time.Time // Time when the request was made
}
// fetchResult is a struct collecting partial results from data fetchers until
// all outstanding pieces complete and the result as a whole can be processed.
type fetchResult struct {
Pending int // Number of data fetches still pending
Header *types.Header
Uncles []*types.Header
Transactions types.Transactions
Receipts types.Receipts
}
2015-04-12 10:38:25 +00:00
// queue represents hashes that are either need fetching or are being fetched
type queue struct {
mode SyncMode // Synchronisation mode to decide on the block parts to schedule for fetching
fastSyncPivot uint64 // Block number where the fast sync pivots into archive synchronisation mode
hashPool map[common.Hash]int // [eth/61] Pending hashes, mapping to their insertion index (priority)
hashQueue *prque.Prque // [eth/61] Priority queue of the block hashes to fetch
hashCounter int // [eth/61] Counter indexing the added hashes to ensure retrieval order
headerHead common.Hash // [eth/62] Hash of the last queued header to verify order
// Headers are "special", they download in batches, supported by a skeleton chain
headerTaskPool map[uint64]*types.Header // [eth/62] Pending header retrieval tasks, mapping starting indexes to skeleton headers
headerTaskQueue *prque.Prque // [eth/62] Priority queue of the skeleton indexes to fetch the filling headers for
headerPeerMiss map[string]map[uint64]struct{} // [eth/62] Set of per-peer header batches known to be unavailable
headerPendPool map[string]*fetchRequest // [eth/62] Currently pending header retrieval operations
headerDonePool map[uint64]struct{} // [eth/62] Set of the completed header fetches
headerResults []*types.Header // [eth/62] Result cache accumulating the completed headers
headerProced int // [eth/62] Number of headers already processed from the results
headerOffset uint64 // [eth/62] Number of the first header in the result cache
headerContCh chan bool // [eth/62] Channel to notify when header download finishes
// All data retrievals below are based on an already assembles header chain
blockTaskPool map[common.Hash]*types.Header // [eth/62] Pending block (body) retrieval tasks, mapping hashes to headers
blockTaskQueue *prque.Prque // [eth/62] Priority queue of the headers to fetch the blocks (bodies) for
blockPendPool map[string]*fetchRequest // [eth/62] Currently pending block (body) retrieval operations
blockDonePool map[common.Hash]struct{} // [eth/62] Set of the completed block (body) fetches
2015-04-12 10:38:25 +00:00
receiptTaskPool map[common.Hash]*types.Header // [eth/63] Pending receipt retrieval tasks, mapping hashes to headers
receiptTaskQueue *prque.Prque // [eth/63] Priority queue of the headers to fetch the receipts for
receiptPendPool map[string]*fetchRequest // [eth/63] Currently pending receipt retrieval operations
receiptDonePool map[common.Hash]struct{} // [eth/63] Set of the completed receipt fetches
stateTaskIndex int // [eth/63] Counter indexing the added hashes to ensure prioritised retrieval order
stateTaskPool map[common.Hash]int // [eth/63] Pending node data retrieval tasks, mapping to their priority
stateTaskQueue *prque.Prque // [eth/63] Priority queue of the hashes to fetch the node data for
statePendPool map[string]*fetchRequest // [eth/63] Currently pending node data retrieval operations
stateDatabase ethdb.Database // [eth/63] Trie database to populate during state reassembly
stateScheduler *state.StateSync // [eth/63] State trie synchronisation scheduler and integrator
stateProcessors int32 // [eth/63] Number of currently running state processors
stateSchedLock sync.RWMutex // [eth/63] Lock serialising access to the state scheduler
resultCache []*fetchResult // Downloaded but not yet delivered fetch results
resultOffset uint64 // Offset of the first cached fetch result in the block chain
lock *sync.Mutex
active *sync.Cond
closed bool
2015-04-12 10:38:25 +00:00
}
// newQueue creates a new download queue for scheduling block retrieval.
func newQueue(stateDb ethdb.Database) *queue {
lock := new(sync.Mutex)
2015-04-12 10:38:25 +00:00
return &queue{
hashPool: make(map[common.Hash]int),
hashQueue: prque.New(),
headerPendPool: make(map[string]*fetchRequest),
headerContCh: make(chan bool),
blockTaskPool: make(map[common.Hash]*types.Header),
blockTaskQueue: prque.New(),
blockPendPool: make(map[string]*fetchRequest),
blockDonePool: make(map[common.Hash]struct{}),
receiptTaskPool: make(map[common.Hash]*types.Header),
receiptTaskQueue: prque.New(),
receiptPendPool: make(map[string]*fetchRequest),
receiptDonePool: make(map[common.Hash]struct{}),
stateTaskPool: make(map[common.Hash]int),
stateTaskQueue: prque.New(),
statePendPool: make(map[string]*fetchRequest),
stateDatabase: stateDb,
resultCache: make([]*fetchResult, blockCacheLimit),
active: sync.NewCond(lock),
lock: lock,
2015-04-12 10:38:25 +00:00
}
}
// Reset clears out the queue contents.
func (q *queue) Reset() {
q.lock.Lock()
defer q.lock.Unlock()
q.stateSchedLock.Lock()
defer q.stateSchedLock.Unlock()
q.closed = false
q.mode = FullSync
q.fastSyncPivot = 0
q.hashPool = make(map[common.Hash]int)
q.hashQueue.Reset()
q.hashCounter = 0
q.headerHead = common.Hash{}
q.headerPendPool = make(map[string]*fetchRequest)
q.blockTaskPool = make(map[common.Hash]*types.Header)
q.blockTaskQueue.Reset()
q.blockPendPool = make(map[string]*fetchRequest)
q.blockDonePool = make(map[common.Hash]struct{})
q.receiptTaskPool = make(map[common.Hash]*types.Header)
q.receiptTaskQueue.Reset()
q.receiptPendPool = make(map[string]*fetchRequest)
q.receiptDonePool = make(map[common.Hash]struct{})
q.stateTaskIndex = 0
q.stateTaskPool = make(map[common.Hash]int)
q.stateTaskQueue.Reset()
q.statePendPool = make(map[string]*fetchRequest)
q.stateScheduler = nil
q.resultCache = make([]*fetchResult, blockCacheLimit)
q.resultOffset = 0
}
// Close marks the end of the sync, unblocking WaitResults.
// It may be called even if the queue is already closed.
func (q *queue) Close() {
q.lock.Lock()
q.closed = true
q.lock.Unlock()
q.active.Broadcast()
}
// PendingHeaders retrieves the number of header requests pending for retrieval.
func (q *queue) PendingHeaders() int {
q.lock.Lock()
defer q.lock.Unlock()
return q.headerTaskQueue.Size()
}
// PendingBlocks retrieves the number of block (body) requests pending for retrieval.
func (q *queue) PendingBlocks() int {
q.lock.Lock()
defer q.lock.Unlock()
return q.hashQueue.Size() + q.blockTaskQueue.Size()
}
// PendingReceipts retrieves the number of block receipts pending for retrieval.
func (q *queue) PendingReceipts() int {
q.lock.Lock()
defer q.lock.Unlock()
2015-04-12 10:38:25 +00:00
return q.receiptTaskQueue.Size()
}
2015-04-12 10:38:25 +00:00
// PendingNodeData retrieves the number of node data entries pending for retrieval.
func (q *queue) PendingNodeData() int {
q.stateSchedLock.RLock()
defer q.stateSchedLock.RUnlock()
if q.stateScheduler != nil {
return q.stateScheduler.Pending()
}
return 0
}
// InFlightHeaders retrieves whether there are header fetch requests currently
// in flight.
func (q *queue) InFlightHeaders() bool {
q.lock.Lock()
defer q.lock.Unlock()
return len(q.headerPendPool) > 0
}
// InFlightBlocks retrieves whether there are block fetch requests currently in
// flight.
func (q *queue) InFlightBlocks() bool {
q.lock.Lock()
defer q.lock.Unlock()
return len(q.blockPendPool) > 0
}
// InFlightReceipts retrieves whether there are receipt fetch requests currently
// in flight.
func (q *queue) InFlightReceipts() bool {
q.lock.Lock()
defer q.lock.Unlock()
2015-04-12 10:38:25 +00:00
return len(q.receiptPendPool) > 0
}
// InFlightNodeData retrieves whether there are node data entry fetch requests
// currently in flight.
func (q *queue) InFlightNodeData() bool {
q.lock.Lock()
defer q.lock.Unlock()
return len(q.statePendPool)+int(atomic.LoadInt32(&q.stateProcessors)) > 0
}
// Idle returns if the queue is fully idle or has some data still inside. This
// method is used by the tester to detect termination events.
func (q *queue) Idle() bool {
q.lock.Lock()
defer q.lock.Unlock()
queued := q.hashQueue.Size() + q.blockTaskQueue.Size() + q.receiptTaskQueue.Size() + q.stateTaskQueue.Size()
pending := len(q.blockPendPool) + len(q.receiptPendPool) + len(q.statePendPool)
cached := len(q.blockDonePool) + len(q.receiptDonePool)
q.stateSchedLock.RLock()
if q.stateScheduler != nil {
queued += q.stateScheduler.Pending()
}
q.stateSchedLock.RUnlock()
return (queued + pending + cached) == 0
}
// FastSyncPivot retrieves the currently used fast sync pivot point.
func (q *queue) FastSyncPivot() uint64 {
q.lock.Lock()
defer q.lock.Unlock()
return q.fastSyncPivot
}
// ShouldThrottleBlocks checks if the download should be throttled (active block (body)
// fetches exceed block cache).
func (q *queue) ShouldThrottleBlocks() bool {
q.lock.Lock()
defer q.lock.Unlock()
// Calculate the currently in-flight block (body) requests
pending := 0
for _, request := range q.blockPendPool {
pending += len(request.Hashes) + len(request.Headers)
}
// Throttle if more blocks (bodies) are in-flight than free space in the cache
return pending >= len(q.resultCache)-len(q.blockDonePool)
}
// ShouldThrottleReceipts checks if the download should be throttled (active receipt
// fetches exceed block cache).
func (q *queue) ShouldThrottleReceipts() bool {
q.lock.Lock()
defer q.lock.Unlock()
// Calculate the currently in-flight receipt requests
pending := 0
for _, request := range q.receiptPendPool {
pending += len(request.Headers)
}
// Throttle if more receipts are in-flight than free space in the cache
return pending >= len(q.resultCache)-len(q.receiptDonePool)
}
// Schedule61 adds a set of hashes for the download queue for scheduling, returning
// the new hashes encountered.
func (q *queue) Schedule61(hashes []common.Hash, fifo bool) []common.Hash {
q.lock.Lock()
defer q.lock.Unlock()
// Insert all the hashes prioritised in the arrival order
inserts := make([]common.Hash, 0, len(hashes))
for _, hash := range hashes {
// Skip anything we already have
if old, ok := q.hashPool[hash]; ok {
glog.V(logger.Warn).Infof("Hash %x already scheduled at index %v", hash, old)
continue
}
// Update the counters and insert the hash
q.hashCounter = q.hashCounter + 1
inserts = append(inserts, hash)
q.hashPool[hash] = q.hashCounter
if fifo {
q.hashQueue.Push(hash, -float32(q.hashCounter)) // Lowest gets schedules first
} else {
q.hashQueue.Push(hash, float32(q.hashCounter)) // Highest gets schedules first
}
}
return inserts
2015-04-12 10:38:25 +00:00
}
// ScheduleSkeleton adds a batch of header retrieval tasks to the queue to fill
// up an already retrieved header skeleton.
func (q *queue) ScheduleSkeleton(from uint64, skeleton []*types.Header) {
q.lock.Lock()
defer q.lock.Unlock()
// No skeleton retrieval can be in progress, fail hard if so (huge implementation bug)
if q.headerResults != nil {
panic("skeleton assembly already in progress")
}
// Shedule all the header retrieval tasks for the skeleton assembly
q.headerTaskPool = make(map[uint64]*types.Header)
q.headerTaskQueue = prque.New()
q.headerPeerMiss = make(map[string]map[uint64]struct{}) // Reset availability to correct invalid chains
q.headerResults = make([]*types.Header, len(skeleton)*MaxHeaderFetch)
q.headerProced = 0
q.headerOffset = from
q.headerContCh = make(chan bool, 1)
for i, header := range skeleton {
index := from + uint64(i*MaxHeaderFetch)
q.headerTaskPool[index] = header
q.headerTaskQueue.Push(index, -float32(index))
}
}
// RetrieveHeaders retrieves the header chain assemble based on the scheduled
// skeleton.
func (q *queue) RetrieveHeaders() ([]*types.Header, int) {
q.lock.Lock()
defer q.lock.Unlock()
headers, proced := q.headerResults, q.headerProced
q.headerResults, q.headerProced = nil, 0
return headers, proced
}
// Schedule adds a set of headers for the download queue for scheduling, returning
// the new headers encountered.
func (q *queue) Schedule(headers []*types.Header, from uint64) []*types.Header {
q.lock.Lock()
defer q.lock.Unlock()
// Insert all the headers prioritised by the contained block number
inserts := make([]*types.Header, 0, len(headers))
for _, header := range headers {
// Make sure chain order is honoured and preserved throughout
hash := header.Hash()
if header.Number == nil || header.Number.Uint64() != from {
glog.V(logger.Warn).Infof("Header #%v [%x] broke chain ordering, expected %d", header.Number, hash[:4], from)
break
}
if q.headerHead != (common.Hash{}) && q.headerHead != header.ParentHash {
glog.V(logger.Warn).Infof("Header #%v [%x] broke chain ancestry", header.Number, hash[:4])
break
}
// Make sure no duplicate requests are executed
if _, ok := q.blockTaskPool[hash]; ok {
glog.V(logger.Warn).Infof("Header #%d [%x] already scheduled for block fetch", header.Number.Uint64(), hash[:4])
continue
}
if _, ok := q.receiptTaskPool[hash]; ok {
glog.V(logger.Warn).Infof("Header #%d [%x] already scheduled for receipt fetch", header.Number.Uint64(), hash[:4])
continue
}
// Queue the header for content retrieval
q.blockTaskPool[hash] = header
q.blockTaskQueue.Push(header, -float32(header.Number.Uint64()))
if q.mode == FastSync && header.Number.Uint64() <= q.fastSyncPivot {
// Fast phase of the fast sync, retrieve receipts too
q.receiptTaskPool[hash] = header
q.receiptTaskQueue.Push(header, -float32(header.Number.Uint64()))
}
if q.mode == FastSync && header.Number.Uint64() == q.fastSyncPivot {
// Pivoting point of the fast sync, retrieve the state tries
q.stateSchedLock.Lock()
q.stateScheduler = state.NewStateSync(header.Root, q.stateDatabase)
q.stateSchedLock.Unlock()
}
inserts = append(inserts, header)
q.headerHead = hash
from++
}
return inserts
}
// WaitResults retrieves and permanently removes a batch of fetch
// results from the cache. the result slice will be empty if the queue
// has been closed.
func (q *queue) WaitResults() []*fetchResult {
q.lock.Lock()
defer q.lock.Unlock()
nproc := q.countProcessableItems()
for nproc == 0 && !q.closed {
q.active.Wait()
nproc = q.countProcessableItems()
}
results := make([]*fetchResult, nproc)
copy(results, q.resultCache[:nproc])
if len(results) > 0 {
// Mark results as done before dropping them from the cache.
for _, result := range results {
hash := result.Header.Hash()
delete(q.blockDonePool, hash)
delete(q.receiptDonePool, hash)
}
// Delete the results from the cache and clear the tail.
copy(q.resultCache, q.resultCache[nproc:])
for i := len(q.resultCache) - nproc; i < len(q.resultCache); i++ {
q.resultCache[i] = nil
}
// Advance the expected block number of the first cache entry.
q.resultOffset += uint64(nproc)
}
return results
}
// countProcessableItems counts the processable items.
func (q *queue) countProcessableItems() int {
for i, result := range q.resultCache {
// Don't process incomplete or unavailable items.
if result == nil || result.Pending > 0 {
return i
}
// Special handling for the fast-sync pivot block:
if q.mode == FastSync {
bnum := result.Header.Number.Uint64()
if bnum == q.fastSyncPivot {
// If the state of the pivot block is not
// available yet, we cannot proceed and return 0.
//
// Stop before processing the pivot block to ensure that
// resultCache has space for fsHeaderForceVerify items. Not
// doing this could leave us unable to download the required
// amount of headers.
if i > 0 || len(q.stateTaskPool) > 0 || q.PendingNodeData() > 0 {
return i
}
for j := 0; j < fsHeaderForceVerify; j++ {
if i+j+1 >= len(q.resultCache) || q.resultCache[i+j+1] == nil {
return i
}
}
}
// If we're just the fast sync pivot, stop as well
// because the following batch needs different insertion.
// This simplifies handling the switchover in d.process.
if bnum == q.fastSyncPivot+1 && i > 0 {
return i
}
}
}
return len(q.resultCache)
}
// ReserveHeaders reserves a set of headers for the given peer, skipping any
// previously failed batches.
func (q *queue) ReserveHeaders(p *peer, count int) *fetchRequest {
q.lock.Lock()
defer q.lock.Unlock()
// Short circuit if the peer's already downloading something (sanity check to
// not corrupt state)
if _, ok := q.headerPendPool[p.id]; ok {
return nil
}
// Retrieve a batch of hashes, skipping previously failed ones
send, skip := uint64(0), []uint64{}
for send == 0 && !q.headerTaskQueue.Empty() {
from, _ := q.headerTaskQueue.Pop()
if q.headerPeerMiss[p.id] != nil {
if _, ok := q.headerPeerMiss[p.id][from.(uint64)]; ok {
skip = append(skip, from.(uint64))
continue
}
}
send = from.(uint64)
}
// Merge all the skipped batches back
for _, from := range skip {
q.headerTaskQueue.Push(from, -float32(from))
}
// Assemble and return the block download request
if send == 0 {
return nil
}
request := &fetchRequest{
Peer: p,
From: send,
Time: time.Now(),
}
q.headerPendPool[p.id] = request
return request
}
// ReserveBlocks reserves a set of block hashes for the given peer, skipping any
// previously failed download.
func (q *queue) ReserveBlocks(p *peer, count int) *fetchRequest {
q.lock.Lock()
defer q.lock.Unlock()
return q.reserveHashes(p, count, q.hashQueue, nil, q.blockPendPool, len(q.resultCache)-len(q.blockDonePool))
}
// ReserveNodeData reserves a set of node data hashes for the given peer, skipping
// any previously failed download.
func (q *queue) ReserveNodeData(p *peer, count int) *fetchRequest {
// Create a task generator to fetch status-fetch tasks if all schedules ones are done
generator := func(max int) {
q.stateSchedLock.Lock()
defer q.stateSchedLock.Unlock()
if q.stateScheduler != nil {
for _, hash := range q.stateScheduler.Missing(max) {
q.stateTaskPool[hash] = q.stateTaskIndex
q.stateTaskQueue.Push(hash, -float32(q.stateTaskIndex))
q.stateTaskIndex++
}
}
}
q.lock.Lock()
defer q.lock.Unlock()
return q.reserveHashes(p, count, q.stateTaskQueue, generator, q.statePendPool, maxInFlightStates)
}
// reserveHashes reserves a set of hashes for the given peer, skipping previously
// failed ones.
//
// Note, this method expects the queue lock to be already held for writing. The
// reason the lock is not obtained in here is because the parameters already need
// to access the queue, so they already need a lock anyway.
func (q *queue) reserveHashes(p *peer, count int, taskQueue *prque.Prque, taskGen func(int), pendPool map[string]*fetchRequest, maxPending int) *fetchRequest {
// Short circuit if the peer's already downloading something (sanity check to
// not corrupt state)
if _, ok := pendPool[p.id]; ok {
return nil
}
// Calculate an upper limit on the hashes we might fetch (i.e. throttling)
allowance := maxPending
if allowance > 0 {
for _, request := range pendPool {
allowance -= len(request.Hashes)
}
}
// If there's a task generator, ask it to fill our task queue
if taskGen != nil && taskQueue.Size() < allowance {
taskGen(allowance - taskQueue.Size())
}
if taskQueue.Empty() {
return nil
}
// Retrieve a batch of hashes, skipping previously failed ones
send := make(map[common.Hash]int)
skip := make(map[common.Hash]int)
for proc := 0; (allowance == 0 || proc < allowance) && len(send) < count && !taskQueue.Empty(); proc++ {
hash, priority := taskQueue.Pop()
if p.Lacks(hash.(common.Hash)) {
skip[hash.(common.Hash)] = int(priority)
} else {
send[hash.(common.Hash)] = int(priority)
}
}
// Merge all the skipped hashes back
for hash, index := range skip {
taskQueue.Push(hash, float32(index))
}
// Assemble and return the block download request
if len(send) == 0 {
return nil
}
request := &fetchRequest{
Peer: p,
Hashes: send,
Time: time.Now(),
}
pendPool[p.id] = request
return request
2015-04-12 10:38:25 +00:00
}
// ReserveBodies reserves a set of body fetches for the given peer, skipping any
// previously failed downloads. Beside the next batch of needed fetches, it also
// returns a flag whether empty blocks were queued requiring processing.
func (q *queue) ReserveBodies(p *peer, count int) (*fetchRequest, bool, error) {
isNoop := func(header *types.Header) bool {
return header.TxHash == types.EmptyRootHash && header.UncleHash == types.EmptyUncleHash
}
q.lock.Lock()
defer q.lock.Unlock()
return q.reserveHeaders(p, count, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool, q.blockDonePool, isNoop)
}
// ReserveReceipts reserves a set of receipt fetches for the given peer, skipping
// any previously failed downloads. Beside the next batch of needed fetches, it
// also returns a flag whether empty receipts were queued requiring importing.
func (q *queue) ReserveReceipts(p *peer, count int) (*fetchRequest, bool, error) {
isNoop := func(header *types.Header) bool {
return header.ReceiptHash == types.EmptyRootHash
}
q.lock.Lock()
defer q.lock.Unlock()
return q.reserveHeaders(p, count, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool, q.receiptDonePool, isNoop)
}
// reserveHeaders reserves a set of data download operations for a given peer,
// skipping any previously failed ones. This method is a generic version used
// by the individual special reservation functions.
//
// Note, this method expects the queue lock to be already held for writing. The
// reason the lock is not obtained in here is because the parameters already need
// to access the queue, so they already need a lock anyway.
func (q *queue) reserveHeaders(p *peer, count int, taskPool map[common.Hash]*types.Header, taskQueue *prque.Prque,
pendPool map[string]*fetchRequest, donePool map[common.Hash]struct{}, isNoop func(*types.Header) bool) (*fetchRequest, bool, error) {
// Short circuit if the pool has been depleted, or if the peer's already
// downloading something (sanity check not to corrupt state)
if taskQueue.Empty() {
return nil, false, nil
}
if _, ok := pendPool[p.id]; ok {
return nil, false, nil
}
// Calculate an upper limit on the items we might fetch (i.e. throttling)
space := len(q.resultCache) - len(donePool)
for _, request := range pendPool {
space -= len(request.Headers)
}
// Retrieve a batch of tasks, skipping previously failed ones
send := make([]*types.Header, 0, count)
skip := make([]*types.Header, 0)
progress := false
for proc := 0; proc < space && len(send) < count && !taskQueue.Empty(); proc++ {
header := taskQueue.PopItem().(*types.Header)
// If we're the first to request this task, initialise the result container
index := int(header.Number.Int64() - int64(q.resultOffset))
if index >= len(q.resultCache) || index < 0 {
common.Report("index allocation went beyond available resultCache space")
return nil, false, errInvalidChain
}
if q.resultCache[index] == nil {
components := 1
if q.mode == FastSync && header.Number.Uint64() <= q.fastSyncPivot {
components = 2
}
q.resultCache[index] = &fetchResult{
Pending: components,
Header: header,
}
}
// If this fetch task is a noop, skip this fetch operation
if isNoop(header) {
donePool[header.Hash()] = struct{}{}
delete(taskPool, header.Hash())
space, proc = space-1, proc-1
q.resultCache[index].Pending--
progress = true
continue
}
// Otherwise unless the peer is known not to have the data, add to the retrieve list
if p.Lacks(header.Hash()) {
skip = append(skip, header)
} else {
send = append(send, header)
}
}
// Merge all the skipped headers back
for _, header := range skip {
taskQueue.Push(header, -float32(header.Number.Uint64()))
}
if progress {
// Wake WaitResults, resultCache was modified
q.active.Signal()
}
// Assemble and return the block download request
if len(send) == 0 {
return nil, progress, nil
}
request := &fetchRequest{
Peer: p,
Headers: send,
Time: time.Now(),
}
pendPool[p.id] = request
return request, progress, nil
}
// CancelHeaders aborts a fetch request, returning all pending skeleton indexes to the queue.
func (q *queue) CancelHeaders(request *fetchRequest) {
q.cancel(request, q.headerTaskQueue, q.headerPendPool)
}
// CancelBlocks aborts a fetch request, returning all pending hashes to the queue.
func (q *queue) CancelBlocks(request *fetchRequest) {
q.cancel(request, q.hashQueue, q.blockPendPool)
}
// CancelBodies aborts a body fetch request, returning all pending headers to the
// task queue.
func (q *queue) CancelBodies(request *fetchRequest) {
q.cancel(request, q.blockTaskQueue, q.blockPendPool)
}
// CancelReceipts aborts a body fetch request, returning all pending headers to
// the task queue.
func (q *queue) CancelReceipts(request *fetchRequest) {
q.cancel(request, q.receiptTaskQueue, q.receiptPendPool)
}
// CancelNodeData aborts a node state data fetch request, returning all pending
// hashes to the task queue.
func (q *queue) CancelNodeData(request *fetchRequest) {
q.cancel(request, q.stateTaskQueue, q.statePendPool)
}
// Cancel aborts a fetch request, returning all pending hashes to the task queue.
func (q *queue) cancel(request *fetchRequest, taskQueue *prque.Prque, pendPool map[string]*fetchRequest) {
q.lock.Lock()
defer q.lock.Unlock()
2015-04-12 10:38:25 +00:00
if request.From > 0 {
taskQueue.Push(request.From, -float32(request.From))
}
for hash, index := range request.Hashes {
taskQueue.Push(hash, float32(index))
}
for _, header := range request.Headers {
taskQueue.Push(header, -float32(header.Number.Uint64()))
}
delete(pendPool, request.Peer.id)
2015-04-12 10:38:25 +00:00
}
// Revoke cancels all pending requests belonging to a given peer. This method is
// meant to be called during a peer drop to quickly reassign owned data fetches
// to remaining nodes.
func (q *queue) Revoke(peerId string) {
q.lock.Lock()
defer q.lock.Unlock()
if request, ok := q.blockPendPool[peerId]; ok {
for hash, index := range request.Hashes {
q.hashQueue.Push(hash, float32(index))
}
for _, header := range request.Headers {
q.blockTaskQueue.Push(header, -float32(header.Number.Uint64()))
}
delete(q.blockPendPool, peerId)
}
if request, ok := q.receiptPendPool[peerId]; ok {
for _, header := range request.Headers {
q.receiptTaskQueue.Push(header, -float32(header.Number.Uint64()))
}
delete(q.receiptPendPool, peerId)
}
if request, ok := q.statePendPool[peerId]; ok {
for hash, index := range request.Hashes {
q.stateTaskQueue.Push(hash, float32(index))
}
delete(q.statePendPool, peerId)
}
}
// ExpireHeaders checks for in flight requests that exceeded a timeout allowance,
// canceling them and returning the responsible peers for penalisation.
func (q *queue) ExpireHeaders(timeout time.Duration) map[string]int {
q.lock.Lock()
defer q.lock.Unlock()
return q.expire(timeout, q.headerPendPool, q.headerTaskQueue, headerTimeoutMeter)
}
// ExpireBlocks checks for in flight requests that exceeded a timeout allowance,
// canceling them and returning the responsible peers for penalisation.
func (q *queue) ExpireBlocks(timeout time.Duration) map[string]int {
q.lock.Lock()
defer q.lock.Unlock()
return q.expire(timeout, q.blockPendPool, q.hashQueue, blockTimeoutMeter)
}
// ExpireBodies checks for in flight block body requests that exceeded a timeout
// allowance, canceling them and returning the responsible peers for penalisation.
func (q *queue) ExpireBodies(timeout time.Duration) map[string]int {
q.lock.Lock()
defer q.lock.Unlock()
return q.expire(timeout, q.blockPendPool, q.blockTaskQueue, bodyTimeoutMeter)
}
// ExpireReceipts checks for in flight receipt requests that exceeded a timeout
// allowance, canceling them and returning the responsible peers for penalisation.
func (q *queue) ExpireReceipts(timeout time.Duration) map[string]int {
q.lock.Lock()
defer q.lock.Unlock()
return q.expire(timeout, q.receiptPendPool, q.receiptTaskQueue, receiptTimeoutMeter)
}
// ExpireNodeData checks for in flight node data requests that exceeded a timeout
// allowance, canceling them and returning the responsible peers for penalisation.
func (q *queue) ExpireNodeData(timeout time.Duration) map[string]int {
q.lock.Lock()
defer q.lock.Unlock()
return q.expire(timeout, q.statePendPool, q.stateTaskQueue, stateTimeoutMeter)
}
// expire is the generic check that move expired tasks from a pending pool back
// into a task pool, returning all entities caught with expired tasks.
//
// Note, this method expects the queue lock to be already held. The
// reason the lock is not obtained in here is because the parameters already need
// to access the queue, so they already need a lock anyway.
func (q *queue) expire(timeout time.Duration, pendPool map[string]*fetchRequest, taskQueue *prque.Prque, timeoutMeter metrics.Meter) map[string]int {
// Iterate over the expired requests and return each to the queue
expiries := make(map[string]int)
for id, request := range pendPool {
if time.Since(request.Time) > timeout {
// Update the metrics with the timeout
timeoutMeter.Mark(1)
// Return any non satisfied requests to the pool
if request.From > 0 {
taskQueue.Push(request.From, -float32(request.From))
}
for hash, index := range request.Hashes {
taskQueue.Push(hash, float32(index))
}
for _, header := range request.Headers {
taskQueue.Push(header, -float32(header.Number.Uint64()))
}
// Add the peer to the expiry report along the the number of failed requests
expirations := len(request.Hashes)
if expirations < len(request.Headers) {
expirations = len(request.Headers)
}
expiries[id] = expirations
}
}
// Remove the expired requests from the pending pool
for id, _ := range expiries {
delete(pendPool, id)
}
return expiries
2015-04-12 10:38:25 +00:00
}
// DeliverBlocks injects a block retrieval response into the download queue. The
// method returns the number of blocks accepted from the delivery and also wakes
// any threads waiting for data delivery.
func (q *queue) DeliverBlocks(id string, blocks []*types.Block) (int, error) {
q.lock.Lock()
defer q.lock.Unlock()
// Short circuit if the blocks were never requested
request := q.blockPendPool[id]
if request == nil {
return 0, errNoFetchesPending
}
blockReqTimer.UpdateSince(request.Time)
delete(q.blockPendPool, id)
// If no blocks were retrieved, mark them as unavailable for the origin peer
if len(blocks) == 0 {
for hash, _ := range request.Hashes {
request.Peer.MarkLacking(hash)
}
}
// Iterate over the downloaded blocks and add each of them
accepted, errs := 0, make([]error, 0)
2015-04-12 10:38:25 +00:00
for _, block := range blocks {
// Skip any blocks that were not requested
hash := block.Hash()
if _, ok := request.Hashes[hash]; !ok {
errs = append(errs, fmt.Errorf("non-requested block %x", hash))
continue
}
// Reconstruct the next result if contents match up
index := int(block.Number().Int64() - int64(q.resultOffset))
if index >= len(q.resultCache) || index < 0 {
errs = []error{errInvalidChain}
break
}
q.resultCache[index] = &fetchResult{
Header: block.Header(),
Transactions: block.Transactions(),
Uncles: block.Uncles(),
}
q.blockDonePool[block.Hash()] = struct{}{}
delete(request.Hashes, hash)
delete(q.hashPool, hash)
accepted++
2015-04-12 10:38:25 +00:00
}
// Return all failed or missing fetches to the queue
for hash, index := range request.Hashes {
q.hashQueue.Push(hash, float32(index))
}
// Wake up WaitResults
if accepted > 0 {
q.active.Signal()
}
// If none of the blocks were good, it's a stale delivery
switch {
case len(errs) == 0:
return accepted, nil
case len(errs) == 1 && (errs[0] == errInvalidChain || errs[0] == errInvalidBlock):
return accepted, errs[0]
case len(errs) == len(blocks):
return accepted, errStaleDelivery
default:
return accepted, fmt.Errorf("multiple failures: %v", errs)
}
}
// DeliverHeaders injects a header retrieval response into the header results
// cache. This method either accepts all headers it received, or none of them
// if they do not map correctly to the skeleton.
//
// If the headers are accepted, the method makes an attempt to deliver the set
// of ready headers to the processor to keep the pipeline full. However it will
// not block to prevent stalling other pending deliveries.
func (q *queue) DeliverHeaders(id string, headers []*types.Header, headerProcCh chan []*types.Header) (int, error) {
q.lock.Lock()
defer q.lock.Unlock()
// Short circuit if the data was never requested
request := q.headerPendPool[id]
if request == nil {
return 0, errNoFetchesPending
}
headerReqTimer.UpdateSince(request.Time)
delete(q.headerPendPool, id)
// Ensure headers can be mapped onto the skeleton chain
target := q.headerTaskPool[request.From].Hash()
accepted := len(headers) == MaxHeaderFetch
if accepted {
if headers[0].Number.Uint64() != request.From {
glog.V(logger.Detail).Infof("Peer %s: first header #%v [%x] broke chain ordering, expected %d", id, headers[0].Number, headers[0].Hash().Bytes()[:4], request.From)
accepted = false
} else if headers[len(headers)-1].Hash() != target {
glog.V(logger.Detail).Infof("Peer %s: last header #%v [%x] broke skeleton structure, expected %x", id, headers[len(headers)-1].Number, headers[len(headers)-1].Hash().Bytes()[:4], target[:4])
accepted = false
}
}
if accepted {
for i, header := range headers[1:] {
hash := header.Hash()
if want := request.From + 1 + uint64(i); header.Number.Uint64() != want {
glog.V(logger.Warn).Infof("Peer %s: header #%v [%x] broke chain ordering, expected %d", id, header.Number, hash[:4], want)
accepted = false
break
}
if headers[i].Hash() != header.ParentHash {
glog.V(logger.Warn).Infof("Peer %s: header #%v [%x] broke chain ancestry", id, header.Number, hash[:4])
accepted = false
break
}
}
}
// If the batch of headers wasn't accepted, mark as unavailable
if !accepted {
glog.V(logger.Detail).Infof("Peer %s: skeleton filling from header #%d not accepted", id, request.From)
miss := q.headerPeerMiss[id]
if miss == nil {
q.headerPeerMiss[id] = make(map[uint64]struct{})
miss = q.headerPeerMiss[id]
}
miss[request.From] = struct{}{}
q.headerTaskQueue.Push(request.From, -float32(request.From))
return 0, errors.New("delivery not accepted")
}
// Clean up a successful fetch and try to deliver any sub-results
copy(q.headerResults[request.From-q.headerOffset:], headers)
delete(q.headerTaskPool, request.From)
ready := 0
for q.headerProced+ready < len(q.headerResults) && q.headerResults[q.headerProced+ready] != nil {
ready += MaxHeaderFetch
}
if ready > 0 {
// Headers are ready for delivery, gather them and push forward (non blocking)
process := make([]*types.Header, ready)
copy(process, q.headerResults[q.headerProced:q.headerProced+ready])
select {
case headerProcCh <- process:
glog.V(logger.Detail).Infof("%s: pre-scheduled %d headers from #%v", id, len(process), process[0].Number)
q.headerProced += len(process)
default:
}
}
// Check for termination and return
if len(q.headerTaskPool) == 0 {
q.headerContCh <- false
}
return len(headers), nil
}
// DeliverBodies injects a block body retrieval response into the results queue.
// The method returns the number of blocks bodies accepted from the delivery and
// also wakes any threads waiting for data delivery.
func (q *queue) DeliverBodies(id string, txLists [][]*types.Transaction, uncleLists [][]*types.Header) (int, error) {
q.lock.Lock()
defer q.lock.Unlock()
reconstruct := func(header *types.Header, index int, result *fetchResult) error {
if types.DeriveSha(types.Transactions(txLists[index])) != header.TxHash || types.CalcUncleHash(uncleLists[index]) != header.UncleHash {
return errInvalidBody
}
result.Transactions = txLists[index]
result.Uncles = uncleLists[index]
return nil
}
return q.deliver(id, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool, q.blockDonePool, bodyReqTimer, len(txLists), reconstruct)
}
// DeliverReceipts injects a receipt retrieval response into the results queue.
// The method returns the number of transaction receipts accepted from the delivery
// and also wakes any threads waiting for data delivery.
func (q *queue) DeliverReceipts(id string, receiptList [][]*types.Receipt) (int, error) {
q.lock.Lock()
defer q.lock.Unlock()
reconstruct := func(header *types.Header, index int, result *fetchResult) error {
if types.DeriveSha(types.Receipts(receiptList[index])) != header.ReceiptHash {
return errInvalidReceipt
}
result.Receipts = receiptList[index]
return nil
}
return q.deliver(id, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool, q.receiptDonePool, receiptReqTimer, len(receiptList), reconstruct)
}
// deliver injects a data retrieval response into the results queue.
//
// Note, this method expects the queue lock to be already held for writing. The
// reason the lock is not obtained in here is because the parameters already need
// to access the queue, so they already need a lock anyway.
func (q *queue) deliver(id string, taskPool map[common.Hash]*types.Header, taskQueue *prque.Prque,
pendPool map[string]*fetchRequest, donePool map[common.Hash]struct{}, reqTimer metrics.Timer,
results int, reconstruct func(header *types.Header, index int, result *fetchResult) error) (int, error) {
// Short circuit if the data was never requested
request := pendPool[id]
if request == nil {
return 0, errNoFetchesPending
}
reqTimer.UpdateSince(request.Time)
delete(pendPool, id)
// If no data items were retrieved, mark them as unavailable for the origin peer
if results == 0 {
for _, header := range request.Headers {
request.Peer.MarkLacking(header.Hash())
}
}
// Assemble each of the results with their headers and retrieved data parts
var (
accepted int
failure error
useful bool
)
for i, header := range request.Headers {
// Short circuit assembly if no more fetch results are found
if i >= results {
break
}
// Reconstruct the next result if contents match up
index := int(header.Number.Int64() - int64(q.resultOffset))
if index >= len(q.resultCache) || index < 0 || q.resultCache[index] == nil {
failure = errInvalidChain
break
}
if err := reconstruct(header, i, q.resultCache[index]); err != nil {
failure = err
break
}
donePool[header.Hash()] = struct{}{}
q.resultCache[index].Pending--
useful = true
accepted++
// Clean up a successful fetch
request.Headers[i] = nil
delete(taskPool, header.Hash())
}
// Return all failed or missing fetches to the queue
for _, header := range request.Headers {
if header != nil {
taskQueue.Push(header, -float32(header.Number.Uint64()))
}
}
// Wake up WaitResults
if accepted > 0 {
q.active.Signal()
}
// If none of the data was good, it's a stale delivery
switch {
case failure == nil || failure == errInvalidChain:
return accepted, failure
case useful:
return accepted, fmt.Errorf("partial failure: %v", failure)
default:
return accepted, errStaleDelivery
}
}
// DeliverNodeData injects a node state data retrieval response into the queue.
// The method returns the number of node state entries originally requested, and
// the number of them actually accepted from the delivery.
func (q *queue) DeliverNodeData(id string, data [][]byte, callback func(error, int)) (int, error) {
q.lock.Lock()
defer q.lock.Unlock()
// Short circuit if the data was never requested
request := q.statePendPool[id]
if request == nil {
return 0, errNoFetchesPending
}
stateReqTimer.UpdateSince(request.Time)
delete(q.statePendPool, id)
// If no data was retrieved, mark their hashes as unavailable for the origin peer
if len(data) == 0 {
for hash, _ := range request.Hashes {
request.Peer.MarkLacking(hash)
}
}
// Iterate over the downloaded data and verify each of them
accepted, errs := 0, make([]error, 0)
process := []trie.SyncResult{}
for _, blob := range data {
2016-03-15 18:27:49 +00:00
// Skip any state trie entries that were not requested
hash := common.BytesToHash(crypto.Keccak256(blob))
if _, ok := request.Hashes[hash]; !ok {
errs = append(errs, fmt.Errorf("non-requested state data %x", hash))
continue
}
// Inject the next state trie item into the processing queue
2016-04-15 09:06:57 +00:00
process = append(process, trie.SyncResult{Hash: hash, Data: blob})
accepted++
delete(request.Hashes, hash)
delete(q.stateTaskPool, hash)
}
// Start the asynchronous node state data injection
atomic.AddInt32(&q.stateProcessors, 1)
go func() {
defer atomic.AddInt32(&q.stateProcessors, -1)
q.deliverNodeData(process, callback)
}()
// Return all failed or missing fetches to the queue
for hash, index := range request.Hashes {
q.stateTaskQueue.Push(hash, float32(index))
}
// If none of the data items were good, it's a stale delivery
switch {
case len(errs) == 0:
return accepted, nil
case len(errs) == len(request.Hashes):
return accepted, errStaleDelivery
default:
return accepted, fmt.Errorf("multiple failures: %v", errs)
}
}
// deliverNodeData is the asynchronous node data processor that injects a batch
// of sync results into the state scheduler.
func (q *queue) deliverNodeData(results []trie.SyncResult, callback func(error, int)) {
// Wake up WaitResults after the state has been written because it
// might be waiting for the pivot block state to get completed.
defer q.active.Signal()
// Process results one by one to permit task fetches in between
for i, result := range results {
q.stateSchedLock.Lock()
if q.stateScheduler == nil {
// Syncing aborted since this async delivery started, bail out
q.stateSchedLock.Unlock()
callback(errNoFetchesPending, i)
return
}
if _, err := q.stateScheduler.Process([]trie.SyncResult{result}); err != nil {
// Processing a state result failed, bail out
q.stateSchedLock.Unlock()
callback(err, i)
return
}
// Item processing succeeded, release the lock (temporarily)
q.stateSchedLock.Unlock()
}
callback(nil, len(results))
}
// Prepare configures the result cache to allow accepting and caching inbound
// fetch results.
func (q *queue) Prepare(offset uint64, mode SyncMode, pivot uint64, head *types.Header) {
q.lock.Lock()
defer q.lock.Unlock()
// Prepare the queue for sync results
if q.resultOffset < offset {
q.resultOffset = offset
}
q.fastSyncPivot = pivot
q.mode = mode
// If long running fast sync, also start up a head stateretrieval immediately
if mode == FastSync && pivot > 0 {
q.stateScheduler = state.NewStateSync(head.Root, q.stateDatabase)
}
2015-04-12 10:38:25 +00:00
}