mirror of
https://github.com/status-im/op-geth.git
synced 2025-01-21 20:19:40 +00:00
364 lines
11 KiB
Go
364 lines
11 KiB
Go
|
package crypto
|
||
|
|
||
|
// Copyright 2010 The Go Authors. All rights reserved.
|
||
|
// Copyright 2011 ThePiachu. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
// Package bitelliptic implements several Koblitz elliptic curves over prime
|
||
|
// fields.
|
||
|
|
||
|
// This package operates, internally, on Jacobian coordinates. For a given
|
||
|
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
|
||
|
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
|
||
|
// calculation can be performed within the transform (as in ScalarMult and
|
||
|
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
|
||
|
// reverse the transform than to operate in affine coordinates.
|
||
|
|
||
|
import (
|
||
|
"crypto/elliptic"
|
||
|
"io"
|
||
|
"math/big"
|
||
|
"sync"
|
||
|
)
|
||
|
|
||
|
// A BitCurve represents a Koblitz Curve with a=0.
|
||
|
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
|
||
|
type BitCurve struct {
|
||
|
P *big.Int // the order of the underlying field
|
||
|
N *big.Int // the order of the base point
|
||
|
B *big.Int // the constant of the BitCurve equation
|
||
|
Gx, Gy *big.Int // (x,y) of the base point
|
||
|
BitSize int // the size of the underlying field
|
||
|
}
|
||
|
|
||
|
func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
|
||
|
return &elliptic.CurveParams{BitCurve.P, BitCurve.N, BitCurve.B, BitCurve.Gx, BitCurve.Gy, BitCurve.BitSize}
|
||
|
}
|
||
|
|
||
|
// IsOnBitCurve returns true if the given (x,y) lies on the BitCurve.
|
||
|
func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
|
||
|
// y² = x³ + b
|
||
|
y2 := new(big.Int).Mul(y, y) //y²
|
||
|
y2.Mod(y2, BitCurve.P) //y²%P
|
||
|
|
||
|
x3 := new(big.Int).Mul(x, x) //x²
|
||
|
x3.Mul(x3, x) //x³
|
||
|
|
||
|
x3.Add(x3, BitCurve.B) //x³+B
|
||
|
x3.Mod(x3, BitCurve.P) //(x³+B)%P
|
||
|
|
||
|
return x3.Cmp(y2) == 0
|
||
|
}
|
||
|
|
||
|
//TODO: double check if the function is okay
|
||
|
// affineFromJacobian reverses the Jacobian transform. See the comment at the
|
||
|
// top of the file.
|
||
|
func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
|
||
|
zinv := new(big.Int).ModInverse(z, BitCurve.P)
|
||
|
zinvsq := new(big.Int).Mul(zinv, zinv)
|
||
|
|
||
|
xOut = new(big.Int).Mul(x, zinvsq)
|
||
|
xOut.Mod(xOut, BitCurve.P)
|
||
|
zinvsq.Mul(zinvsq, zinv)
|
||
|
yOut = new(big.Int).Mul(y, zinvsq)
|
||
|
yOut.Mod(yOut, BitCurve.P)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Add returns the sum of (x1,y1) and (x2,y2)
|
||
|
func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
|
||
|
z := new(big.Int).SetInt64(1)
|
||
|
return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
|
||
|
}
|
||
|
|
||
|
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
|
||
|
// (x2, y2, z2) and returns their sum, also in Jacobian form.
|
||
|
func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
|
||
|
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
|
||
|
z1z1 := new(big.Int).Mul(z1, z1)
|
||
|
z1z1.Mod(z1z1, BitCurve.P)
|
||
|
z2z2 := new(big.Int).Mul(z2, z2)
|
||
|
z2z2.Mod(z2z2, BitCurve.P)
|
||
|
|
||
|
u1 := new(big.Int).Mul(x1, z2z2)
|
||
|
u1.Mod(u1, BitCurve.P)
|
||
|
u2 := new(big.Int).Mul(x2, z1z1)
|
||
|
u2.Mod(u2, BitCurve.P)
|
||
|
h := new(big.Int).Sub(u2, u1)
|
||
|
if h.Sign() == -1 {
|
||
|
h.Add(h, BitCurve.P)
|
||
|
}
|
||
|
i := new(big.Int).Lsh(h, 1)
|
||
|
i.Mul(i, i)
|
||
|
j := new(big.Int).Mul(h, i)
|
||
|
|
||
|
s1 := new(big.Int).Mul(y1, z2)
|
||
|
s1.Mul(s1, z2z2)
|
||
|
s1.Mod(s1, BitCurve.P)
|
||
|
s2 := new(big.Int).Mul(y2, z1)
|
||
|
s2.Mul(s2, z1z1)
|
||
|
s2.Mod(s2, BitCurve.P)
|
||
|
r := new(big.Int).Sub(s2, s1)
|
||
|
if r.Sign() == -1 {
|
||
|
r.Add(r, BitCurve.P)
|
||
|
}
|
||
|
r.Lsh(r, 1)
|
||
|
v := new(big.Int).Mul(u1, i)
|
||
|
|
||
|
x3 := new(big.Int).Set(r)
|
||
|
x3.Mul(x3, x3)
|
||
|
x3.Sub(x3, j)
|
||
|
x3.Sub(x3, v)
|
||
|
x3.Sub(x3, v)
|
||
|
x3.Mod(x3, BitCurve.P)
|
||
|
|
||
|
y3 := new(big.Int).Set(r)
|
||
|
v.Sub(v, x3)
|
||
|
y3.Mul(y3, v)
|
||
|
s1.Mul(s1, j)
|
||
|
s1.Lsh(s1, 1)
|
||
|
y3.Sub(y3, s1)
|
||
|
y3.Mod(y3, BitCurve.P)
|
||
|
|
||
|
z3 := new(big.Int).Add(z1, z2)
|
||
|
z3.Mul(z3, z3)
|
||
|
z3.Sub(z3, z1z1)
|
||
|
if z3.Sign() == -1 {
|
||
|
z3.Add(z3, BitCurve.P)
|
||
|
}
|
||
|
z3.Sub(z3, z2z2)
|
||
|
if z3.Sign() == -1 {
|
||
|
z3.Add(z3, BitCurve.P)
|
||
|
}
|
||
|
z3.Mul(z3, h)
|
||
|
z3.Mod(z3, BitCurve.P)
|
||
|
|
||
|
return x3, y3, z3
|
||
|
}
|
||
|
|
||
|
// Double returns 2*(x,y)
|
||
|
func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
|
||
|
z1 := new(big.Int).SetInt64(1)
|
||
|
return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
|
||
|
}
|
||
|
|
||
|
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
|
||
|
// returns its double, also in Jacobian form.
|
||
|
func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
|
||
|
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
|
||
|
|
||
|
a := new(big.Int).Mul(x, x) //X1²
|
||
|
b := new(big.Int).Mul(y, y) //Y1²
|
||
|
c := new(big.Int).Mul(b, b) //B²
|
||
|
|
||
|
d := new(big.Int).Add(x, b) //X1+B
|
||
|
d.Mul(d, d) //(X1+B)²
|
||
|
d.Sub(d, a) //(X1+B)²-A
|
||
|
d.Sub(d, c) //(X1+B)²-A-C
|
||
|
d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
|
||
|
|
||
|
e := new(big.Int).Mul(big.NewInt(3), a) //3*A
|
||
|
f := new(big.Int).Mul(e, e) //E²
|
||
|
|
||
|
x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
|
||
|
x3.Sub(f, x3) //F-2*D
|
||
|
x3.Mod(x3, BitCurve.P)
|
||
|
|
||
|
y3 := new(big.Int).Sub(d, x3) //D-X3
|
||
|
y3.Mul(e, y3) //E*(D-X3)
|
||
|
y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
|
||
|
y3.Mod(y3, BitCurve.P)
|
||
|
|
||
|
z3 := new(big.Int).Mul(y, z) //Y1*Z1
|
||
|
z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
|
||
|
z3.Mod(z3, BitCurve.P)
|
||
|
|
||
|
return x3, y3, z3
|
||
|
}
|
||
|
|
||
|
//TODO: double check if it is okay
|
||
|
// ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
|
||
|
func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
|
||
|
// We have a slight problem in that the identity of the group (the
|
||
|
// point at infinity) cannot be represented in (x, y) form on a finite
|
||
|
// machine. Thus the standard add/double algorithm has to be tweaked
|
||
|
// slightly: our initial state is not the identity, but x, and we
|
||
|
// ignore the first true bit in |k|. If we don't find any true bits in
|
||
|
// |k|, then we return nil, nil, because we cannot return the identity
|
||
|
// element.
|
||
|
|
||
|
Bz := new(big.Int).SetInt64(1)
|
||
|
x := Bx
|
||
|
y := By
|
||
|
z := Bz
|
||
|
|
||
|
seenFirstTrue := false
|
||
|
for _, byte := range k {
|
||
|
for bitNum := 0; bitNum < 8; bitNum++ {
|
||
|
if seenFirstTrue {
|
||
|
x, y, z = BitCurve.doubleJacobian(x, y, z)
|
||
|
}
|
||
|
if byte&0x80 == 0x80 {
|
||
|
if !seenFirstTrue {
|
||
|
seenFirstTrue = true
|
||
|
} else {
|
||
|
x, y, z = BitCurve.addJacobian(Bx, By, Bz, x, y, z)
|
||
|
}
|
||
|
}
|
||
|
byte <<= 1
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if !seenFirstTrue {
|
||
|
return nil, nil
|
||
|
}
|
||
|
|
||
|
return BitCurve.affineFromJacobian(x, y, z)
|
||
|
}
|
||
|
|
||
|
// ScalarBaseMult returns k*G, where G is the base point of the group and k is
|
||
|
// an integer in big-endian form.
|
||
|
func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
|
||
|
return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
|
||
|
}
|
||
|
|
||
|
var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}
|
||
|
|
||
|
//TODO: double check if it is okay
|
||
|
// GenerateKey returns a public/private key pair. The private key is generated
|
||
|
// using the given reader, which must return random data.
|
||
|
func (BitCurve *BitCurve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err error) {
|
||
|
byteLen := (BitCurve.BitSize + 7) >> 3
|
||
|
priv = make([]byte, byteLen)
|
||
|
|
||
|
for x == nil {
|
||
|
_, err = io.ReadFull(rand, priv)
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
// We have to mask off any excess bits in the case that the size of the
|
||
|
// underlying field is not a whole number of bytes.
|
||
|
priv[0] &= mask[BitCurve.BitSize%8]
|
||
|
// This is because, in tests, rand will return all zeros and we don't
|
||
|
// want to get the point at infinity and loop forever.
|
||
|
priv[1] ^= 0x42
|
||
|
x, y = BitCurve.ScalarBaseMult(priv)
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Marshal converts a point into the form specified in section 4.3.6 of ANSI
|
||
|
// X9.62.
|
||
|
func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
|
||
|
byteLen := (BitCurve.BitSize + 7) >> 3
|
||
|
|
||
|
ret := make([]byte, 1+2*byteLen)
|
||
|
ret[0] = 4 // uncompressed point
|
||
|
|
||
|
xBytes := x.Bytes()
|
||
|
copy(ret[1+byteLen-len(xBytes):], xBytes)
|
||
|
yBytes := y.Bytes()
|
||
|
copy(ret[1+2*byteLen-len(yBytes):], yBytes)
|
||
|
return ret
|
||
|
}
|
||
|
|
||
|
// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
|
||
|
// error, x = nil.
|
||
|
func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
|
||
|
byteLen := (BitCurve.BitSize + 7) >> 3
|
||
|
if len(data) != 1+2*byteLen {
|
||
|
return
|
||
|
}
|
||
|
if data[0] != 4 { // uncompressed form
|
||
|
return
|
||
|
}
|
||
|
x = new(big.Int).SetBytes(data[1 : 1+byteLen])
|
||
|
y = new(big.Int).SetBytes(data[1+byteLen:])
|
||
|
return
|
||
|
}
|
||
|
|
||
|
//curve parameters taken from:
|
||
|
//http://www.secg.org/collateral/sec2_final.pdf
|
||
|
|
||
|
var initonce sync.Once
|
||
|
var ecp160k1 *BitCurve
|
||
|
var ecp192k1 *BitCurve
|
||
|
var ecp224k1 *BitCurve
|
||
|
var ecp256k1 *BitCurve
|
||
|
|
||
|
func initAll() {
|
||
|
initS160()
|
||
|
initS192()
|
||
|
initS224()
|
||
|
initS256()
|
||
|
}
|
||
|
|
||
|
func initS160() {
|
||
|
// See SEC 2 section 2.4.1
|
||
|
ecp160k1 = new(BitCurve)
|
||
|
ecp160k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73", 16)
|
||
|
ecp160k1.N, _ = new(big.Int).SetString("0100000000000000000001B8FA16DFAB9ACA16B6B3", 16)
|
||
|
ecp160k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000007", 16)
|
||
|
ecp160k1.Gx, _ = new(big.Int).SetString("3B4C382CE37AA192A4019E763036F4F5DD4D7EBB", 16)
|
||
|
ecp160k1.Gy, _ = new(big.Int).SetString("938CF935318FDCED6BC28286531733C3F03C4FEE", 16)
|
||
|
ecp160k1.BitSize = 160
|
||
|
}
|
||
|
|
||
|
func initS192() {
|
||
|
// See SEC 2 section 2.5.1
|
||
|
ecp192k1 = new(BitCurve)
|
||
|
ecp192k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", 16)
|
||
|
ecp192k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 16)
|
||
|
ecp192k1.B, _ = new(big.Int).SetString("000000000000000000000000000000000000000000000003", 16)
|
||
|
ecp192k1.Gx, _ = new(big.Int).SetString("DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D", 16)
|
||
|
ecp192k1.Gy, _ = new(big.Int).SetString("9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D", 16)
|
||
|
ecp192k1.BitSize = 192
|
||
|
}
|
||
|
|
||
|
func initS224() {
|
||
|
// See SEC 2 section 2.6.1
|
||
|
ecp224k1 = new(BitCurve)
|
||
|
ecp224k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", 16)
|
||
|
ecp224k1.N, _ = new(big.Int).SetString("010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", 16)
|
||
|
ecp224k1.B, _ = new(big.Int).SetString("00000000000000000000000000000000000000000000000000000005", 16)
|
||
|
ecp224k1.Gx, _ = new(big.Int).SetString("A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C", 16)
|
||
|
ecp224k1.Gy, _ = new(big.Int).SetString("7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5", 16)
|
||
|
ecp224k1.BitSize = 224
|
||
|
}
|
||
|
|
||
|
func initS256() {
|
||
|
// See SEC 2 section 2.7.1
|
||
|
ecp256k1 = new(BitCurve)
|
||
|
ecp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
|
||
|
ecp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
|
||
|
ecp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
|
||
|
ecp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
|
||
|
ecp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
|
||
|
ecp256k1.BitSize = 256
|
||
|
}
|
||
|
|
||
|
// S160 returns a BitCurve which implements secp160k1 (see SEC 2 section 2.4.1)
|
||
|
func S160() *BitCurve {
|
||
|
initonce.Do(initAll)
|
||
|
return ecp160k1
|
||
|
}
|
||
|
|
||
|
// S192 returns a BitCurve which implements secp192k1 (see SEC 2 section 2.5.1)
|
||
|
func S192() *BitCurve {
|
||
|
initonce.Do(initAll)
|
||
|
return ecp192k1
|
||
|
}
|
||
|
|
||
|
// S224 returns a BitCurve which implements secp224k1 (see SEC 2 section 2.6.1)
|
||
|
func S224() *BitCurve {
|
||
|
initonce.Do(initAll)
|
||
|
return ecp224k1
|
||
|
}
|
||
|
|
||
|
// S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1)
|
||
|
func S256() *BitCurve {
|
||
|
initonce.Do(initAll)
|
||
|
return ecp256k1
|
||
|
}
|