nimbus-eth2/beacon_chain/libp2p_backend.nim
2019-03-18 12:45:29 +02:00

770 lines
28 KiB
Nim

import
options, macros, algorithm,
std_shims/[macros_shim, tables_shims], chronos, chronicles,
libp2p/daemon/daemonapi, faststreams/output_stream, serialization,
ssz
export
daemonapi
type
Eth2Node* = ref object of RootObj
daemon*: DaemonAPI
peers*: Table[PeerID, Peer]
protocolStates*: seq[RootRef]
Peer* = ref object
network: Eth2Node
id: PeerID
connectionState: ConnectionState
awaitedMessages: Table[CompressedMsgId, FutureBase]
protocolStates*: seq[RootRef]
EthereumNode = Eth2Node # This alias is needed for state_helpers below
ProtocolInfoObj* = object
name*: string
messages*: seq[MessageInfo]
index*: int # the position of the protocol in the
# ordered list of supported protocols
# Private fields:
peerStateInitializer*: PeerStateInitializer
networkStateInitializer*: NetworkStateInitializer
handshake*: HandshakeStep
disconnectHandler*: DisconnectionHandler
ProtocolInfo* = ptr ProtocolInfoObj
MessageInfo* = object
name*: string
# Private fields:
thunk*: MessageHandler
libp2pProtocol: string
printer*: MessageContentPrinter
nextMsgResolver*: NextMsgResolver
CompressedMsgId = tuple
protocolIndex, msgId: int
MessageKind* = enum
msgNotification,
msgRequest,
msgResponse
PeerStateInitializer* = proc(peer: Peer): RootRef {.gcsafe.}
NetworkStateInitializer* = proc(network: EthereumNode): RootRef {.gcsafe.}
HandshakeStep* = proc(peer: Peer, handshakeStream: P2PStream): Future[void] {.gcsafe.}
DisconnectionHandler* = proc(peer: Peer): Future[void] {.gcsafe.}
MessageHandler* = proc(daemon: DaemonAPI, stream: P2PStream): Future[void] {.gcsafe.}
MessageContentPrinter* = proc(msg: pointer): string {.gcsafe.}
NextMsgResolver* = proc(msgData: SszReader, future: FutureBase) {.gcsafe.}
ConnectionState* = enum
None,
Connecting,
Connected,
Disconnecting,
Disconnected
UntypedResponse = object
peer*: Peer
stream*: P2PStream
Response*[MsgType] = distinct UntypedResponse
Bytes = seq[byte]
DisconnectionReason* = enum
UselessPeer
BreachOfProtocol
PeerDisconnected* = object of CatchableError
reason*: DisconnectionReason
const
defaultIncomingReqTimeout = 5000
defaultOutgoingReqTimeout = 10000
var
gProtocols: seq[ProtocolInfo]
# The variables above are immutable RTTI information. We need to tell
# Nim to not consider them GcSafe violations:
template allProtocols: auto = {.gcsafe.}: gProtocols
proc disconnect*(peer: Peer) {.async.} =
if peer.connectionState notin {Disconnecting, Disconnected}:
peer.connectionState = Disconnecting
await peer.network.daemon.disconnect(peer.id)
peer.connectionState = Disconnected
peer.network.peers.del(peer.id)
template raisePeerDisconnected(msg: string, r: DisconnectionReason) =
var e = newException(PeerDisconnected, msg)
e.reason = r
raise e
proc disconnectAndRaise(peer: Peer,
reason: DisconnectionReason,
msg: string) {.async.} =
let r = reason
await peer.disconnect()
raisePeerDisconnected(msg, reason)
proc init*(node: Eth2Node) {.async.} =
node.daemon = await newDaemonApi({PSGossipSub})
node.daemon.userData = node
init node.peers
newSeq node.protocolStates, allProtocols.len
for proto in allProtocols:
if proto.networkStateInitializer != nil:
node.protocolStates[proto.index] = proto.networkStateInitializer(node)
for msg in proto.messages:
if msg.libp2pProtocol.len > 0:
await node.daemon.addHandler(@[msg.libp2pProtocol], msg.thunk)
include eth/p2p/p2p_backends_helpers
include eth/p2p/p2p_tracing
import typetraits
proc readMsg(stream: P2PStream, MsgType: type,
timeout = 10000): Future[Option[MsgType]] {.async.} =
var timeout = sleepAsync timeout
var sizePrefix: uint32
var readSizePrefix = stream.transp.readExactly(addr sizePrefix, sizeof(sizePrefix))
await readSizePrefix or timeout
if not readSizePrefix.finished: return
debug "EXPECTING MSG", msg = MsgType.name, size = sizePrefix.int
var msgBytes = newSeq[byte](sizePrefix.int + sizeof(sizePrefix))
copyMem(addr msgBytes[0], addr sizePrefix, sizeof(sizePrefix))
var readBody = stream.transp.readExactly(addr msgBytes[sizeof(sizePrefix)], sizePrefix.int)
await readBody or timeout
if not readBody.finished: return
let decoded = SSZ.decode(msgBytes, MsgType)
try:
return some(decoded)
except SerializationError:
return
proc sendMsg(peer: Peer, protocolId: string, requestBytes: Bytes) {.async} =
var stream = await peer.network.daemon.openStream(peer.id, @[protocolId])
# TODO how does openStream fail? Set a timeout here and handle it
let sent = await stream.transp.write(requestBytes)
# TODO: Should I check that `sent` is equal to the desired number of bytes
proc sendBytes(stream: P2PStream, bytes: Bytes) {.async.} =
let sent = await stream.transp.write(bytes)
# TODO: Should I check that `sent` is equal to the desired number of bytes
proc makeEth2Request(peer: Peer, protocolId: string, requestBytes: Bytes,
ResponseMsg: type,
timeout = 10000): Future[Option[ResponseMsg]] {.async.} =
var stream = await peer.network.daemon.openStream(peer.id, @[protocolId])
# TODO how does openStream fail? Set a timeout here and handle it
let sent = await stream.transp.write(requestBytes)
# TODO: Should I check that `sent` is equal to the desired number of bytes
return await stream.readMsg(ResponseMsg, timeout)
proc handshakeImpl(peer: Peer,
handshakeSendFut: Future[void],
handshakeStream: P2PStream,
timeout: int,
HandshakeType: type): Future[HandshakeType] {.async.} =
await handshakeSendFut
let response = await handshakeStream.readMsg(HandshakeType, timeout)
if response.isSome:
return response.get
else:
await peer.disconnectAndRaise(BreachOfProtocol, "Handshake not completed in time")
proc p2pStreamName(MsgType: type): string =
mixin msgProtocol, protocolInfo, msgId
MsgType.msgProtocol.protocolInfo.messages[MsgType.msgId].libp2pProtocol
macro handshake*(peer: Peer, timeout = 10000, sendCall: untyped): untyped =
let
msgName = $sendCall[0]
msgType = newDotExpr(ident"CurrentProtocol", ident(msgName))
handshakeStream = ident "handshakeStream"
handshakeImpl = bindSym "handshakeImpl"
await = ident "await"
sendCall.insert(1, handshakeStream)
result = quote do:
proc payload(peer: Peer, `handshakeStream`: P2PStream): Future[`msgType`] {.async.} =
var `handshakeStream` = `handshakeStream`
if `handshakeStream` == nil:
`handshakeStream` = `await` openStream(peer.network.daemon,
peer.id,
@[p2pStreamName(`msgType`)],
`timeout`)
return `await` `handshakeImpl`(peer, `sendCall`, `handshakeStream`, `timeout`, `msgType`)
payload(`peer`, `handshakeStream`)
proc getCompressedMsgId(MsgType: type): CompressedMsgId =
mixin msgProtocol, protocolInfo, msgId
(protocolIndex: MsgType.msgProtocol.protocolInfo.index, msgId: MsgType.msgId)
proc nextMsg*(peer: Peer, MsgType: type): Future[MsgType] =
## This procs awaits a specific P2P message.
## Any messages received while waiting will be dispatched to their
## respective handlers. The designated message handler will also run
## to completion before the future returned by `nextMsg` is resolved.
mixin msgProtocol, protocolInfo, msgId
let awaitedMsgId = getCompressedMsgId(MsgType)
let f = getOrDefault(peer.awaitedMessages, awaitedMsgId)
if not f.isNil:
return Future[MsgType](f)
newFuture result
peer.awaitedMessages[awaitedMsgId] = result
proc resolveNextMsgFutures(peer: Peer, msg: auto) =
type MsgType = type(msg)
let msgId = getCompressedMsgId(MsgType)
let future = peer.awaitedMessages.getOrDefault(msgId)
if future != nil:
Future[MsgType](future).complete msg
proc init*(T: type Peer, network: Eth2Node, id: PeerID): Peer =
new result
result.id = id
result.network = network
result.awaitedMessages = initTable[CompressedMsgId, FutureBase]()
result.connectionState = Connected
newSeq result.protocolStates, allProtocols.len
for i in 0 ..< allProtocols.len:
let proto = allProtocols[i]
if proto.peerStateInitializer != nil:
result.protocolStates[i] = proto.peerStateInitializer(result)
proc performProtocolHandshakes*(peer: Peer) {.async.} =
var subProtocolsHandshakes = newSeqOfCap[Future[void]](allProtocols.len)
for protocol in allProtocols:
if protocol.handshake != nil:
subProtocolsHandshakes.add((protocol.handshake)(peer, nil))
await all(subProtocolsHandshakes)
proc getPeer*(node: Eth2Node, peerId: PeerID): Peer =
result = node.peers.getOrDefault(peerId)
if result == nil:
result = Peer.init(node, peerId)
node.peers[peerId] = result
proc peerFromStream(daemon: DaemonAPI, stream: P2PStream): Peer =
Eth2Node(daemon.userData).getPeer(stream.peer)
template getRecipient(peer: Peer): Peer =
peer
# TODO: this should be removed eventually
template getRecipient(stream: P2PStream): P2PStream =
stream
template getRecipient(response: Response): Peer =
UntypedResponse(response).peer
proc messagePrinter[MsgType](msg: pointer): string {.gcsafe.} =
result = ""
# TODO: uncommenting the line below increases the compile-time
# tremendously (for reasons not yet known)
# result = $(cast[ptr MsgType](msg)[])
proc initProtocol(name: string,
peerInit: PeerStateInitializer,
networkInit: NetworkStateInitializer): ProtocolInfoObj =
result.name = name
result.messages = @[]
result.peerStateInitializer = peerInit
result.networkStateInitializer = networkInit
proc setEventHandlers(p: ProtocolInfo,
handshake: HandshakeStep,
disconnectHandler: DisconnectionHandler) =
p.handshake = handshake
p.disconnectHandler = disconnectHandler
proc registerMsg(protocol: ProtocolInfo,
name: string,
thunk: MessageHandler,
libp2pProtocol: string,
printer: MessageContentPrinter) =
protocol.messages.add MessageInfo(name: name,
thunk: thunk,
libp2pProtocol: libp2pProtocol,
printer: printer)
proc registerProtocol(protocol: ProtocolInfo) =
# TODO: This can be done at compile-time in the future
let pos = lowerBound(gProtocols, protocol)
gProtocols.insert(protocol, pos)
for i in 0 ..< gProtocols.len:
gProtocols[i].index = i
template libp2pProtocol*(name, version: string) {.pragma.}
proc getRequestProtoName(fn: NimNode): NimNode =
# `getCustomPragmaVal` doesn't work yet on regular nnkProcDef nodes
# (TODO: file as an issue)
let pragmas = fn.pragma
if pragmas.kind == nnkPragma and pragmas.len > 0:
for pragma in pragmas:
if pragma.len > 0 and $pragma[0] == "libp2pProtocol":
return pragma[1]
error "All stream opening procs must have the 'libp2pProtocol' pragma specified.", fn
macro p2pProtocolImpl(name: static[string],
version: static[uint],
body: untyped,
timeout: static[int] = defaultOutgoingReqTimeout,
shortName: static[string] = "",
peerState = type(nil),
networkState = type(nil)): untyped =
## The macro used to defined P2P sub-protocols. See README.
var
# XXX: deal with a Nim bug causing the macro params to be
# zero when they are captured by a closure:
defaultTimeout = timeout
protoName = name
nextId = -1
protoNameIdent = ident(protoName)
outTypes = newNimNode(nnkStmtList)
outSendProcs = newNimNode(nnkStmtList)
outRecvProcs = newNimNode(nnkStmtList)
outProcRegistrations = newNimNode(nnkStmtList)
response = ident"response"
name_openStream = newTree(nnkPostfix, ident("*"), ident"openStream")
outputStream = ident"outputStream"
currentProtocolSym = ident"CurrentProtocol"
protocol = ident(protoName & "Protocol")
peerState = verifyStateType peerState.getType
networkState = verifyStateType networkState.getType
handshake = newNilLit()
disconnectHandler = newNilLit()
Format = ident"SSZ"
Option = bindSym "Option"
UntypedResponse = bindSym "UntypedResponse"
Response = bindSym "Response"
DaemonAPI = bindSym "DaemonAPI"
P2PStream = ident "P2PStream"
# XXX: Binding the int type causes instantiation failure for some reason
# Int = bindSym "int"
Int = ident "int"
Void = ident "void"
Peer = bindSym "Peer"
writeField = bindSym "writeField"
createNetworkState = bindSym "createNetworkState"
createPeerState = bindSym "createPeerState"
getOutput = bindSym "getOutput"
messagePrinter = bindSym "messagePrinter"
initProtocol = bindSym "initProtocol"
getRecipient = bindSym "getRecipient"
peerFromStream = bindSym "peerFromStream"
makeEth2Request = bindSym "makeEth2Request"
sendMsg = bindSym "sendMsg"
sendBytes = bindSym "sendBytes"
getState = bindSym "getState"
getNetworkState = bindSym "getNetworkState"
resolveNextMsgFutures = bindSym "resolveNextMsgFutures"
proc augmentUserHandler(userHandlerProc: NimNode,
msgKind = msgNotification,
extraDefinitions: NimNode = nil) =
## Turns a regular proc definition into an async proc and adds
## the helpers for accessing the peer and network protocol states.
userHandlerProc.addPragma ident"gcsafe"
userHandlerProc.addPragma ident"async"
# We allow the user handler to use `openarray` params, but we turn
# those into sequences to make the `async` pragma happy.
for i in 1 ..< userHandlerProc.params.len:
var param = userHandlerProc.params[i]
param[^2] = chooseFieldType(param[^2])
var userHandlerDefinitions = newStmtList()
userHandlerDefinitions.add quote do:
type `currentProtocolSym` = `protoNameIdent`
if extraDefinitions != nil:
userHandlerDefinitions.add extraDefinitions
# Define local accessors for the peer and the network protocol states
# inside each user message handler proc (e.g. peer.state.foo = bar)
if peerState != nil:
userHandlerDefinitions.add quote do:
template state(p: `Peer`): `peerState` =
cast[`peerState`](`getState`(p, `protocol`))
if networkState != nil:
userHandlerDefinitions.add quote do:
template networkState(p: `Peer`): `networkState` =
cast[`networkState`](`getNetworkState`(p.network, `protocol`))
userHandlerProc.body.insert 0, userHandlerDefinitions
proc liftEventHandler(doBlock: NimNode, handlerName: string): NimNode =
## Turns a "named" do block to a regular async proc
## (e.g. onPeerConnected do ...)
result = newTree(nnkProcDef)
doBlock.copyChildrenTo(result)
result.name = genSym(nskProc, protoName & handlerName)
augmentUserHandler result
outRecvProcs.add result
proc addMsgHandler(n: NimNode, msgKind = msgNotification,
responseRecord: NimNode = nil): NimNode =
if n[0].kind == nnkPostfix:
macros.error("p2pProcotol procs are public by default. " &
"Please remove the postfix `*`.", n)
inc nextId
let
msgIdent = n.name
msgName = $n.name
var
userPragmas = n.pragma
# variables used in the sending procs
msgRecipient = ident"msgRecipient"
sendTo = ident"sendTo"
writer = ident"writer"
recordStartMemo = ident"recordStartMemo"
reqTimeout: NimNode
appendParams = newNimNode(nnkStmtList)
paramsToWrite = newSeq[NimNode](0)
msgId = newLit(nextId)
# variables used in the receiving procs
receivedMsg = ident"msg"
daemon = ident "daemon"
stream = ident "stream"
await = ident "await"
peerIdent = ident "peer"
tracing = newNimNode(nnkStmtList)
# nodes to store the user-supplied message handling proc if present
userHandlerProc: NimNode = nil
userHandlerCall: NimNode = nil
awaitUserHandler = newStmtList()
# a record type associated with the message
msgRecord = newIdentNode(msgName & "Obj")
msgRecordFields = newTree(nnkRecList)
msgRecordBody = newTree(nnkObjectTy,
newEmptyNode(),
newEmptyNode(),
msgRecordFields)
result = msgRecord
if msgKind == msgRequest:
# If the request proc has a default timeout specified, remove it from
# the signature for now so we can generate the `thunk` proc without it.
# The parameter will be added back later only for to the sender proc.
# When the timeout is not specified, we use a default one.
reqTimeout = popTimeoutParam(n)
if reqTimeout == nil:
reqTimeout = newTree(nnkIdentDefs,
ident"timeout",
Int, newLit(defaultTimeout))
if n.body.kind != nnkEmpty:
# Implement the receiving thunk proc that deserialzed the
# message parameters and calls the user proc:
userHandlerProc = n.copyNimTree
userHandlerProc.name = genSym(nskProc, msgName)
# This is the call to the user supplied handler.
# Here we add only the initial params, the rest will be added later.
userHandlerCall = newCall(userHandlerProc.name)
# When there is a user handler, it must be awaited in the thunk proc.
# Above, by default `awaitUserHandler` is set to a no-op statement list.
awaitUserHandler = newCall(await, userHandlerCall)
var extraDefs: NimNode
if msgKind == msgRequest:
# Request procs need an extra param - the stream where the response
# should be written:
userHandlerProc.params.insert(1, newIdentDefs(stream, P2PStream))
userHandlerCall.add stream
let peer = userHandlerProc.params[2][0]
extraDefs = quote do:
# Jump through some hoops to work aroung
# https://github.com/nim-lang/Nim/issues/6248
let `response` = `Response`[`responseRecord`](
`UntypedResponse`(peer: `peer`, stream: `stream`))
# Resolve the Eth2Peer from the LibP2P data received in the thunk
userHandlerCall.add peerIdent
augmentUserHandler userHandlerProc, msgKind, extraDefs
outRecvProcs.add userHandlerProc
elif msgName == "status":
awaitUserHandler = quote do:
`await` `handshake`(`peerIdent`, `stream`)
for param, paramType in n.typedParams(skip = 1):
paramsToWrite.add param
# Each message has a corresponding record type.
# Here, we create its fields one by one:
msgRecordFields.add newTree(nnkIdentDefs,
newTree(nnkPostfix, ident("*"), param), # The fields are public
chooseFieldType(paramType), # some types such as openarray
# are automatically remapped
newEmptyNode())
# If there is user message handler, we'll place a call to it by
# unpacking the fields of the received message:
if userHandlerCall != nil:
userHandlerCall.add quote do: get(`receivedMsg`).`param` # newDotExpr(newCall("get", receivedMsg), param)
when tracingEnabled:
tracing = quote do:
logReceivedMsg(`stream`.peer, `receivedMsg`.get)
let requestDataTimeout = newLit(defaultIncomingReqTimeout)
let thunkName = ident(msgName & "_thunk")
var thunkProc = quote do:
proc `thunkName`(`daemon`: `DaemonAPI`, `stream`: `P2PStream`) {.async, gcsafe.} =
var `receivedMsg` = `await` readMsg(`stream`, `msgRecord`, `requestDataTimeout`)
if `receivedMsg`.isNone:
# TODO: This peer is misbehaving, perhaps we should penalize him somehow
return
let `peerIdent` = `peerFromStream`(`daemon`, `stream`)
`tracing`
`awaitUserHandler`
`resolveNextMsgFutures`(`peerIdent`, get(`receivedMsg`))
for p in userPragmas:
thunkProc.addPragma p
outRecvProcs.add thunkProc
outTypes.add quote do:
# This is a type featuring a single field for each message param:
type `msgRecord`* = `msgRecordBody`
# Add a helper template for accessing the message type:
# e.g. p2p.hello:
template `msgIdent`*(T: type `protoNameIdent`): type = `msgRecord`
template msgId*(T: type `msgRecord`): int = `msgId`
template msgProtocol*(T: type `msgRecord`): type = `protoNameIdent`
var msgSendProc = n
let msgSendProcName = n.name
outSendProcs.add msgSendProc
# TODO: check that the first param has the correct type
msgSendProc.params[1][0] = sendTo
if nextId == 0: msgSendProc.params[1][1] = P2PStream
msgSendProc.addPragma ident"gcsafe"
# Add a timeout parameter for all request procs
case msgKind
of msgRequest:
msgSendProc.params.add reqTimeout
of msgResponse:
# A response proc must be called with a response object that originates
# from a certain request. Here we change the Peer parameter at position
# 1 to the correct strongly-typed ResponseType. The incoming procs still
# gets the normal Peer paramter.
let ResponseType = newTree(nnkBracketExpr, Response, msgRecord)
msgSendProc.params[1][1] = ResponseType
outSendProcs.add quote do:
template send*(r: `ResponseType`, args: varargs[untyped]): auto =
`msgSendProcName`(r, args)
else: discard
# We change the return type of the sending proc to a Future.
# If this is a request proc, the future will return the response record.
let rt = case msgKind
of msgRequest: newTree(nnkBracketExpr, Option, responseRecord)
of msgResponse, msgNotification: Void
msgSendProc.params[0] = newTree(nnkBracketExpr, ident("Future"), rt)
let msgBytes = ident"msgBytes"
# Make the send proc public
msgSendProc.name = newTree(nnkPostfix, ident("*"), msgSendProc.name)
let initWriter = quote do:
var `outputStream` = init OutputStream
var `writer` = init(WriterType(`Format`), `outputStream`)
var `recordStartMemo` = beginRecord(`writer`, `msgRecord`)
for param in paramsToWrite:
appendParams.add newCall(writeField, writer, newLit($param), param)
when tracingEnabled:
appendParams.add logSentMsgFields(msgRecipient, protocol, msgName, paramsToWrite)
let finalizeRequest = quote do:
endRecord(`writer`, `recordStartMemo`)
let `msgBytes` = `getOutput`(`outputStream`)
var msgProto = newLit("")
let sendCall =
if msgKind != msgResponse:
msgProto = getRequestProtoName(n)
when false:
var openStreamProc = n.copyNimTree
var openStreamProc.name = name_openStream
openStreamProc.params.insert 1, newIdentDefs(ident"T", msgRecord)
if msgKind == msgRequest:
let timeout = reqTimeout[0]
quote: `makeEth2Request`(`msgRecipient`, `msgProto`, `msgBytes`,
`responseRecord`, `timeout`)
elif nextId == 0:
quote: `sendBytes`(`sendTo`, `msgBytes`)
else:
quote: `sendMsg`(`msgRecipient`, `msgProto`, `msgBytes`)
else:
quote: `sendBytes`(`UntypedResponse`(`sendTo`).stream, `msgBytes`)
msgSendProc.body = quote do:
let `msgRecipient` = `getRecipient`(`sendTo`)
`initWriter`
`appendParams`
`finalizeRequest`
return `sendCall`
outProcRegistrations.add(
newCall(bindSym("registerMsg"),
protocol,
newLit(msgName),
thunkName,
msgProto,
newTree(nnkBracketExpr, messagePrinter, msgRecord)))
outTypes.add quote do:
# Create a type acting as a pseudo-object representing the protocol
# (e.g. p2p)
type `protoNameIdent`* = object
if peerState != nil:
outTypes.add quote do:
template State*(P: type `protoNameIdent`): type = `peerState`
if networkState != nil:
outTypes.add quote do:
template NetworkState*(P: type `protoNameIdent`): type = `networkState`
for n in body:
case n.kind
of {nnkCall, nnkCommand}:
if eqIdent(n[0], "nextID"):
discard
elif eqIdent(n[0], "requestResponse"):
# `requestResponse` can be given a block of 2 or more procs.
# The last one is considered to be a response message, while
# all preceeding ones are requests triggering the response.
# The system makes sure to automatically insert a hidden `reqId`
# parameter used to discriminate the individual messages.
block processReqResp:
if n.len == 2 and n[1].kind == nnkStmtList:
var procs = newSeq[NimNode](0)
for def in n[1]:
if def.kind == nnkProcDef:
procs.add(def)
if procs.len > 1:
let responseRecord = addMsgHandler(procs[^1],
msgKind = msgResponse)
for i in 0 .. procs.len - 2:
discard addMsgHandler(procs[i],
msgKind = msgRequest,
responseRecord = responseRecord)
# we got all the way to here, so everything is fine.
# break the block so it doesn't reach the error call below
break processReqResp
macros.error("requestResponse expects a block with at least two proc definitions")
elif eqIdent(n[0], "onPeerConnected"):
var handshakeProc = liftEventHandler(n[1], "Handshake")
handshakeProc.params.add newIdentDefs(ident"handshakeStream", P2PStream)
handshake = handshakeProc.name
elif eqIdent(n[0], "onPeerDisconnected"):
disconnectHandler = liftEventHandler(n[1], "PeerDisconnect").name
else:
macros.error(repr(n) & " is not a recognized call in P2P protocol definitions", n)
of nnkProcDef:
discard addMsgHandler(n)
of nnkCommentStmt:
discard
else:
macros.error("illegal syntax in a P2P protocol definition", n)
let peerInit = if peerState == nil: newNilLit()
else: newTree(nnkBracketExpr, createPeerState, peerState)
let netInit = if networkState == nil: newNilLit()
else: newTree(nnkBracketExpr, createNetworkState, networkState)
result = newNimNode(nnkStmtList)
result.add outTypes
result.add quote do:
# One global variable per protocol holds the protocol run-time data
var p = `initProtocol`(`protoName`, `peerInit`, `netInit`)
var `protocol` = addr p
# The protocol run-time data is available as a pseudo-field
# (e.g. `p2p.protocolInfo`)
template protocolInfo*(P: type `protoNameIdent`): ProtocolInfo = `protocol`
result.add outSendProcs, outRecvProcs, outProcRegistrations
result.add quote do:
setEventHandlers(`protocol`, `handshake`, `disconnectHandler`)
result.add newCall(bindSym("registerProtocol"), protocol)
when defined(debugP2pProtocol) or defined(debugMacros):
echo repr(result)
macro p2pProtocol*(protocolOptions: untyped, body: untyped): untyped =
let protoName = $(protocolOptions[0])
result = protocolOptions
result[0] = bindSym"p2pProtocolImpl"
result.add(newTree(nnkExprEqExpr,
ident("name"),
newLit(protoName)))
result.add(newTree(nnkExprEqExpr,
ident("body"),
body))
proc makeMessageHandler[MsgType](msgHandler: proc(msg: MsgType)): P2PPubSubCallback =
result = proc(api: DaemonAPI, ticket: PubsubTicket, msg: PubSubMessage): Future[bool] {.async.} =
msgHandler SSZ.decode(msg.data, MsgType)
return true
proc subscribe*[MsgType](node: EthereumNode,
topic: string,
msgHandler: proc(msg: MsgType)) {.async.} =
discard await node.daemon.pubsubSubscribe(topic, makeMessageHandler(msgHandler))
proc broadcast*(node: Eth2Node, topic: string, msg: auto) {.async.} =
await node.daemon.pubsubPublish(topic, SSZ.encode(msg))