1018 lines
35 KiB
Nim
1018 lines
35 KiB
Nim
# beacon_chain
|
||
# Copyright (c) 2018-2023 Status Research & Development GmbH
|
||
# Licensed and distributed under either of
|
||
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
|
||
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
|
||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||
|
||
{.push raises: [].}
|
||
|
||
import std/[heapqueue, tables, strutils, sequtils, math]
|
||
import stew/[results, base10], chronos, chronicles
|
||
import
|
||
../spec/datatypes/[base, phase0, altair],
|
||
../spec/[helpers, forks],
|
||
../networking/[peer_pool, eth2_network],
|
||
../gossip_processing/block_processor,
|
||
../consensus_object_pools/block_pools_types
|
||
|
||
export base, phase0, altair, merge, chronos, chronicles, results,
|
||
block_pools_types, helpers
|
||
|
||
logScope:
|
||
topics = "syncqueue"
|
||
|
||
type
|
||
GetSlotCallback* = proc(): Slot {.gcsafe, raises: [Defect].}
|
||
ProcessingCallback* = proc() {.gcsafe, raises: [Defect].}
|
||
BlockVerifier* = proc(signedBlock: ForkedSignedBeaconBlock,
|
||
blobs: BlobSidecars, maybeFinalized: bool):
|
||
Future[Result[void, VerifierError]] {.gcsafe, raises: [Defect].}
|
||
|
||
SyncQueueKind* {.pure.} = enum
|
||
Forward, Backward
|
||
|
||
SyncRequest*[T] = object
|
||
kind*: SyncQueueKind
|
||
index*: uint64
|
||
slot*: Slot
|
||
count*: uint64
|
||
item*: T
|
||
|
||
SyncResult*[T] = object
|
||
request*: SyncRequest[T]
|
||
data*: seq[ref ForkedSignedBeaconBlock]
|
||
blobs*: Opt[seq[BlobSidecars]]
|
||
|
||
GapItem*[T] = object
|
||
start*: Slot
|
||
finish*: Slot
|
||
item*: T
|
||
|
||
SyncWaiter* = ref object
|
||
future: Future[void]
|
||
reset: bool
|
||
|
||
RewindPoint = object
|
||
failSlot: Slot
|
||
epochCount: uint64
|
||
|
||
SyncQueue*[T] = ref object
|
||
kind*: SyncQueueKind
|
||
inpSlot*: Slot
|
||
outSlot*: Slot
|
||
startSlot*: Slot
|
||
finalSlot*: Slot
|
||
chunkSize*: uint64
|
||
queueSize*: int
|
||
counter*: uint64
|
||
pending*: Table[uint64, SyncRequest[T]]
|
||
gapList*: seq[GapItem[T]]
|
||
waiters: seq[SyncWaiter]
|
||
getSafeSlot*: GetSlotCallback
|
||
debtsQueue: HeapQueue[SyncRequest[T]]
|
||
debtsCount: uint64
|
||
readyQueue: HeapQueue[SyncResult[T]]
|
||
rewind: Option[RewindPoint]
|
||
blockVerifier: BlockVerifier
|
||
ident*: string
|
||
|
||
chronicles.formatIt SyncQueueKind: toLowerAscii($it)
|
||
|
||
template shortLog*[T](req: SyncRequest[T]): string =
|
||
Base10.toString(uint64(req.slot)) & ":" &
|
||
Base10.toString(req.count) & "@" &
|
||
Base10.toString(req.index)
|
||
|
||
chronicles.expandIt SyncRequest:
|
||
`it` = shortLog(it)
|
||
peer = shortLog(it.item)
|
||
direction = toLowerAscii($it.kind)
|
||
|
||
proc getShortMap*[T](req: SyncRequest[T],
|
||
data: openArray[ref ForkedSignedBeaconBlock]): string =
|
||
## Returns all slot numbers in ``data`` as placement map.
|
||
var res = newStringOfCap(req.count)
|
||
var slider = req.slot
|
||
var last = 0
|
||
for i in 0 ..< req.count:
|
||
if last < len(data):
|
||
for k in last ..< len(data):
|
||
if slider == data[k][].slot:
|
||
res.add('x')
|
||
last = k + 1
|
||
break
|
||
elif slider < data[k][].slot:
|
||
res.add('.')
|
||
break
|
||
else:
|
||
res.add('.')
|
||
slider = slider + 1
|
||
res
|
||
|
||
proc getShortMap*[T](req: SyncRequest[T],
|
||
data: openArray[ref BlobSidecar]): string =
|
||
## Returns all slot numbers in ``data`` as placement map.
|
||
var res = newStringOfCap(req.count * MAX_BLOBS_PER_BLOCK)
|
||
var cur : uint64 = 0
|
||
for slot in req.slot..<req.slot+req.count:
|
||
if slot == data[cur].slot:
|
||
for k in cur..<cur+MAX_BLOBS_PER_BLOCK:
|
||
inc(cur)
|
||
if slot == data[k].slot:
|
||
res.add('x')
|
||
else:
|
||
res.add('|')
|
||
break
|
||
else:
|
||
res.add('|')
|
||
res
|
||
|
||
proc contains*[T](req: SyncRequest[T], slot: Slot): bool {.inline.} =
|
||
slot >= req.slot and slot < req.slot + req.count
|
||
|
||
proc cmp*[T](a, b: SyncRequest[T]): int =
|
||
cmp(uint64(a.slot), uint64(b.slot))
|
||
|
||
proc checkResponse*[T](req: SyncRequest[T],
|
||
data: openArray[Slot]): bool =
|
||
if len(data) == 0:
|
||
# Impossible to verify empty response.
|
||
return true
|
||
|
||
if uint64(len(data)) > req.count:
|
||
# Number of blocks in response should be less or equal to number of
|
||
# requested blocks.
|
||
return false
|
||
|
||
var slot = req.slot
|
||
var rindex = 0'u64
|
||
var dindex = 0
|
||
|
||
while (rindex < req.count) and (dindex < len(data)):
|
||
if slot < data[dindex]:
|
||
discard
|
||
elif slot == data[dindex]:
|
||
inc(dindex)
|
||
else:
|
||
return false
|
||
slot += 1'u64
|
||
rindex += 1'u64
|
||
|
||
if dindex == len(data):
|
||
return true
|
||
else:
|
||
return false
|
||
|
||
proc init[T](t1: typedesc[SyncRequest], kind: SyncQueueKind, start: Slot,
|
||
finish: Slot, t2: typedesc[T]): SyncRequest[T] =
|
||
let count = finish - start + 1'u64
|
||
SyncRequest[T](kind: kind, slot: start, count: count)
|
||
|
||
proc init[T](t1: typedesc[SyncRequest], kind: SyncQueueKind, slot: Slot,
|
||
count: uint64, item: T): SyncRequest[T] =
|
||
SyncRequest[T](kind: kind, slot: slot, count: count, item: item)
|
||
|
||
proc init[T](t1: typedesc[SyncRequest], kind: SyncQueueKind, start: Slot,
|
||
finish: Slot, item: T): SyncRequest[T] =
|
||
let count = finish - start + 1'u64
|
||
SyncRequest[T](kind: kind, slot: start, count: count, item: item)
|
||
|
||
proc empty*[T](t: typedesc[SyncRequest], kind: SyncQueueKind,
|
||
t2: typedesc[T]): SyncRequest[T] {.inline.} =
|
||
SyncRequest[T](kind: kind, count: 0'u64)
|
||
|
||
proc setItem*[T](sr: var SyncRequest[T], item: T) =
|
||
sr.item = item
|
||
|
||
proc isEmpty*[T](sr: SyncRequest[T]): bool {.inline.} =
|
||
(sr.count == 0'u64)
|
||
|
||
proc init*[T](t1: typedesc[SyncQueue], t2: typedesc[T],
|
||
queueKind: SyncQueueKind,
|
||
start, final: Slot, chunkSize: uint64,
|
||
getSafeSlotCb: GetSlotCallback,
|
||
blockVerifier: BlockVerifier,
|
||
syncQueueSize: int = -1,
|
||
ident: string = "main"): SyncQueue[T] =
|
||
## Create new synchronization queue with parameters
|
||
##
|
||
## ``start`` and ``final`` are starting and final Slots.
|
||
##
|
||
## ``chunkSize`` maximum number of slots in one request.
|
||
##
|
||
## ``syncQueueSize`` maximum queue size for incoming data.
|
||
## If ``syncQueueSize > 0`` queue will help to keep backpressure under
|
||
## control. If ``syncQueueSize <= 0`` then queue size is unlimited (default).
|
||
|
||
# SyncQueue is the core of sync manager, this data structure distributes
|
||
# requests to peers and manages responses from peers.
|
||
#
|
||
# Because SyncQueue is async data structure it manages backpressure and
|
||
# order of incoming responses and it also resolves "joker's" problem.
|
||
#
|
||
# Joker's problem
|
||
#
|
||
# According to pre-v0.12.0 Ethereum consensus network specification
|
||
# > Clients MUST respond with at least one block, if they have it and it
|
||
# > exists in the range. Clients MAY limit the number of blocks in the
|
||
# > response.
|
||
# https://github.com/ethereum/consensus-specs/blob/v0.11.3/specs/phase0/p2p-interface.md#L590
|
||
#
|
||
# Such rule can lead to very uncertain responses, for example let slots from
|
||
# 10 to 12 will be not empty. Client which follows specification can answer
|
||
# with any response from this list (X - block, `-` empty space):
|
||
#
|
||
# 1. X X X
|
||
# 2. - - X
|
||
# 3. - X -
|
||
# 4. - X X
|
||
# 5. X - -
|
||
# 6. X - X
|
||
# 7. X X -
|
||
#
|
||
# If peer answers with `1` everything will be fine and `block_processor`
|
||
# will be able to process all 3 blocks.
|
||
# In case of `2`, `3`, `4`, `6` - `block_processor` will fail immediately
|
||
# with chunk and report "parent is missing" error.
|
||
# But in case of `5` and `7` blocks will be processed by `block_processor`
|
||
# without any problems, however it will start producing problems right from
|
||
# this uncertain last slot. SyncQueue will start producing requests for next
|
||
# blocks, but all the responses from this point will fail with "parent is
|
||
# missing" error. Lets call such peers "jokers", because they are joking
|
||
# with responses.
|
||
#
|
||
# To fix "joker" problem we going to perform rollback to the latest finalized
|
||
# epoch's first slot.
|
||
#
|
||
# Note that as of spec v0.12.0, well-behaving clients are forbidden from
|
||
# answering this way. However, it still makes sense to attempt to handle
|
||
# this case to increase compatibility (e.g., with weak subjectivity nodes
|
||
# that are still backfilling blocks)
|
||
doAssert(chunkSize > 0'u64, "Chunk size should not be zero")
|
||
SyncQueue[T](
|
||
kind: queueKind,
|
||
startSlot: start,
|
||
finalSlot: final,
|
||
chunkSize: chunkSize,
|
||
queueSize: syncQueueSize,
|
||
getSafeSlot: getSafeSlotCb,
|
||
waiters: newSeq[SyncWaiter](),
|
||
counter: 1'u64,
|
||
pending: initTable[uint64, SyncRequest[T]](),
|
||
debtsQueue: initHeapQueue[SyncRequest[T]](),
|
||
inpSlot: start,
|
||
outSlot: start,
|
||
blockVerifier: blockVerifier,
|
||
ident: ident
|
||
)
|
||
|
||
proc `<`*[T](a, b: SyncRequest[T]): bool =
|
||
doAssert(a.kind == b.kind)
|
||
case a.kind
|
||
of SyncQueueKind.Forward:
|
||
a.slot < b.slot
|
||
of SyncQueueKind.Backward:
|
||
a.slot > b.slot
|
||
|
||
proc `<`*[T](a, b: SyncResult[T]): bool =
|
||
doAssert(a.request.kind == b.request.kind)
|
||
case a.request.kind
|
||
of SyncQueueKind.Forward:
|
||
a.request.slot < b.request.slot
|
||
of SyncQueueKind.Backward:
|
||
a.request.slot > b.request.slot
|
||
|
||
proc `==`*[T](a, b: SyncRequest[T]): bool =
|
||
(a.kind == b.kind) and (a.slot == b.slot) and (a.count == b.count)
|
||
|
||
proc lastSlot*[T](req: SyncRequest[T]): Slot =
|
||
## Returns last slot for request ``req``.
|
||
req.slot + req.count - 1'u64
|
||
|
||
proc makePending*[T](sq: SyncQueue[T], req: var SyncRequest[T]) =
|
||
req.index = sq.counter
|
||
sq.counter = sq.counter + 1'u64
|
||
sq.pending[req.index] = req
|
||
|
||
proc updateLastSlot*[T](sq: SyncQueue[T], last: Slot) {.inline.} =
|
||
## Update last slot stored in queue ``sq`` with value ``last``.
|
||
sq.finalSlot = last
|
||
|
||
proc wakeupWaiters[T](sq: SyncQueue[T], reset = false) =
|
||
## Wakeup one or all blocked waiters.
|
||
for item in sq.waiters:
|
||
if reset:
|
||
item.reset = true
|
||
|
||
if not(item.future.finished()):
|
||
item.future.complete()
|
||
|
||
proc waitForChanges[T](sq: SyncQueue[T]): Future[bool] {.async.} =
|
||
## Create new waiter and wait for completion from `wakeupWaiters()`.
|
||
var waitfut = newFuture[void]("SyncQueue.waitForChanges")
|
||
let waititem = SyncWaiter(future: waitfut)
|
||
sq.waiters.add(waititem)
|
||
try:
|
||
await waitfut
|
||
return waititem.reset
|
||
finally:
|
||
sq.waiters.delete(sq.waiters.find(waititem))
|
||
|
||
proc wakeupAndWaitWaiters[T](sq: SyncQueue[T]) {.async.} =
|
||
## This procedure will perform wakeupWaiters(true) and blocks until last
|
||
## waiter will be awakened.
|
||
var waitChanges = sq.waitForChanges()
|
||
sq.wakeupWaiters(true)
|
||
discard await waitChanges
|
||
|
||
proc clearAndWakeup*[T](sq: SyncQueue[T]) =
|
||
sq.pending.clear()
|
||
sq.wakeupWaiters(true)
|
||
|
||
proc resetWait*[T](sq: SyncQueue[T], toSlot: Option[Slot]) {.async.} =
|
||
## Perform reset of all the blocked waiters in SyncQueue.
|
||
##
|
||
## We adding one more waiter to the waiters sequence and
|
||
## call wakeupWaiters(true). Because our waiter is last in sequence of
|
||
## waiters it will be resumed only after all waiters will be awakened and
|
||
## finished.
|
||
|
||
# We are clearing pending list, so that all requests that are still running
|
||
# around (still downloading, but not yet pushed to the SyncQueue) will be
|
||
# expired. Its important to perform this call first (before await), otherwise
|
||
# you can introduce race problem.
|
||
sq.pending.clear()
|
||
|
||
# We calculating minimal slot number to which we will be able to reset,
|
||
# without missing any blocks. There 3 sources:
|
||
# 1. Debts queue.
|
||
# 2. Processing queue (`inpSlot`, `outSlot`).
|
||
# 3. Requested slot `toSlot`.
|
||
#
|
||
# Queue's `outSlot` is the lowest slot we added to `block_pool`, but
|
||
# `toSlot` slot can be less then `outSlot`. `debtsQueue` holds only not
|
||
# added slot requests, so it can't be bigger then `outSlot` value.
|
||
let minSlot =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
if toSlot.isSome():
|
||
min(toSlot.get(), sq.outSlot)
|
||
else:
|
||
sq.outSlot
|
||
of SyncQueueKind.Backward:
|
||
if toSlot.isSome():
|
||
toSlot.get()
|
||
else:
|
||
sq.outSlot
|
||
sq.debtsQueue.clear()
|
||
sq.debtsCount = 0
|
||
sq.readyQueue.clear()
|
||
sq.inpSlot = minSlot
|
||
sq.outSlot = minSlot
|
||
# We are going to wakeup all the waiters and wait for last one.
|
||
await sq.wakeupAndWaitWaiters()
|
||
|
||
proc isEmpty*[T](sr: SyncResult[T]): bool {.inline.} =
|
||
## Returns ``true`` if response chain of blocks is empty (has only empty
|
||
## slots).
|
||
len(sr.data) == 0
|
||
|
||
proc hasEndGap*[T](sr: SyncResult[T]): bool {.inline.} =
|
||
## Returns ``true`` if response chain of blocks has gap at the end.
|
||
let lastslot = sr.request.slot + sr.request.count - 1'u64
|
||
if len(sr.data) == 0:
|
||
return true
|
||
if sr.data[^1][].slot != lastslot:
|
||
return true
|
||
return false
|
||
|
||
proc getLastNonEmptySlot*[T](sr: SyncResult[T]): Slot {.inline.} =
|
||
## Returns last non-empty slot from result ``sr``. If response has only
|
||
## empty slots, original request slot will be returned.
|
||
if len(sr.data) == 0:
|
||
# If response has only empty slots we going to use original request slot
|
||
sr.request.slot
|
||
else:
|
||
sr.data[^1][].slot
|
||
|
||
proc processGap[T](sq: SyncQueue[T], sr: SyncResult[T]) =
|
||
if sr.isEmpty():
|
||
let gitem = GapItem[T](start: sr.request.slot,
|
||
finish: sr.request.slot + sr.request.count - 1'u64,
|
||
item: sr.request.item)
|
||
sq.gapList.add(gitem)
|
||
else:
|
||
if sr.hasEndGap():
|
||
let gitem = GapItem[T](start: sr.getLastNonEmptySlot() + 1'u64,
|
||
finish: sr.request.slot + sr.request.count - 1'u64,
|
||
item: sr.request.item)
|
||
sq.gapList.add(gitem)
|
||
else:
|
||
sq.gapList.reset()
|
||
|
||
proc rewardForGaps[T](sq: SyncQueue[T], score: int) =
|
||
mixin updateScore, getStats
|
||
logScope:
|
||
sync_ident = sq.ident
|
||
direction = sq.kind
|
||
topics = "syncman"
|
||
|
||
for gap in sq.gapList:
|
||
if score < 0:
|
||
# Every empty response increases penalty by 25%, but not more than 200%.
|
||
let
|
||
emptyCount = gap.item.getStats(SyncResponseKind.Empty)
|
||
goodCount = gap.item.getStats(SyncResponseKind.Good)
|
||
|
||
if emptyCount <= goodCount:
|
||
gap.item.updateScore(score)
|
||
else:
|
||
let
|
||
weight = int(min(emptyCount - goodCount, 8'u64))
|
||
newScore = score + score * weight div 4
|
||
gap.item.updateScore(newScore)
|
||
debug "Peer received gap penalty", peer = gap.item,
|
||
penalty = newScore
|
||
else:
|
||
gap.item.updateScore(score)
|
||
|
||
proc toDebtsQueue[T](sq: SyncQueue[T], sr: SyncRequest[T]) =
|
||
sq.debtsQueue.push(sr)
|
||
sq.debtsCount = sq.debtsCount + sr.count
|
||
|
||
proc getRewindPoint*[T](sq: SyncQueue[T], failSlot: Slot,
|
||
safeSlot: Slot): Slot =
|
||
logScope:
|
||
sync_ident = sq.ident
|
||
direction = sq.kind
|
||
topics = "syncman"
|
||
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
# Calculate the latest finalized epoch.
|
||
let finalizedEpoch = epoch(safeSlot)
|
||
|
||
# Calculate failure epoch.
|
||
let failEpoch = epoch(failSlot)
|
||
|
||
# Calculate exponential rewind point in number of epochs.
|
||
let epochCount =
|
||
if sq.rewind.isSome():
|
||
let rewind = sq.rewind.get()
|
||
if failSlot == rewind.failSlot:
|
||
# `MissingParent` happened at same slot so we increase rewind point by
|
||
# factor of 2.
|
||
if failEpoch > finalizedEpoch:
|
||
let rewindPoint = rewind.epochCount shl 1
|
||
if rewindPoint < rewind.epochCount:
|
||
# If exponential rewind point produces `uint64` overflow we will
|
||
# make rewind to latest finalized epoch.
|
||
failEpoch - finalizedEpoch
|
||
else:
|
||
if (failEpoch < rewindPoint) or
|
||
(failEpoch - rewindPoint < finalizedEpoch):
|
||
# If exponential rewind point points to position which is far
|
||
# behind latest finalized epoch.
|
||
failEpoch - finalizedEpoch
|
||
else:
|
||
rewindPoint
|
||
else:
|
||
warn "Trying to rewind over the last finalized epoch",
|
||
finalized_slot = safeSlot, fail_slot = failSlot,
|
||
finalized_epoch = finalizedEpoch, fail_epoch = failEpoch,
|
||
rewind_epoch_count = rewind.epochCount,
|
||
finalized_epoch = finalizedEpoch
|
||
0'u64
|
||
else:
|
||
# `MissingParent` happened at different slot so we going to rewind for
|
||
# 1 epoch only.
|
||
if (failEpoch < 1'u64) or (failEpoch - 1'u64 < finalizedEpoch):
|
||
warn "Сould not rewind further than the last finalized epoch",
|
||
finalized_slot = safeSlot, fail_slot = failSlot,
|
||
finalized_epoch = finalizedEpoch, fail_epoch = failEpoch,
|
||
rewind_epoch_count = rewind.epochCount,
|
||
finalized_epoch = finalizedEpoch
|
||
0'u64
|
||
else:
|
||
1'u64
|
||
else:
|
||
# `MissingParent` happened first time.
|
||
if (failEpoch < 1'u64) or (failEpoch - 1'u64 < finalizedEpoch):
|
||
warn "Сould not rewind further than the last finalized epoch",
|
||
finalized_slot = safeSlot, fail_slot = failSlot,
|
||
finalized_epoch = finalizedEpoch, fail_epoch = failEpoch,
|
||
finalized_epoch = finalizedEpoch
|
||
0'u64
|
||
else:
|
||
1'u64
|
||
|
||
if epochCount == 0'u64:
|
||
warn "Unable to continue syncing, please restart the node",
|
||
finalized_slot = safeSlot, fail_slot = failSlot,
|
||
finalized_epoch = finalizedEpoch, fail_epoch = failEpoch,
|
||
finalized_epoch = finalizedEpoch
|
||
# Calculate the rewind epoch, which will be equal to last rewind point or
|
||
# finalizedEpoch
|
||
let rewindEpoch =
|
||
if sq.rewind.isNone():
|
||
finalizedEpoch
|
||
else:
|
||
epoch(sq.rewind.get().failSlot) - sq.rewind.get().epochCount
|
||
rewindEpoch.start_slot()
|
||
else:
|
||
# Calculate the rewind epoch, which should not be less than the latest
|
||
# finalized epoch.
|
||
let rewindEpoch = failEpoch - epochCount
|
||
# Update and save new rewind point in SyncQueue.
|
||
sq.rewind = some(RewindPoint(failSlot: failSlot, epochCount: epochCount))
|
||
rewindEpoch.start_slot()
|
||
of SyncQueueKind.Backward:
|
||
# While we perform backward sync, the only possible slot we could rewind is
|
||
# latest stored block.
|
||
if failSlot == safeSlot:
|
||
warn "Unable to continue syncing, please restart the node",
|
||
safe_slot = safeSlot, fail_slot = failSlot
|
||
safeSlot
|
||
|
||
iterator blocks*[T](sq: SyncQueue[T],
|
||
sr: SyncResult[T]): ref ForkedSignedBeaconBlock =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
for i in countup(0, len(sr.data) - 1):
|
||
yield sr.data[i]
|
||
of SyncQueueKind.Backward:
|
||
for i in countdown(len(sr.data) - 1, 0):
|
||
yield sr.data[i]
|
||
|
||
proc advanceOutput*[T](sq: SyncQueue[T], number: uint64) =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
sq.outSlot = sq.outSlot + number
|
||
of SyncQueueKind.Backward:
|
||
sq.outSlot = sq.outSlot - number
|
||
|
||
proc advanceInput[T](sq: SyncQueue[T], number: uint64) =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
sq.inpSlot = sq.inpSlot + number
|
||
of SyncQueueKind.Backward:
|
||
sq.inpSlot = sq.inpSlot - number
|
||
|
||
proc notInRange[T](sq: SyncQueue[T], sr: SyncRequest[T]): bool =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
(sq.queueSize > 0) and (sr.slot > sq.outSlot)
|
||
of SyncQueueKind.Backward:
|
||
(sq.queueSize > 0) and (sr.lastSlot < sq.outSlot)
|
||
|
||
func numAlreadyKnownSlots[T](sq: SyncQueue[T], sr: SyncRequest[T]): uint64 =
|
||
## Compute the number of slots covered by a given `SyncRequest` that are
|
||
## already known and, hence, no longer relevant for sync progression.
|
||
let
|
||
outSlot = sq.outSlot
|
||
lowSlot = sr.slot
|
||
highSlot = sr.lastSlot
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
if outSlot > highSlot:
|
||
# Entire request is no longer relevant.
|
||
sr.count
|
||
elif outSlot > lowSlot:
|
||
# Request is only partially relevant.
|
||
outSlot - lowSlot
|
||
else:
|
||
# Entire request is still relevant.
|
||
0
|
||
of SyncQueueKind.Backward:
|
||
if lowSlot > outSlot:
|
||
# Entire request is no longer relevant.
|
||
sr.count
|
||
elif highSlot > outSlot:
|
||
# Request is only partially relevant.
|
||
highSlot - outSlot
|
||
else:
|
||
# Entire request is still relevant.
|
||
0
|
||
|
||
proc push*[T](sq: SyncQueue[T], sr: SyncRequest[T],
|
||
data: seq[ref ForkedSignedBeaconBlock],
|
||
blobs: Opt[seq[BlobSidecars]],
|
||
maybeFinalized: bool = false,
|
||
processingCb: ProcessingCallback = nil) {.async.} =
|
||
logScope:
|
||
sync_ident = sq.ident
|
||
topics = "syncman"
|
||
|
||
## Push successful result to queue ``sq``.
|
||
mixin updateScore, updateStats, getStats
|
||
|
||
if sr.index notin sq.pending:
|
||
# If request `sr` not in our pending list, it only means that
|
||
# SyncQueue.resetWait() happens and all pending requests are expired, so
|
||
# we swallow `old` requests, and in such way sync-workers are able to get
|
||
# proper new requests from SyncQueue.
|
||
return
|
||
|
||
sq.pending.del(sr.index)
|
||
|
||
# This is backpressure handling algorithm, this algorithm is blocking
|
||
# all pending `push` requests if `request.slot` not in range.
|
||
while true:
|
||
if sq.notInRange(sr):
|
||
let reset = await sq.waitForChanges()
|
||
if reset:
|
||
# SyncQueue reset happens. We are exiting to wake up sync-worker.
|
||
return
|
||
else:
|
||
let syncres = SyncResult[T](request: sr, data: data, blobs: blobs)
|
||
sq.readyQueue.push(syncres)
|
||
break
|
||
|
||
while len(sq.readyQueue) > 0:
|
||
let reqres =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
let minSlot = sq.readyQueue[0].request.slot
|
||
if sq.outSlot < minSlot:
|
||
none[SyncResult[T]]()
|
||
else:
|
||
some(sq.readyQueue.pop())
|
||
of SyncQueueKind.Backward:
|
||
let maxslot = sq.readyQueue[0].request.slot +
|
||
(sq.readyQueue[0].request.count - 1'u64)
|
||
if sq.outSlot > maxslot:
|
||
none[SyncResult[T]]()
|
||
else:
|
||
some(sq.readyQueue.pop())
|
||
|
||
let item =
|
||
if reqres.isSome():
|
||
reqres.get()
|
||
else:
|
||
let rewindSlot = sq.getRewindPoint(sq.outSlot, sq.getSafeSlot())
|
||
warn "Got incorrect sync result in queue, rewind happens",
|
||
blocks_map = getShortMap(sq.readyQueue[0].request,
|
||
sq.readyQueue[0].data),
|
||
blocks_count = len(sq.readyQueue[0].data),
|
||
output_slot = sq.outSlot, input_slot = sq.inpSlot,
|
||
rewind_to_slot = rewindSlot, request = sq.readyQueue[0].request
|
||
await sq.resetWait(some(rewindSlot))
|
||
break
|
||
|
||
if processingCb != nil:
|
||
processingCb()
|
||
|
||
# Validating received blocks one by one
|
||
var
|
||
hasInvalidBlock = false
|
||
unviableBlock: Option[(Eth2Digest, Slot)]
|
||
missingParentSlot: Option[Slot]
|
||
goodBlock: Option[Slot]
|
||
|
||
# TODO when https://github.com/nim-lang/Nim/issues/21306 is fixed in used
|
||
# Nim versions, remove workaround and move `res` into for loop
|
||
res: Result[void, VerifierError]
|
||
|
||
var i=0
|
||
for blk in sq.blocks(item):
|
||
if reqres.get().blobs.isNone():
|
||
res = await sq.blockVerifier(blk[], BlobSidecars @[], maybeFinalized)
|
||
else:
|
||
res = await sq.blockVerifier(blk[], reqres.get().blobs.get()[i], maybeFinalized)
|
||
inc(i)
|
||
|
||
if res.isOk():
|
||
goodBlock = some(blk[].slot)
|
||
else:
|
||
case res.error()
|
||
of VerifierError.MissingParent:
|
||
missingParentSlot = some(blk[].slot)
|
||
break
|
||
of VerifierError.Duplicate:
|
||
# Keep going, happens naturally
|
||
discard
|
||
of VerifierError.UnviableFork:
|
||
# Keep going so as to register other unviable blocks with the
|
||
# quarantine
|
||
if unviableBlock.isNone:
|
||
# Remember the first unviable block, so we can log it
|
||
unviableBlock = some((blk[].root, blk[].slot))
|
||
|
||
of VerifierError.Invalid:
|
||
hasInvalidBlock = true
|
||
|
||
let req = item.request
|
||
notice "Received invalid sequence of blocks", request = req,
|
||
blocks_count = len(item.data),
|
||
blocks_map = getShortMap(req, item.data)
|
||
req.item.updateScore(PeerScoreBadValues)
|
||
break
|
||
|
||
# When errors happen while processing blocks, we retry the same request
|
||
# with, hopefully, a different peer
|
||
let retryRequest =
|
||
hasInvalidBlock or unviableBlock.isSome() or missingParentSlot.isSome()
|
||
if not(retryRequest):
|
||
let numSlotsAdvanced = item.request.count - sq.numAlreadyKnownSlots(sr)
|
||
sq.advanceOutput(numSlotsAdvanced)
|
||
|
||
if goodBlock.isSome():
|
||
# If there no error and response was not empty we should reward peer
|
||
# with some bonus score - not for duplicate blocks though.
|
||
item.request.item.updateScore(PeerScoreGoodValues)
|
||
item.request.item.updateStats(SyncResponseKind.Good, 1'u64)
|
||
|
||
# BlockProcessor reports good block, so we can reward all the peers
|
||
# who sent us empty responses.
|
||
sq.rewardForGaps(PeerScoreGoodValues)
|
||
sq.gapList.reset()
|
||
else:
|
||
# Response was empty
|
||
item.request.item.updateStats(SyncResponseKind.Empty, 1'u64)
|
||
|
||
sq.processGap(item)
|
||
|
||
if numSlotsAdvanced > 0:
|
||
sq.wakeupWaiters()
|
||
else:
|
||
debug "Block pool rejected peer's response", request = item.request,
|
||
blocks_map = getShortMap(item.request, item.data),
|
||
blocks_count = len(item.data),
|
||
ok = goodBlock.isSome(),
|
||
unviable = unviableBlock.isSome(),
|
||
missing_parent = missingParentSlot.isSome()
|
||
# We need to move failed response to the debts queue.
|
||
sq.toDebtsQueue(item.request)
|
||
|
||
if unviableBlock.isSome():
|
||
let req = item.request
|
||
notice "Received blocks from an unviable fork", request = req,
|
||
blockRoot = unviableBlock.get()[0],
|
||
blockSlot = unviableBlock.get()[1],
|
||
blocks_count = len(item.data),
|
||
blocks_map = getShortMap(req, item.data)
|
||
req.item.updateScore(PeerScoreUnviableFork)
|
||
|
||
if missingParentSlot.isSome():
|
||
var
|
||
resetSlot: Option[Slot]
|
||
failSlot = missingParentSlot.get()
|
||
|
||
# If we got `VerifierError.MissingParent` it means that peer returns
|
||
# chain of blocks with holes or `block_pool` is in incomplete state. We
|
||
# going to rewind the SyncQueue some distance back (2ⁿ, where n∈[0,∞],
|
||
# but no more than `finalized_epoch`).
|
||
let
|
||
req = item.request
|
||
safeSlot = sq.getSafeSlot()
|
||
gapsCount = len(sq.gapList)
|
||
|
||
# We should penalize all the peers which responded with gaps.
|
||
sq.rewardForGaps(PeerScoreMissingValues)
|
||
sq.gapList.reset()
|
||
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
if goodBlock.isSome():
|
||
# `VerifierError.MissingParent` and `Success` present in response,
|
||
# it means that we just need to request this range one more time.
|
||
debug "Unexpected missing parent, but no rewind needed",
|
||
request = req, finalized_slot = safeSlot,
|
||
last_good_slot = goodBlock.get(),
|
||
missing_parent_slot = missingParentSlot.get(),
|
||
blocks_count = len(item.data),
|
||
blocks_map = getShortMap(req, item.data),
|
||
gaps_count = gapsCount
|
||
req.item.updateScore(PeerScoreMissingValues)
|
||
else:
|
||
if safeSlot < req.slot:
|
||
let rewindSlot = sq.getRewindPoint(failSlot, safeSlot)
|
||
debug "Unexpected missing parent, rewind happens",
|
||
request = req, rewind_to_slot = rewindSlot,
|
||
rewind_point = sq.rewind, finalized_slot = safeSlot,
|
||
blocks_count = len(item.data),
|
||
blocks_map = getShortMap(req, item.data),
|
||
gaps_count = gapsCount
|
||
resetSlot = some(rewindSlot)
|
||
else:
|
||
error "Unexpected missing parent at finalized epoch slot",
|
||
request = req, rewind_to_slot = safeSlot,
|
||
blocks_count = len(item.data),
|
||
blocks_map = getShortMap(req, item.data),
|
||
gaps_count = gapsCount
|
||
req.item.updateScore(PeerScoreBadValues)
|
||
of SyncQueueKind.Backward:
|
||
if safeSlot > failSlot:
|
||
let rewindSlot = sq.getRewindPoint(failSlot, safeSlot)
|
||
# It's quite common peers give us fewer blocks than we ask for
|
||
debug "Gap in block range response, rewinding", request = req,
|
||
rewind_to_slot = rewindSlot, rewind_fail_slot = failSlot,
|
||
finalized_slot = safeSlot, blocks_count = len(item.data),
|
||
blocks_map = getShortMap(req, item.data)
|
||
resetSlot = some(rewindSlot)
|
||
req.item.updateScore(PeerScoreMissingValues)
|
||
else:
|
||
error "Unexpected missing parent at safe slot", request = req,
|
||
to_slot = safeSlot, blocks_count = len(item.data),
|
||
blocks_map = getShortMap(req, item.data)
|
||
req.item.updateScore(PeerScoreBadValues)
|
||
|
||
if resetSlot.isSome():
|
||
await sq.resetWait(resetSlot)
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
debug "Rewind to slot has happened", reset_slot = resetSlot.get(),
|
||
queue_input_slot = sq.inpSlot, queue_output_slot = sq.outSlot,
|
||
rewind_point = sq.rewind, direction = sq.kind
|
||
of SyncQueueKind.Backward:
|
||
debug "Rewind to slot has happened", reset_slot = resetSlot.get(),
|
||
queue_input_slot = sq.inpSlot, queue_output_slot = sq.outSlot,
|
||
direction = sq.kind
|
||
|
||
break
|
||
|
||
proc push*[T](sq: SyncQueue[T], sr: SyncRequest[T]) =
|
||
## Push failed request back to queue.
|
||
if sr.index notin sq.pending:
|
||
# If request `sr` not in our pending list, it only means that
|
||
# SyncQueue.resetWait() happens and all pending requests are expired, so
|
||
# we swallow `old` requests, and in such way sync-workers are able to get
|
||
# proper new requests from SyncQueue.
|
||
return
|
||
sq.pending.del(sr.index)
|
||
sq.toDebtsQueue(sr)
|
||
|
||
proc handlePotentialSafeSlotAdvancement[T](sq: SyncQueue[T]) =
|
||
# It may happen that sync progress advanced to a newer `safeSlot`, either
|
||
# by a response that started with good values and only had errors late, or
|
||
# through an out-of-band mechanism, e.g., VC / REST.
|
||
# If that happens, advance to the new `safeSlot` to avoid repeating requests
|
||
# for data that is considered immutable and no longer relevant.
|
||
let safeSlot = sq.getSafeSlot()
|
||
func numSlotsBehindSafeSlot(slot: Slot): uint64 =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
if safeSlot > slot:
|
||
safeSlot - slot
|
||
else:
|
||
0
|
||
of SyncQueueKind.Backward:
|
||
if slot > safeSlot:
|
||
slot - safeSlot
|
||
else:
|
||
0
|
||
|
||
let
|
||
numOutSlotsAdvanced = sq.outSlot.numSlotsBehindSafeSlot
|
||
numInpSlotsAdvanced =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
sq.inpSlot.numSlotsBehindSafeSlot
|
||
of SyncQueueKind.Backward:
|
||
if sq.inpSlot == 0xFFFF_FFFF_FFFF_FFFF'u64:
|
||
0'u64
|
||
else:
|
||
sq.inpSlot.numSlotsBehindSafeSlot
|
||
if numOutSlotsAdvanced != 0 or numInpSlotsAdvanced != 0:
|
||
debug "Sync progress advanced out-of-band",
|
||
safeSlot, outSlot = sq.outSlot, inpSlot = sq.inpSlot
|
||
if numOutSlotsAdvanced != 0:
|
||
sq.advanceOutput(numOutSlotsAdvanced)
|
||
if numInpSlotsAdvanced != 0:
|
||
sq.advanceInput(numInpSlotsAdvanced)
|
||
sq.wakeupWaiters()
|
||
|
||
func updateRequestForNewSafeSlot[T](sq: SyncQueue[T], sr: var SyncRequest[T]) =
|
||
# Requests may have originated before the latest `safeSlot` advancement.
|
||
# Update it to not request any data prior to `safeSlot`.
|
||
let
|
||
outSlot = sq.outSlot
|
||
lowSlot = sr.slot
|
||
highSlot = sr.lastSlot
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
if outSlot <= lowSlot:
|
||
# Entire request is still relevant.
|
||
discard
|
||
elif outSlot <= highSlot:
|
||
# Request is only partially relevant.
|
||
let
|
||
numSlotsDone = outSlot - lowSlot
|
||
sr.slot += numSlotsDone
|
||
sr.count -= numSlotsDone
|
||
else:
|
||
# Entire request is no longer relevant.
|
||
sr.count = 0
|
||
of SyncQueueKind.Backward:
|
||
if outSlot >= highSlot:
|
||
# Entire request is still relevant.
|
||
discard
|
||
elif outSlot >= lowSlot:
|
||
# Request is only partially relevant.
|
||
let
|
||
numSlotsDone = highSlot - outSlot
|
||
sr.count -= numSlotsDone
|
||
else:
|
||
# Entire request is no longer relevant.
|
||
sr.count = 0
|
||
|
||
proc pop*[T](sq: SyncQueue[T], maxslot: Slot, item: T): SyncRequest[T] =
|
||
## Create new request according to current SyncQueue parameters.
|
||
sq.handlePotentialSafeSlotAdvancement()
|
||
while len(sq.debtsQueue) > 0:
|
||
if maxslot < sq.debtsQueue[0].slot:
|
||
# Peer's latest slot is less than starting request's slot.
|
||
return SyncRequest.empty(sq.kind, T)
|
||
if maxslot < sq.debtsQueue[0].lastSlot():
|
||
# Peer's latest slot is less than finishing request's slot.
|
||
return SyncRequest.empty(sq.kind, T)
|
||
var sr = sq.debtsQueue.pop()
|
||
sq.debtsCount = sq.debtsCount - sr.count
|
||
sq.updateRequestForNewSafeSlot(sr)
|
||
if sr.isEmpty:
|
||
continue
|
||
sr.setItem(item)
|
||
sq.makePending(sr)
|
||
return sr
|
||
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
if maxslot < sq.inpSlot:
|
||
# Peer's latest slot is less than queue's input slot.
|
||
return SyncRequest.empty(sq.kind, T)
|
||
if sq.inpSlot > sq.finalSlot:
|
||
# Queue's input slot is bigger than queue's final slot.
|
||
return SyncRequest.empty(sq.kind, T)
|
||
let lastSlot = min(maxslot, sq.finalSlot)
|
||
let count = min(sq.chunkSize, lastSlot + 1'u64 - sq.inpSlot)
|
||
var sr = SyncRequest.init(sq.kind, sq.inpSlot, count, item)
|
||
sq.advanceInput(count)
|
||
sq.makePending(sr)
|
||
sr
|
||
of SyncQueueKind.Backward:
|
||
if sq.inpSlot == 0xFFFF_FFFF_FFFF_FFFF'u64:
|
||
return SyncRequest.empty(sq.kind, T)
|
||
if sq.inpSlot < sq.finalSlot:
|
||
return SyncRequest.empty(sq.kind, T)
|
||
let (slot, count) =
|
||
block:
|
||
let baseSlot = sq.inpSlot + 1'u64
|
||
if baseSlot - sq.finalSlot < sq.chunkSize:
|
||
let count = uint64(baseSlot - sq.finalSlot)
|
||
(baseSlot - count, count)
|
||
else:
|
||
(baseSlot - sq.chunkSize, sq.chunkSize)
|
||
if (maxslot + 1'u64) < slot + count:
|
||
# Peer's latest slot is less than queue's input slot.
|
||
return SyncRequest.empty(sq.kind, T)
|
||
var sr = SyncRequest.init(sq.kind, slot, count, item)
|
||
sq.advanceInput(count)
|
||
sq.makePending(sr)
|
||
sr
|
||
|
||
proc debtLen*[T](sq: SyncQueue[T]): uint64 =
|
||
sq.debtsCount
|
||
|
||
proc pendingLen*[T](sq: SyncQueue[T]): uint64 =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
# When moving forward `outSlot` will be <= of `inpSlot`.
|
||
sq.inpSlot - sq.outSlot
|
||
of SyncQueueKind.Backward:
|
||
# When moving backward `outSlot` will be >= of `inpSlot`
|
||
sq.outSlot - sq.inpSlot
|
||
|
||
proc len*[T](sq: SyncQueue[T]): uint64 {.inline.} =
|
||
## Returns number of slots left in queue ``sq``.
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
if sq.finalSlot >= sq.outSlot:
|
||
sq.finalSlot + 1'u64 - sq.outSlot
|
||
else:
|
||
0'u64
|
||
of SyncQueueKind.Backward:
|
||
if sq.outSlot >= sq.finalSlot:
|
||
sq.outSlot + 1'u64 - sq.finalSlot
|
||
else:
|
||
0'u64
|
||
|
||
proc total*[T](sq: SyncQueue[T]): uint64 {.inline.} =
|
||
## Returns total number of slots in queue ``sq``.
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
if sq.finalSlot >= sq.startSlot:
|
||
sq.finalSlot + 1'u64 - sq.startSlot
|
||
else:
|
||
0'u64
|
||
of SyncQueueKind.Backward:
|
||
if sq.startSlot >= sq.finalSlot:
|
||
sq.startSlot + 1'u64 - sq.finalSlot
|
||
else:
|
||
0'u64
|
||
|
||
proc progress*[T](sq: SyncQueue[T]): uint64 =
|
||
## How many useful slots we've synced so far, adjusting for how much has
|
||
## become obsolete by time movements
|
||
sq.total - sq.len
|