nimbus-eth2/beacon_chain/sync_manager.nim
Jacek Sieka 5d3c995d42 json-rpc fixes
* expose node signatures
* format bitseqs as hex strings
* format trusted sigs as hex strings (same as untrusted)
* reuse rpc client sigs
* include validator index in duties
* move SyncInfo to spec
2021-02-02 14:55:36 +02:00

1138 lines
43 KiB
Nim

import chronicles
import options, deques, heapqueue, tables, strutils, sequtils, math, algorithm
import stew/results, chronos, chronicles
import spec/[datatypes, digest, helpers, eth2_apis/callsigs_types], peer_pool, eth2_network
import ./eth2_processor
import block_pools/block_pools_types
export datatypes, digest, chronos, chronicles, results, block_pools_types
logScope:
topics = "syncman"
const
PeerScoreNoStatus* = -100
## Peer did not answer `status` request.
PeerScoreStaleStatus* = -50
## Peer's `status` answer do not progress in time.
PeerScoreUseless* = -10
## Peer's latest head is lower then ours.
PeerScoreGoodStatus* = 50
## Peer's `status` answer is fine.
PeerScoreNoBlocks* = -100
## Peer did not respond in time on `blocksByRange` request.
PeerScoreGoodBlocks* = 100
## Peer's `blocksByRange` answer is fine.
PeerScoreBadBlocks* = -1000
## Peer's response contains incorrect blocks.
PeerScoreBadResponse* = -1000
## Peer's response is not in requested range.
PeerScoreMissingBlocks* = -200
## Peer response contains too many empty blocks.
SyncWorkersCount* = 10
## Number of sync workers to spawn
StatusUpdateInterval* = chronos.minutes(1)
## Minimum time between two subsequent calls to update peer's status
StatusExpirationTime* = chronos.minutes(2)
## Time time it takes for the peer's status information to expire.
type
SyncFailureKind* = enum
StatusInvalid,
StatusDownload,
StatusStale,
EmptyProblem,
BlockDownload,
BadResponse
GetSlotCallback* = proc(): Slot {.gcsafe, raises: [Defect].}
SyncRequest*[T] = object
index*: uint64
slot*: Slot
count*: uint64
step*: uint64
item*: T
SyncResult*[T] = object
request*: SyncRequest[T]
data*: seq[SignedBeaconBlock]
SyncWaiter*[T] = object
future: Future[bool]
request: SyncRequest[T]
RewindPoint = object
failSlot: Slot
epochCount: uint64
SyncQueue*[T] = ref object
inpSlot*: Slot
outSlot*: Slot
startSlot*: Slot
lastSlot: Slot
chunkSize*: uint64
queueSize*: int
counter*: uint64
opcounter*: uint64
pending*: Table[uint64, SyncRequest[T]]
waiters: seq[SyncWaiter[T]]
getFinalizedSlot*: GetSlotCallback
debtsQueue: HeapQueue[SyncRequest[T]]
debtsCount: uint64
readyQueue: HeapQueue[SyncResult[T]]
rewind: Option[RewindPoint]
outQueue: AsyncQueue[BlockEntry]
SyncWorkerStatus* {.pure.} = enum
Sleeping, WaitingPeer, UpdatingStatus, Requesting, Downloading, Processing
SyncWorker*[A, B] = object
future: Future[void]
status: SyncWorkerStatus
SyncManager*[A, B] = ref object
pool: PeerPool[A, B]
responseTimeout: chronos.Duration
sleepTime: chronos.Duration
maxStatusAge: uint64
maxHeadAge: uint64
toleranceValue: uint64
getLocalHeadSlot: GetSlotCallback
getLocalWallSlot: GetSlotCallback
getFinalizedSlot: GetSlotCallback
workers: array[SyncWorkersCount, SyncWorker[A, B]]
notInSyncEvent: AsyncEvent
rangeAge: uint64
inRangeEvent*: AsyncEvent
notInRangeEvent*: AsyncEvent
chunkSize: uint64
queue: SyncQueue[A]
syncFut: Future[void]
outQueue: AsyncQueue[BlockEntry]
inProgress*: bool
insSyncSpeed*: float
avgSyncSpeed*: float
timeLeft*: Duration
syncCount*: uint64
syncStatus*: string
SyncMoment* = object
stamp*: chronos.Moment
slot*: Slot
SyncFailure*[T] = object
kind*: SyncFailureKind
peer*: T
stamp*: chronos.Moment
SyncManagerError* = object of CatchableError
BeaconBlocksRes* = NetRes[seq[SignedBeaconBlock]]
proc validate*[T](sq: SyncQueue[T],
blk: SignedBeaconBlock): Future[Result[void, BlockError]] {.async.} =
let sblock = SyncBlock(
blk: blk,
resfut: newFuture[Result[void, BlockError]]("sync.manager.validate")
)
await sq.outQueue.addLast(BlockEntry(v: sblock))
return await sblock.resfut
proc getShortMap*[T](req: SyncRequest[T],
data: openArray[SignedBeaconBlock]): string =
## Returns all slot numbers in ``data`` as placement map.
var res = newStringOfCap(req.count)
var slider = req.slot
var last = 0
for i in 0 ..< req.count:
if last < len(data):
for k in last ..< len(data):
if slider == data[k].message.slot:
res.add('x')
last = k + 1
break
elif slider < data[k].message.slot:
res.add('.')
break
else:
res.add('.')
slider = slider + req.step
result = res
proc contains*[T](req: SyncRequest[T], slot: Slot): bool {.inline.} =
slot >= req.slot and slot < req.slot + req.count * req.step and
((slot - req.slot) mod req.step == 0)
proc cmp*[T](a, b: SyncRequest[T]): int =
result = cmp(uint64(a.slot), uint64(b.slot))
proc checkResponse*[T](req: SyncRequest[T],
data: openArray[SignedBeaconBlock]): bool =
if len(data) == 0:
# Impossible to verify empty response.
return true
if uint64(len(data)) > req.count:
# Number of blocks in response should be less or equal to number of
# requested blocks.
return false
var slot = req.slot
var rindex = 0'u64
var dindex = 0
while (rindex < req.count) and (dindex < len(data)):
if slot < data[dindex].message.slot:
discard
elif slot == data[dindex].message.slot:
inc(dindex)
else:
return false
slot = slot + req.step
rindex = rindex + 1'u64
if dindex == len(data):
return true
else:
return false
proc getFullMap*[T](req: SyncRequest[T],
data: openArray[SignedBeaconBlock]): string =
# Returns all slot numbers in ``data`` as comma-delimeted string.
result = mapIt(data, $it.message.slot).join(", ")
proc init*[T](t1: typedesc[SyncRequest], t2: typedesc[T], slot: Slot,
count: uint64): SyncRequest[T] =
result = SyncRequest[T](slot: slot, count: count, step: 1'u64)
proc init*[T](t1: typedesc[SyncRequest], t2: typedesc[T], start: Slot,
finish: Slot): SyncRequest[T] =
let count = finish - start + 1'u64
result = SyncRequest[T](slot: start, count: count, step: 1'u64)
proc init*[T](t1: typedesc[SyncRequest], t2: typedesc[T], slot: Slot,
count: uint64, item: T): SyncRequest[T] =
result = SyncRequest[T](slot: slot, count: count, item: item, step: 1'u64)
proc init*[T](t1: typedesc[SyncRequest], t2: typedesc[T], start: Slot,
finish: Slot, item: T): SyncRequest[T] =
let count = finish - start + 1'u64
result = SyncRequest[T](slot: start, count: count, step: 1'u64, item: item)
proc init*[T](t1: typedesc[SyncFailure], kind: SyncFailureKind,
peer: T): SyncFailure[T] =
result = SyncFailure[T](kind: kind, peer: peer, stamp: now(chronos.Moment))
proc empty*[T](t: typedesc[SyncRequest],
t2: typedesc[T]): SyncRequest[T] {.inline.} =
result = SyncRequest[T](step: 0'u64, count: 0'u64)
proc setItem*[T](sr: var SyncRequest[T], item: T) =
sr.item = item
proc isEmpty*[T](sr: SyncRequest[T]): bool {.inline.} =
result = (sr.step == 0'u64) and (sr.count == 0'u64)
proc init*[T](t1: typedesc[SyncQueue], t2: typedesc[T],
start, last: Slot, chunkSize: uint64,
getFinalizedSlotCb: GetSlotCallback,
outputQueue: AsyncQueue[BlockEntry],
queueSize: int = -1): SyncQueue[T] =
## Create new synchronization queue with parameters
##
## ``start`` and ``last`` are starting and finishing Slots.
##
## ``chunkSize`` maximum number of slots in one request.
##
## ``queueSize`` maximum queue size for incoming data. If ``queueSize > 0``
## queue will help to keep backpressure under control. If ``queueSize <= 0``
## then queue size is unlimited (default).
##
## ``updateCb`` procedure which will be used to send downloaded blocks to
## consumer. Procedure should return ``false`` only when it receives
## incorrect blocks, and ``true`` if sequence of blocks is correct.
# SyncQueue is the core of sync manager, this data structure distributes
# requests to peers and manages responses from peers.
#
# Because SyncQueue is async data structure it manages backpressure and
# order of incoming responses and it also resolves "joker's" problem.
#
# Joker's problem
#
# According to current Ethereum2 network specification
# > Clients MUST respond with at least one block, if they have it and it
# > exists in the range. Clients MAY limit the number of blocks in the
# > response.
#
# Such rule can lead to very uncertain responses, for example let slots from
# 10 to 12 will be not empty. Client which follows specification can answer
# with any response from this list (X - block, `-` empty space):
#
# 1. X X X
# 2. - - X
# 3. - X -
# 4. - X X
# 5. X - -
# 6. X - X
# 7. X X -
#
# If peer answers with `1` everything will be fine and `block_pool` will be
# able to process all 3 blocks. In case of `2`, `3`, `4`, `6` - `block_pool`
# will fail immediately with chunk and report "parent is missing" error.
# But in case of `5` and `7` blocks will be processed by `block_pool` without
# any problems, however it will start producing problems right from this
# uncertain last slot. SyncQueue will start producing requests for next
# blocks, but all the responses from this point will fail with "parent is
# missing" error. Lets call such peers "jokers", because they are joking
# with responses.
#
# To fix "joker" problem we going to perform rollback to the latest finalized
# epoch's first slot.
doAssert(chunkSize > 0'u64, "Chunk size should not be zero")
result = SyncQueue[T](
startSlot: start,
lastSlot: last,
chunkSize: chunkSize,
queueSize: queueSize,
getFinalizedSlot: getFinalizedSlotCb,
waiters: newSeq[SyncWaiter[T]](),
counter: 1'u64,
pending: initTable[uint64, SyncRequest[T]](),
debtsQueue: initHeapQueue[SyncRequest[T]](),
inpSlot: start,
outSlot: start,
outQueue: outputQueue
)
proc `<`*[T](a, b: SyncRequest[T]): bool {.inline.} =
result = (a.slot < b.slot)
proc `<`*[T](a, b: SyncResult[T]): bool {.inline.} =
result = (a.request.slot < b.request.slot)
proc `==`*[T](a, b: SyncRequest[T]): bool {.inline.} =
result = ((a.slot == b.slot) and (a.count == b.count) and
(a.step == b.step))
proc lastSlot*[T](req: SyncRequest[T]): Slot {.inline.} =
## Returns last slot for request ``req``.
result = req.slot + req.count - 1'u64
proc makePending*[T](sq: SyncQueue[T], req: var SyncRequest[T]) =
req.index = sq.counter
sq.counter = sq.counter + 1'u64
sq.pending[req.index] = req
proc updateLastSlot*[T](sq: SyncQueue[T], last: Slot) {.inline.} =
## Update last slot stored in queue ``sq`` with value ``last``.
doAssert(sq.lastSlot <= last,
"Last slot could not be lower then stored one " &
$sq.lastSlot & " <= " & $last)
sq.lastSlot = last
proc wakeupWaiters[T](sq: SyncQueue[T], flag = true) =
## Wakeup one or all blocked waiters.
for item in sq.waiters:
if not(item.future.finished()):
item.future.complete(flag)
proc waitForChanges[T](sq: SyncQueue[T],
req: SyncRequest[T]): Future[bool] {.async.} =
## Create new waiter and wait for completion from `wakeupWaiters()`.
var waitfut = newFuture[bool]("SyncQueue.waitForChanges")
let waititem = SyncWaiter[T](future: waitfut, request: req)
sq.waiters.add(waititem)
try:
result = await waitfut
finally:
sq.waiters.delete(sq.waiters.find(waititem))
proc wakeupAndWaitWaiters[T](sq: SyncQueue[T]) {.async.} =
## This procedure will perform wakeupWaiters(false) and blocks until last
## waiter will be awakened.
var waitChanges = sq.waitForChanges(SyncRequest.empty(T))
sq.wakeupWaiters(false)
discard await waitChanges
proc resetWait*[T](sq: SyncQueue[T], toSlot: Option[Slot]) {.async.} =
## Perform reset of all the blocked waiters in SyncQueue.
##
## We adding one more waiter to the waiters sequence and
## call wakeupWaiters(false). Because our waiter is last in sequence of
## waiters it will be resumed only after all waiters will be awakened and
## finished.
# We are clearing pending list, so that all requests that are still running
# around (still downloading, but not yet pushed to the SyncQueue) will be
# expired. Its important to perform this call first (before await), otherwise
# you can introduce race problem.
sq.pending.clear()
# We calculating minimal slot number to which we will be able to reset,
# without missing any blocks. There 3 sources:
# 1. Debts queue.
# 2. Processing queue (`inpSlot`, `outSlot`).
# 3. Requested slot `toSlot`.
#
# Queue's `outSlot` is the lowest slot we added to `block_pool`, but
# `toSlot` slot can be less then `outSlot`. `debtsQueue` holds only not
# added slot requests, so it can't be bigger then `outSlot` value.
var minSlot = sq.outSlot
if toSlot.isSome():
minSlot = min(toSlot.get(), sq.outSlot)
sq.debtsQueue.clear()
sq.debtsCount = 0
sq.readyQueue.clear()
sq.inpSlot = minSlot
sq.outSlot = minSlot
# We are going to wakeup all the waiters and wait for last one.
await sq.wakeupAndWaitWaiters()
proc isEmpty*[T](sr: SyncResult[T]): bool {.inline.} =
## Returns ``true`` if response chain of blocks is empty (has only empty
## slots).
len(sr.data) == 0
proc hasEndGap*[T](sr: SyncResult[T]): bool {.inline.} =
## Returns ``true`` if response chain of blocks has gap at the end.
let lastslot = sr.request.slot + sr.request.count - 1'u64
if len(sr.data) == 0:
return true
if sr.data[^1].message.slot != lastslot:
return true
return false
proc getLastNonEmptySlot*[T](sr: SyncResult[T]): Slot {.inline.} =
## Returns last non-empty slot from result ``sr``. If response has only
## empty slots, original request slot will be returned.
if len(sr.data) == 0:
# If response has only empty slots we going to use original request slot
sr.request.slot
else:
sr.data[^1].message.slot
proc toDebtsQueue[T](sq: SyncQueue[T], sr: SyncRequest[T]) =
sq.debtsQueue.push(sr)
sq.debtsCount = sq.debtsCount + sr.count
proc getRewindPoint*[T](sq: SyncQueue[T], failSlot: Slot,
finalizedSlot: Slot): Slot =
# Calculate exponential rewind point in number of epochs.
let epochCount =
if sq.rewind.isSome():
let rewind = sq.rewind.get()
if failSlot == rewind.failSlot:
# `MissingParent` happened at same slot so we increase rewind point by
# factor of 2.
let epochs = rewind.epochCount * 2
sq.rewind = some(RewindPoint(failSlot: failSlot, epochCount: epochs))
epochs
else:
# `MissingParent` happened at different slot so we going to rewind for
# 1 epoch only.
sq.rewind = some(RewindPoint(failSlot: failSlot, epochCount: 1'u64))
1'u64
else:
# `MissingParent` happened first time.
sq.rewind = some(RewindPoint(failSlot: failSlot, epochCount: 1'u64))
1'u64
# Calculate the latest finalized epoch.
let finalizedEpoch = compute_epoch_at_slot(finalizedSlot)
# Calculate the rewind epoch, which should not be less than the latest
# finalized epoch.
let rewindEpoch =
block:
let failEpoch = compute_epoch_at_slot(failSlot)
if failEpoch < finalizedEpoch + epochCount:
finalizedEpoch
else:
failEpoch - epochCount
compute_start_slot_at_epoch(rewindEpoch)
proc push*[T](sq: SyncQueue[T], sr: SyncRequest[T],
data: seq[SignedBeaconBlock]) {.async, gcsafe.} =
## Push successfull result to queue ``sq``.
mixin updateScore
if sr.index notin sq.pending:
# If request `sr` not in our pending list, it only means that
# SyncQueue.resetWait() happens and all pending requests are expired, so
# we swallow `old` requests, and in such way sync-workers are able to get
# proper new requests from SyncQueue.
return
sq.pending.del(sr.index)
# This is backpressure handling algorithm, this algorithm is blocking
# all pending `push` requests if `request.slot` not in range:
# [current_queue_slot, current_queue_slot + sq.queueSize * sq.chunkSize].
var exitNow = false
while true:
if (sq.queueSize > 0) and
(sr.slot >= sq.outSlot + uint64(sq.queueSize) * sq.chunkSize):
let res = await sq.waitForChanges(sr)
if res:
continue
else:
# SyncQueue reset happens. We are exiting to wake up sync-worker.
exitNow = true
break
let syncres = SyncResult[T](request: sr, data: data)
sq.readyQueue.push(syncres)
exitNow = false
break
if exitNow:
return
while len(sq.readyQueue) > 0:
let minSlot = sq.readyQueue[0].request.slot
if sq.outSlot != minSlot:
break
let item = sq.readyQueue.pop()
# Validating received blocks one by one
var res: Result[void, BlockError]
var failSlot: Option[Slot]
if len(item.data) > 0:
for blk in item.data:
trace "Pushing block", block_root = blk.root,
block_slot = blk.message.slot
res = await sq.validate(blk)
if not(res.isOk):
failSlot = some(blk.message.slot)
break
else:
res = Result[void, BlockError].ok()
# Increase progress counter, so watch task will be able to know that we are
# not stuck.
inc(sq.opcounter)
if res.isOk:
sq.outSlot = sq.outSlot + item.request.count
if len(item.data) > 0:
# If there no error and response was not empty we should reward peer
# with some bonus score.
item.request.item.updateScore(PeerScoreGoodBlocks)
sq.wakeupWaiters()
else:
debug "Block pool rejected peer's response", peer = item.request.item,
request_slot = item.request.slot,
request_count = item.request.count,
request_step = item.request.step,
blocks_map = getShortMap(item.request, item.data),
blocks_count = len(item.data), errCode = res.error,
topics = "syncman"
var resetSlot: Option[Slot]
if res.error == BlockError.MissingParent:
# If we got `BlockError.MissingParent` it means that peer returns chain
# of blocks with holes or `block_pool` is in incomplete state. We going
# to rewind to the first slot at latest finalized epoch.
let req = item.request
let finalizedSlot = sq.getFinalizedSlot()
if finalizedSlot < req.slot:
let rewindSlot = sq.getRewindPoint(failSlot.get(), finalizedSlot)
warn "Unexpected missing parent, rewind happens",
peer = req.item, rewind_to_slot = rewindSlot,
rewind_epoch_count = sq.rewind.get().epochCount,
rewind_fail_slot = failSlot.get(),
finalized_slot = finalized_slot,
request_slot = req.slot, request_count = req.count,
request_step = req.step, blocks_count = len(item.data),
blocks_map = getShortMap(req, item.data), topics = "syncman"
resetSlot = some(rewindSlot)
req.item.updateScore(PeerScoreMissingBlocks)
else:
error "Unexpected missing parent at finalized epoch slot",
peer = req.item, to_slot = finalizedSlot,
request_slot = req.slot, request_count = req.count,
request_step = req.step, blocks_count = len(item.data),
blocks_map = getShortMap(req, item.data), topics = "syncman"
req.item.updateScore(PeerScoreBadBlocks)
elif res.error == BlockError.Invalid:
let req = item.request
warn "Received invalid sequence of blocks", peer = req.item,
request_slot = req.slot, request_count = req.count,
request_step = req.step, blocks_count = len(item.data),
blocks_map = getShortMap(req, item.data), topics = "syncman"
req.item.updateScore(PeerScoreBadBlocks)
else:
let req = item.request
warn "Received unexpected response from block_pool", peer = req.item,
request_slot = req.slot, request_count = req.count,
request_step = req.step, blocks_count = len(item.data),
blocks_map = getShortMap(req, item.data), errorCode = res.error,
topics = "syncman"
req.item.updateScore(PeerScoreBadBlocks)
# We need to move failed response to the debts queue.
sq.toDebtsQueue(item.request)
if resetSlot.isSome():
await sq.resetWait(resetSlot)
debug "Rewind to slot was happened", reset_slot = reset_slot.get(),
queue_input_slot = sq.inpSlot, queue_output_slot = sq.outSlot,
rewind_epoch_count = sq.rewind.get().epochCount,
rewind_fail_slot = sq.rewind.get().failSlot,
reset_slot = resetSlot, topics = "syncman"
break
proc push*[T](sq: SyncQueue[T], sr: SyncRequest[T]) =
## Push failed request back to queue.
if sr.index notin sq.pending:
# If request `sr` not in our pending list, it only means that
# SyncQueue.resetWait() happens and all pending requests are expired, so
# we swallow `old` requests, and in such way sync-workers are able to get
# proper new requests from SyncQueue.
return
sq.pending.del(sr.index)
sq.toDebtsQueue(sr)
proc pop*[T](sq: SyncQueue[T], maxslot: Slot, item: T): SyncRequest[T] =
if len(sq.debtsQueue) > 0:
if maxSlot < sq.debtsQueue[0].slot:
return SyncRequest.empty(T)
var sr = sq.debtsQueue.pop()
if sr.lastSlot() <= maxSlot:
sq.debtsCount = sq.debtsCount - sr.count
sr.setItem(item)
sq.makePending(sr)
return sr
var sr1 = SyncRequest.init(T, sr.slot, maxslot, item)
let sr2 = SyncRequest.init(T, maxslot + 1'u64, sr.lastSlot())
sq.debtsQueue.push(sr2)
sq.debtsCount = sq.debtsCount - sr1.count
sq.makePending(sr1)
return sr1
else:
if maxSlot < sq.inpSlot:
return SyncRequest.empty(T)
if sq.inpSlot > sq.lastSlot:
return SyncRequest.empty(T)
let lastSlot = min(maxslot, sq.lastSlot)
let count = min(sq.chunkSize, lastSlot + 1'u64 - sq.inpSlot)
var sr = SyncRequest.init(T, sq.inpSlot, count, item)
sq.inpSlot = sq.inpSlot + count
sq.makePending(sr)
return sr
proc len*[T](sq: SyncQueue[T]): uint64 {.inline.} =
## Returns number of slots left in queue ``sq``.
if sq.inpSlot > sq.lastSlot:
result = sq.debtsCount
else:
result = sq.lastSlot - sq.inpSlot + 1'u64 - sq.debtsCount
proc total*[T](sq: SyncQueue[T]): uint64 {.inline.} =
## Returns total number of slots in queue ``sq``.
result = sq.lastSlot - sq.startSlot + 1'u64
proc progress*[T](sq: SyncQueue[T]): uint64 =
## Returns queue's ``sq`` progress string.
let curSlot = sq.outSlot - sq.startSlot
result = (curSlot * 100'u64) div sq.total()
proc now*(sm: typedesc[SyncMoment], slot: Slot): SyncMoment {.inline.} =
result = SyncMoment(stamp: now(chronos.Moment), slot: slot)
proc speed*(start, finish: SyncMoment): float {.inline.} =
## Returns number of slots per second.
let slots = finish.slot - start.slot
let dur = finish.stamp - start.stamp
let secs = float(chronos.seconds(1).nanoseconds)
if isZero(dur):
result = 0.0
else:
let v = float(slots) * (secs / float(dur.nanoseconds))
# We doing round manually because stdlib.round is deprecated
result = round(v * 10000) / 10000
proc newSyncManager*[A, B](pool: PeerPool[A, B],
getLocalHeadSlotCb: GetSlotCallback,
getLocalWallSlotCb: GetSlotCallback,
getFinalizedSlotCb: GetSlotCallback,
outputQueue: AsyncQueue[BlockEntry],
maxStatusAge = uint64(SLOTS_PER_EPOCH * 4),
maxHeadAge = uint64(SLOTS_PER_EPOCH * 1),
sleepTime = (int(SLOTS_PER_EPOCH) *
int(SECONDS_PER_SLOT)).seconds,
chunkSize = uint64(SLOTS_PER_EPOCH),
toleranceValue = uint64(1),
rangeAge = uint64(SLOTS_PER_EPOCH * 4)
): SyncManager[A, B] =
let queue = SyncQueue.init(A, getLocalHeadSlotCb(), getLocalWallSlotCb(),
chunkSize, getFinalizedSlotCb, outputQueue, 1)
result = SyncManager[A, B](
pool: pool,
maxStatusAge: maxStatusAge,
getLocalHeadSlot: getLocalHeadSlotCb,
getLocalWallSlot: getLocalWallSlotCb,
getFinalizedSlot: getFinalizedSlotCb,
maxHeadAge: maxHeadAge,
sleepTime: sleepTime,
chunkSize: chunkSize,
queue: queue,
outQueue: outputQueue,
notInSyncEvent: newAsyncEvent(),
inRangeEvent: newAsyncEvent(),
notInRangeEvent: newAsyncEvent(),
rangeAge: rangeAge
)
proc getBlocks*[A, B](man: SyncManager[A, B], peer: A,
req: SyncRequest): Future[BeaconBlocksRes] {.async.} =
mixin beaconBlocksByRange, getScore, `==`
doAssert(not(req.isEmpty()), "Request must not be empty!")
debug "Requesting blocks from peer", peer = peer,
slot = req.slot, slot_count = req.count, step = req.step,
peer_score = peer.getScore(), peer_speed = peer.netKbps(),
topics = "syncman"
var workFut = awaitne beaconBlocksByRange(peer, req.slot, req.count, req.step)
if workFut.failed():
debug "Error, while waiting getBlocks response", peer = peer,
slot = req.slot, slot_count = req.count, step = req.step,
errMsg = workFut.readError().msg, peer_speed = peer.netKbps(),
topics = "syncman"
else:
let res = workFut.read()
if res.isErr:
debug "Error, while reading getBlocks response",
peer = peer, slot = req.slot, count = req.count,
step = req.step, peer_speed = peer.netKbps(),
topics = "syncman", error = $res.error()
result = res
template headAge(): uint64 =
wallSlot - headSlot
template queueAge(): uint64 =
wallSlot - man.queue.outSlot
template peerStatusAge(): Duration =
Moment.now() - peer.state(BeaconSync).statusLastTime
func syncQueueLen*[A, B](man: SyncManager[A, B]): uint64 =
man.queue.len
proc syncStep[A, B](man: SyncManager[A, B], index: int, peer: A) {.async.} =
let wallSlot = man.getLocalWallSlot()
let headSlot = man.getLocalHeadSlot()
var peerSlot = peer.getHeadSlot()
# We updating SyncQueue's last slot all the time
man.queue.updateLastSlot(wallSlot)
debug "Peer's syncing status", wall_clock_slot = wallSlot,
remote_head_slot = peerSlot, local_head_slot = headSlot,
peer_score = peer.getScore(), peer = peer, index = index,
peer_speed = peer.netKbps(), topics = "syncman"
# Check if peer's head slot is bigger than our wall clock slot.
if peerSlot > wallSlot + man.toleranceValue:
warn "Local timer is broken or peer's status information is invalid",
wall_clock_slot = wallSlot, remote_head_slot = peerSlot,
local_head_slot = headSlot, peer = peer, index = index,
tolerance_value = man.toleranceValue, peer_speed = peer.netKbps(),
peer_score = peer.getScore(), topics = "syncman"
discard SyncFailure.init(SyncFailureKind.StatusInvalid, peer)
return
# Check if we need to update peer's status information
if peerStatusAge >= StatusExpirationTime:
# Peer's status information is very old, its time to update it
man.workers[index].status = SyncWorkerStatus.UpdatingStatus
trace "Updating peer's status information", wall_clock_slot = wallSlot,
remote_head_slot = peerSlot, local_head_slot = headSlot,
peer = peer, peer_score = peer.getScore(), index = index,
peer_speed = peer.netKbps(), topics = "syncman"
try:
let res = await peer.updateStatus()
if not(res):
peer.updateScore(PeerScoreNoStatus)
debug "Failed to get remote peer's status, exiting", peer = peer,
peer_score = peer.getScore(), peer_head_slot = peerSlot,
peer_speed = peer.netKbps(), index = index, topics = "syncman"
discard SyncFailure.init(SyncFailureKind.StatusDownload, peer)
return
except CatchableError as exc:
debug "Unexpected exception while updating peer's status",
peer = peer, peer_score = peer.getScore(),
peer_head_slot = peerSlot, peer_speed = peer.netKbps(),
index = index, errMsg = exc.msg, topics = "syncman"
return
let newPeerSlot = peer.getHeadSlot()
if peerSlot >= newPeerSlot:
peer.updateScore(PeerScoreStaleStatus)
debug "Peer's status information is stale",
wall_clock_slot = wallSlot, remote_old_head_slot = peerSlot,
local_head_slot = headSlot, remote_new_head_slot = newPeerSlot,
peer = peer, peer_score = peer.getScore(), index = index,
peer_speed = peer.netKbps(), topics = "syncman"
else:
debug "Peer's status information updated", wall_clock_slot = wallSlot,
remote_old_head_slot = peerSlot, local_head_slot = headSlot,
remote_new_head_slot = newPeerSlot, peer = peer,
peer_score = peer.getScore(), peer_speed = peer.netKbps(),
index = index, topics = "syncman"
peer.updateScore(PeerScoreGoodStatus)
peerSlot = newPeerSlot
if headAge <= man.maxHeadAge:
info "We are in sync with network", wall_clock_slot = wallSlot,
remote_head_slot = peerSlot, local_head_slot = headSlot,
peer = peer, peer_score = peer.getScore(), index = index,
peer_speed = peer.netKbps(), topics = "syncman"
# We clear SyncManager's `notInSyncEvent` so all the workers will become
# sleeping soon.
man.notInSyncEvent.clear()
return
if headSlot >= peerSlot - man.maxHeadAge:
debug "We are in sync with peer; refreshing peer's status information",
wall_clock_slot = wallSlot, remote_head_slot = peerSlot,
local_head_slot = headSlot, peer = peer, peer_score = peer.getScore(),
index = index, peer_speed = peer.netKbps(), topics = "syncman"
man.workers[index].status = SyncWorkerStatus.UpdatingStatus
if peerStatusAge <= StatusUpdateInterval:
await sleepAsync(StatusUpdateInterval - peerStatusAge)
try:
let res = await peer.updateStatus()
if not(res):
peer.updateScore(PeerScoreNoStatus)
debug "Failed to get remote peer's status, exiting", peer = peer,
peer_score = peer.getScore(), peer_head_slot = peerSlot,
peer_speed = peer.netKbps(), index = index, topics = "syncman"
discard SyncFailure.init(SyncFailureKind.StatusDownload, peer)
return
except CatchableError as exc:
debug "Unexpected exception while updating peer's status",
peer = peer, peer_score = peer.getScore(),
peer_head_slot = peerSlot, peer_speed = peer.netKbps(),
index = index, errMsg = exc.msg, topics = "syncman"
return
let newPeerSlot = peer.getHeadSlot()
if peerSlot >= newPeerSlot:
peer.updateScore(PeerScoreStaleStatus)
debug "Peer's status information is stale",
wall_clock_slot = wallSlot, remote_old_head_slot = peerSlot,
local_head_slot = headSlot, remote_new_head_slot = newPeerSlot,
peer = peer, peer_score = peer.getScore(), index = index,
peer_speed = peer.netKbps(), topics = "syncman"
else:
# This is not very good solution because we should not discriminate and/or
# penalize peers which are in sync process too, but their latest head is
# lower then our latest head. We should keep connections with such peers
# (so this peers are able to get in sync using our data), but we should
# not use this peers for syncing because this peers are useless for us.
# Right now we decreasing peer's score a bit, so it will not be
# disconnected due to low peer's score, but new fresh peers could replace
# peers with low latest head.
if headSlot >= newPeerSlot - man.maxHeadAge:
# Peer's head slot is still lower then ours.
debug "Peer's head slot is lower then local head slot",
wall_clock_slot = wallSlot, remote_old_head_slot = peerSlot,
local_head_slot = headSlot, remote_new_head_slot = newPeerSlot,
peer = peer, peer_score = peer.getScore(),
peer_speed = peer.netKbps(), index = index, topics = "syncman"
peer.updateScore(PeerScoreUseless)
else:
debug "Peer's status information updated", wall_clock_slot = wallSlot,
remote_old_head_slot = peerSlot, local_head_slot = headSlot,
remote_new_head_slot = newPeerSlot, peer = peer,
peer_score = peer.getScore(), peer_speed = peer.netKbps(),
index = index, topics = "syncman"
peer.updateScore(PeerScoreGoodStatus)
peerSlot = newPeerSlot
return
man.workers[index].status = SyncWorkerStatus.Requesting
let req = man.queue.pop(peerSlot, peer)
if req.isEmpty():
# SyncQueue could return empty request in 2 cases:
# 1. There no more slots in SyncQueue to download (we are synced, but
# our ``notInSyncEvent`` is not yet cleared).
# 2. Current peer's known head slot is too low to satisfy request.
#
# To avoid endless loop we going to wait for RESP_TIMEOUT time here.
# This time is enough for all pending requests to finish and it is also
# enough for main sync loop to clear ``notInSyncEvent``.
debug "Empty request received from queue, exiting", peer = peer,
local_head_slot = headSlot, remote_head_slot = peerSlot,
queue_input_slot = man.queue.inpSlot,
queue_output_slot = man.queue.outSlot,
queue_last_slot = man.queue.lastSlot,
peer_speed = peer.netKbps(), peer_score = peer.getScore(),
index = index, topics = "syncman"
await sleepAsync(RESP_TIMEOUT)
return
debug "Creating new request for peer", wall_clock_slot = wallSlot,
remote_head_slot = peerSlot, local_head_slot = headSlot,
request_slot = req.slot, request_count = req.count,
request_step = req.step, peer = peer, peer_speed = peer.netKbps(),
peer_score = peer.getScore(), index = index, topics = "syncman"
man.workers[index].status = SyncWorkerStatus.Downloading
try:
let blocks = await man.getBlocks(peer, req)
if blocks.isOk:
let data = blocks.get()
let smap = getShortMap(req, data)
debug "Received blocks on request", blocks_count = len(data),
blocks_map = smap, request_slot = req.slot,
request_count = req.count, request_step = req.step,
peer = peer, peer_score = peer.getScore(),
peer_speed = peer.netKbps(), index = index, topics = "syncman"
if not(checkResponse(req, data)):
peer.updateScore(PeerScoreBadResponse)
warn "Received blocks sequence is not in requested range",
blocks_count = len(data), blocks_map = smap,
request_slot = req.slot, request_count = req.count,
request_step = req.step, peer = peer,
peer_score = peer.getScore(), peer_speed = peer.netKbps(),
index = index, topics = "syncman"
discard SyncFailure.init(SyncFailureKind.BadResponse, peer)
return
# Scoring will happen in `syncUpdate`.
man.workers[index].status = SyncWorkerStatus.Processing
await man.queue.push(req, data)
else:
peer.updateScore(PeerScoreNoBlocks)
man.queue.push(req)
debug "Failed to receive blocks on request",
request_slot = req.slot, request_count = req.count,
request_step = req.step, peer = peer, index = index,
peer_score = peer.getScore(), peer_speed = peer.netKbps(),
topics = "syncman"
discard SyncFailure.init(SyncFailureKind.BlockDownload, peer)
return
except CatchableError as exc:
debug "Unexpected exception while receiving blocks",
request_slot = req.slot, request_count = req.count,
request_step = req.step, peer = peer, index = index,
peer_score = peer.getScore(), peer_speed = peer.netKbps(),
errMsg = exc.msg, topics = "syncman"
return
proc syncWorker[A, B](man: SyncManager[A, B], index: int) {.async.} =
mixin getKey, getScore, getHeadSlot
debug "Starting syncing worker", index = index, topics = "syncman"
while true:
man.workers[index].status = SyncWorkerStatus.Sleeping
# This event is going to be set until we are not in sync with network
await man.notInSyncEvent.wait()
man.workers[index].status = SyncWorkerStatus.WaitingPeer
let peer = await man.pool.acquire()
await man.syncStep(index, peer)
man.pool.release(peer)
proc getWorkersStats[A, B](man: SyncManager[A, B]): tuple[map: string,
sleeping: int,
waiting: int,
pending: int] =
var map = newString(len(man.workers))
var sleeping, waiting, pending: int
for i in 0 ..< len(man.workers):
var ch: char
case man.workers[i].status
of SyncWorkerStatus.Sleeping:
ch = 's'
inc(sleeping)
of SyncWorkerStatus.WaitingPeer:
ch = 'w'
inc(waiting)
of SyncWorkerStatus.UpdatingStatus:
ch = 'U'
inc(pending)
of SyncWorkerStatus.Requesting:
ch = 'R'
inc(pending)
of SyncWorkerStatus.Downloading:
ch = 'D'
inc(pending)
of SyncWorkerStatus.Processing:
ch = 'P'
inc(pending)
map[i] = ch
(map, sleeping, waiting, pending)
proc guardTask[A, B](man: SyncManager[A, B]) {.async.} =
var pending: array[SyncWorkersCount, Future[void]]
# Starting all the synchronization workers.
for i in 0 ..< len(man.workers):
let future = syncWorker[A, B](man, i)
man.workers[i].future = future
pending[i] = future
# Wait for synchronization worker's failure and replace it with new one.
while true:
let failFuture = await one(pending)
let index = pending.find(failFuture)
if failFuture.failed():
warn "Synchronization worker stopped working unexpectedly with an error",
index = index, errMsg = failFuture.error.msg
else:
warn "Synchronization worker stopped working unexpectedly without error",
index = index
let future = syncWorker[A, B](man, index)
man.workers[index].future = future
pending[index] = future
proc toTimeLeftString(d: Duration): string =
var v = d
var res = ""
let ndays = chronos.days(v)
if ndays > 0:
res = res & (if ndays < 10: "0" & $ndays else: $ndays) & "d"
v = v - chronos.days(ndays)
let nhours = chronos.hours(v)
if nhours > 0:
res = res & (if nhours < 10: "0" & $nhours else: $nhours) & "h"
v = v - chronos.hours(nhours)
else:
res = res & "00h"
let nmins = chronos.minutes(v)
if nmins > 0:
res = res & (if nmins < 10: "0" & $nmins else: $nmins) & "m"
v = v - chronos.minutes(nmins)
else:
res = res & "00m"
res
proc syncLoop[A, B](man: SyncManager[A, B]) {.async.} =
mixin getKey, getScore
var pauseTime = 0
asyncSpawn man.guardTask()
debug "Synchronization loop started", topics = "syncman"
proc averageSpeedTask() {.async.} =
while true:
let wallSlot = man.getLocalWallSlot()
let headSlot = man.getLocalHeadSlot()
let lsm1 = SyncMoment.now(man.getLocalHeadSlot())
await sleepAsync(chronos.seconds(int(SECONDS_PER_SLOT)))
let lsm2 = SyncMoment.now(man.getLocalHeadSlot())
let bps =
if lsm2.slot - lsm1.slot == 0'u64:
0.0
else:
speed(lsm1, lsm2)
inc(man.syncCount)
man.insSyncSpeed = bps
man.avgSyncSpeed = man.avgSyncSpeed +
(bps - man.avgSyncSpeed) / float(man.syncCount)
let nsec = (float(wallSlot - headSlot) / man.avgSyncSpeed) *
1_000_000_000.0
man.timeLeft = chronos.nanoseconds(int64(nsec))
asyncSpawn averageSpeedTask()
while true:
let wallSlot = man.getLocalWallSlot()
let headSlot = man.getLocalHeadSlot()
let (map, sleeping, waiting, pending) = man.getWorkersStats()
debug "Current syncing state", workers_map = map,
sleeping_workers_count = sleeping,
waiting_workers_count = waiting,
pending_workers_count = pending,
wall_head_slot = wallSlot, local_head_slot = headSlot,
pause_time = $chronos.seconds(pauseTime),
avg_sync_speed = man.avgSyncSpeed, ins_sync_speed = man.insSyncSpeed,
topics = "syncman"
# Update status string
man.syncStatus = map & ":" & $pending & ":" &
man.insSyncSpeed.formatBiggestFloat(ffDecimal, 4) & ":" &
man.avgSyncSpeed.formatBiggestFloat(ffDecimal, 4) & ":" &
man.timeLeft.toTimeLeftString() &
" (" & $man.queue.outSlot & ")"
if headAge <= man.maxHeadAge:
man.notInSyncEvent.clear()
# We are marking SyncManager as not working only when we are in sync and
# all sync workers are in `Sleeping` state.
if pending > 0:
debug "Synchronization loop waits for workers completion",
wall_head_slot = wallSlot, local_head_slot = headSlot,
difference = (wallSlot - headSlot), max_head_age = man.maxHeadAge,
sleeping_workers_count = sleeping,
waiting_workers_count = waiting, pending_workers_count = pending,
topics = "syncman"
man.inProgress = true
else:
debug "Synchronization loop sleeping", wall_head_slot = wallSlot,
local_head_slot = headSlot, difference = (wallSlot - headSlot),
max_head_age = man.maxHeadAge, topics = "syncman"
man.inProgress = false
else:
if not(man.notInSyncEvent.isSet()):
# We get here only if we lost sync for more then `maxHeadAge` period.
if pending == 0:
man.queue = SyncQueue.init(A, man.getLocalHeadSlot(),
man.getLocalWallSlot(),
man.chunkSize, man.getFinalizedSlot,
man.outQueue, 1)
man.notInSyncEvent.fire()
man.inProgress = true
else:
man.notInSyncEvent.fire()
man.inProgress = true
if queueAge <= man.rangeAge:
# We are in requested range ``man.rangeAge``.
man.inRangeEvent.fire()
man.notInRangeEvent.clear()
else:
# We are not in requested range anymore ``man.rangeAge``.
man.inRangeEvent.clear()
man.notInRangeEvent.fire()
await sleepAsync(chronos.seconds(2))
proc start*[A, B](man: SyncManager[A, B]) =
## Starts SyncManager's main loop.
man.syncFut = man.syncLoop()
proc getInfo*[A, B](man: SyncManager[A, B]): SyncInfo =
## Returns current synchronization information for RPC call.
let wallSlot = man.getLocalWallSlot()
let headSlot = man.getLocalHeadSlot()
SyncInfo(head_slot: headSlot, sync_distance: int64(wallSlot - headSlot))