nimbus-eth2/beacon_chain/trusted_node_sync.nim
Jacek Sieka 1f89b7f7b9
speed up trusted node backfill (#3371)
With these changes, we can backfill about 400-500 slots/sec, which means
a full backfill of mainnet takes about 2-3h.

However, the CPU is not saturated - neither in server nor in client
meaning that somewhere, there's an artificial inefficiency in the
communication - 16 parallel downloads *should* saturate the CPU.

One plasible cause would be "too many async event loop iterations" per
block request, which would introduce multiple "sleep-like" delays along
the way.

I can push the speed up to 800 slots/sec by increasing parallel
downloads even further, but going after the root cause of the slowness
would be better.

* avoid some unnecessary block copies
* double parallel requests
2022-02-12 12:09:59 +01:00

412 lines
14 KiB
Nim

# Copyright (c) 2018-2022 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [Defect].}
import
stew/[assign2, base10],
chronicles, chronos,
./sync/sync_manager,
./consensus_object_pools/blockchain_dag,
./spec/eth2_apis/rest_beacon_client,
./spec/[beaconstate, eth2_merkleization, forks, presets, state_transition],
"."/[beacon_clock, beacon_chain_db]
type
DbCache = object
summaries: Table[Eth2Digest, BeaconBlockSummary]
slots: seq[Option[Eth2Digest]]
const
emptyHash = Eth2Digest()
proc updateSlots(cache: var DbCache, root: Eth2Digest, slot: Slot) =
# The slots mapping stores one linear block history - we construct it by
# starting from a given root/slot and walking the known parents as far back
# as possible which ensures that all blocks belong to the same history
if cache.slots.len() < slot.int + 1:
cache.slots.setLen(slot.int + 1)
var
root = root
lastSlot = slot
while true:
cache.summaries.withValue(root, v) do:
let slot = v[].slot
for i in slot.int + 1..<lastSlot.int: # Avoid re-querying known gaps
cache.slots[i] = some(emptyHash)
cache.slots[slot.int] = some(root)
if slot == 0:
return
root = v[].parent_root
lastSlot = slot
do:
return
proc update(cache: var DbCache, blck: ForkySignedBeaconBlock) =
let
slot = blck.message.slot
if blck.root notin cache.summaries:
cache.summaries[blck.root] = blck.message.toBeaconBlockSummary()
cache.updateSlots(blck.root, blck.message.slot)
proc isKnown(cache: DbCache, slot: Slot): bool =
slot < cache.slots.lenu64 and cache.slots[slot.int].isSome()
proc doTrustedNodeSync*(
cfg: RuntimeConfig, databaseDir: string, restUrl: string,
blockId: string, backfill: bool,
genesisState: ref ForkedHashedBeaconState = nil) {.async.} =
notice "Starting trusted node sync",
databaseDir, restUrl, blockId, backfill
let
db = BeaconChainDB.new(databaseDir, inMemory = false)
var
dbCache = DbCache(summaries: db.loadSummaries())
let
dbHead = db.getHeadBlock()
headSlot = if dbHead.isSome():
if dbHead.get() notin dbCache.summaries:
# This can happen with pre-blocksummary database - it's better to start
# over in this case
error "Database missing head block summary - database too old or corrupt"
quit 1
let slot = dbCache.summaries[dbHead.get()].slot
dbCache.updateSlots(dbHead.get(), slot)
slot
else:
# When we don't have a head, we'll use the given checkpoint as head
FAR_FUTURE_SLOT
var client = RestClientRef.new(restUrl).get()
proc downloadBlock(slot: Slot):
Future[Option[ref ForkedSignedBeaconBlock]] {.async.} =
# Download block at given slot, retrying a few times,
var lastError: ref CatchableError
for i in 0..<3:
try:
return await client.getBlockV2(BlockIdent.init(slot), cfg)
except CatchableError as exc:
lastError = exc
warn "Retrying download of block", slot, err = exc.msg
client = RestClientRef.new(restUrl).get()
error "Unable to download block - backfill incomplete, but will resume when you start the beacon node",
slot, error = lastError.msg, url = client.address
quit 1
let
dbGenesis = db.getGenesisBlock()
localGenesisRoot = if dbGenesis.isSome():
dbGenesis.get()
else:
let genesisState = if genesisState != nil:
genesisState
else:
notice "Downloading genesis state", restUrl
let state = try:
await client.getStateV2(
StateIdent.init(StateIdentType.Genesis), cfg)
except CatchableError as exc:
error "Unable to download genesis state",
error = exc.msg, restUrl
quit 1
if isNil(state):
error "Server is missing genesis state",
restUrl
quit 1
state
withState(genesisState[]):
info "Writing genesis state",
stateRoot = shortLog(state.root),
genesis_validators_root = shortLog(state.data.genesis_validators_root)
db.putState(state)
let blck = get_initial_beacon_block(state)
info "Writing genesis block",
blockRoot = shortLog(blck.root),
blck = shortLog(blck.message)
db.putBlock(blck)
db.putGenesisBlock(blck.root)
dbCache.update(blck.asSigned())
blck.root
remoteGenesisRoot = try:
(await client.getBlockRoot(
BlockIdent.init(BlockIdentType.Genesis))).data.data.root
except CatchableError as exc:
error "Unable to download genesis block root",
error = exc.msg, restUrl
quit 1
if remoteGenesisRoot != localGenesisRoot:
error "Server genesis block root does not match local genesis, is the server serving the same chain?",
localGenesisRoot = shortLog(localGenesisRoot),
remoteGenesisRoot = shortLog(remoteGenesisRoot)
quit 1
notice "Downloading checkpoint block", restUrl, blockId
let checkpointBlock = block:
# Finding a checkpoint block is tricky: we need the block to fall on an
# epoch boundary and when making the first request, we don't know exactly
# what slot we'll get - to find it, we'll keep walking backwards for a
# reasonable number of tries
var
checkpointBlock: ref ForkedSignedBeaconBlock
id = BlockIdent.decodeString(blockId).valueOr:
error "Cannot decode checkpoint block id, must be a slot, hash, 'finalized' or 'head'",
blockId
quit 1
found = false
for i in 0..<10:
let blck = try:
await client.getBlockV2(id, cfg)
except CatchableError as exc:
error "Unable to download checkpoint block",
error = exc.msg, restUrl
quit 1
if blck.isNone():
# Server returned 404 - no block was found at the given id, so we need
# to try an earlier slot - assuming we know of one!
if id.kind == BlockQueryKind.Slot:
let slot = id.slot
id = BlockIdent.init((id.slot.epoch() - 1).start_slot)
info "No block found at given slot, trying an earlier epoch",
slot, id
continue
else:
error "Cannot find a block at given block id, and cannot compute an earlier slot",
id, blockId
quit 1
checkpointBlock = blck.get()
let checkpointSlot = getForkedBlockField(checkpointBlock[], slot)
if checkpointSlot > headSlot:
# When the checkpoint is newer than the head, we run into trouble: the
# current backfill in ChainDAG does not support filling in arbitrary gaps.
# If we were to update the backfill pointer in this case, the ChainDAG
# backfiller would re-download the entire backfill history.
# For now, we'll abort and let the user choose what to do.
error "Checkpoint block is newer than head slot - start with a new database or use a checkpoint no more recent than the head",
checkpointSlot, checkpointRoot = shortLog(checkpointBlock[].root), headSlot
quit 1
if checkpointSlot.is_epoch():
found = true
break
id = BlockIdent.init((checkpointSlot.epoch() - 1).start_slot)
info "Downloaded checkpoint block does not fall on epoch boundary, trying an earlier epoch",
checkpointSlot, id
if not found:
# The ChainDAG requires that the tail falls on an epoch boundary, or it
# will be unable to load the corresponding state - this could be fixed, but
# for now, we ask the user to fix it instead
error "A checkpoint block from the first slot of an epoch could not be found with the given block id - pass an epoch slot with a block using the --block-id parameter",
blockId
quit 1
checkpointBlock
let checkpointSlot = getForkedBlockField(checkpointBlock[], slot)
if checkpointBlock[].root in dbCache.summaries:
notice "Checkpoint block is already known, skipping checkpoint state download"
withBlck(checkpointBlock[]):
dbCache.updateSlots(blck.root, blck.message.slot)
else:
notice "Downloading checkpoint state", restUrl, checkpointSlot
let
state = try:
await client.getStateV2(StateIdent.init(checkpointSlot), cfg)
except CatchableError as exc:
error "Unable to download checkpoint state",
error = exc.msg, restUrl, checkpointSlot
quit 1
if isNil(state):
notice "No state found at given checkpoint", checkpointSlot
quit 1
withState(state[]):
let latest_block_root = state.latest_block_root
if latest_block_root != checkpointBlock[].root:
error "Checkpoint state does not match checkpoint block, server error?",
blockRoot = shortLog(checkpointBlock[].root),
blck = shortLog(checkpointBlock[]),
stateBlockRoot = shortLog(latest_block_root)
quit 1
info "Writing checkpoint state",
stateRoot = shortLog(state.root)
db.putState(state)
withBlck(checkpointBlock[]):
info "Writing checkpoint block",
blockRoot = shortLog(blck.root),
blck = shortLog(blck.message)
db.putBlock(blck.asTrusted())
db.putHeadBlock(blck.root)
db.putTailBlock(blck.root)
dbCache.update(blck)
# Coming this far, we've done what ChainDAGRef.preInit would normally do -
# Let's do a sanity check and start backfilling blocks from the trusted node
if (let v = ChainDAGRef.isInitialized(db); v.isErr()):
error "Database not initialized after checkpoint sync, report bug",
err = v.error()
quit 1
let missingSlots = block:
var total = 0
for i in 0..<checkpointSlot.int:
if dbCache.slots[i].isNone():
total += 1
total
if missingSlots == 0:
info "Database fully backfilled"
elif backfill:
notice "Downloading historical blocks - you can interrupt this process at any time and it automatically be completed when you start the beacon node",
checkpointSlot, missingSlots
var # Same averaging as SyncManager
syncCount = 0
processed = 0'u64
avgSyncSpeed = 0.0
stamp = SyncMoment.now(0)
# Download several blocks in parallel but process them serially
var gets: array[16, Future[Option[ref ForkedSignedBeaconBlock]]]
proc processBlock(
fut: Future[Option[ref ForkedSignedBeaconBlock]], slot: Slot) {.async.} =
processed += 1
var blck = await fut
if blck.isNone():
dbCache.slots[slot.int] = some emptyHash
return
let data = blck.get()
withBlck(data[]):
debug "Processing",
blck = shortLog(blck.message),
blockRoot = shortLog(blck.root)
var childSlot = blck.message.slot + 1
while true:
if childSlot >= dbCache.slots.lenu64():
error "Downloaded block does not match checkpoint history"
quit 1
if not dbCache.slots[childSlot.int].isSome():
# Should never happen - we download slots backwards
error "Downloaded block does not match checkpoint history"
quit 1
let knownRoot = dbCache.slots[childSlot.int].get()
if knownRoot == emptyHash:
childSlot += 1
continue
dbCache.summaries.withValue(knownRoot, summary):
if summary[].parent_root != blck.root:
error "Downloaded block does not match checkpoint history",
blockRoot = shortLog(blck.root),
expectedRoot = shortLog(summary[].parent_root)
quit 1
break
# This shouldn't happen - we should have downloaded the child and
# updated knownBlocks before here
error "Expected child block not found in checkpoint history"
quit 1
if blck.root notin dbCache.summaries:
db.putBlock(blck.asTrusted())
dbCache.update(blck)
let newStamp = SyncMoment.now(processed)
if newStamp.stamp - stamp.stamp > 12.seconds:
syncCount += 1
let
remaining = blck.message.slot.int
slotsPerSec = speed(stamp, newStamp)
avgSyncSpeed = avgSyncSpeed + (slotsPerSec - avgSyncSpeed) / float(syncCount)
info "Backfilling",
timeleft = toTimeLeftString(
if avgSyncSpeed >= 0.001:
Duration.fromFloatSeconds(remaining.float / avgSyncSpeed)
else: InfiniteDuration),
slotsPerSecond = avgSyncSpeed,
remainingSlots = remaining
stamp = newStamp
# Download blocks backwards from the checkpoint slot, skipping the ones we
# already have in the database. We'll do a few downloads in parallel which
# risks having some redundant downloads going on, but speeds things up
for i in 0'u64..<(checkpointSlot.uint64 + gets.lenu64()):
if not isNil(gets[int(i mod gets.lenu64)]):
await processBlock(
gets[int(i mod gets.lenu64)],
checkpointSlot + gets.lenu64() - uint64(i))
gets[int(i mod gets.lenu64)] = nil
if i < checkpointSlot:
let slot = checkpointSlot - i
if dbCache.isKnown(slot):
continue
gets[int(i mod gets.lenu64)] = downloadBlock(slot)
else:
notice "Database initialized, historical blocks will be backfilled when starting the node",
missingSlots
notice "Done, your beacon node is ready to serve you! Don't forget to check that you're on the canoncial chain by comparing the checkpoint root with other online sources. See https://nimbus.guide/trusted-node-sync.html for more information.",
checkpointRoot = checkpointBlock[].root
when isMainModule:
import std/[os]
let backfill = os.paramCount() > 3 and os.paramStr(4) == "true"
waitFor doTrustedNodeSync(
defaultRuntimeConfig, os.paramStr(1), os.paramStr(2), os.paramStr(3),
backfill)