1029 lines
39 KiB
Nim
1029 lines
39 KiB
Nim
import chronicles
|
|
import options, deques, heapqueue, tables, strutils, sequtils, math, algorithm
|
|
import stew/results, chronos, chronicles
|
|
import spec/datatypes, spec/digest, peer_pool, eth2_network
|
|
import eth/async_utils
|
|
|
|
import block_pools/block_pools_types
|
|
export datatypes, digest, chronos, chronicles, results, block_pools_types
|
|
|
|
logScope:
|
|
topics = "syncman"
|
|
|
|
const
|
|
PeerScoreNoStatus* = -100
|
|
## Peer did not answer `status` request.
|
|
PeerScoreStaleStatus* = -50
|
|
## Peer's `status` answer do not progress in time.
|
|
PeerScoreGoodStatus* = 50
|
|
## Peer's `status` answer is fine.
|
|
PeerScoreNoBlocks* = -100
|
|
## Peer did not respond in time on `blocksByRange` request.
|
|
PeerScoreGoodBlocks* = 100
|
|
## Peer's `blocksByRange` answer is fine.
|
|
PeerScoreBadBlocks* = -1000
|
|
## Peer's response contains incorrect blocks.
|
|
PeerScoreBadResponse* = -1000
|
|
## Peer's response is not in requested range.
|
|
PeerScoreJokeBlocks* = -200
|
|
## Peer response contains too many empty blocks.
|
|
|
|
type
|
|
SyncFailureKind* = enum
|
|
StatusInvalid,
|
|
StatusDownload,
|
|
StatusStale,
|
|
EmptyProblem,
|
|
BlockDownload,
|
|
BadResponse
|
|
|
|
GetSlotCallback* = proc(): Slot {.gcsafe, raises: [Defect].}
|
|
|
|
UpdateLocalBlocksCallback* =
|
|
proc(list: openarray[SignedBeaconBlock]): Result[void, BlockError] {.
|
|
gcsafe.}
|
|
|
|
SyncUpdateCallback*[T] =
|
|
proc(req: SyncRequest[T],
|
|
list: openarray[SignedBeaconBlock]): Result[void, BlockError] {.
|
|
gcsafe.}
|
|
|
|
SyncRequest*[T] = object
|
|
index*: uint64
|
|
slot*: Slot
|
|
count*: uint64
|
|
step*: uint64
|
|
item*: T
|
|
|
|
SyncResult*[T] = object
|
|
request*: SyncRequest[T]
|
|
data*: seq[SignedBeaconBlock]
|
|
|
|
SyncWaiter*[T] = object
|
|
future: Future[bool]
|
|
request: SyncRequest[T]
|
|
|
|
SyncQueue*[T] = ref object
|
|
inpSlot*: Slot
|
|
outSlot*: Slot
|
|
|
|
startSlot*: Slot
|
|
lastSlot: Slot
|
|
chunkSize*: uint64
|
|
queueSize*: int
|
|
|
|
counter*: uint64
|
|
pending*: Table[uint64, SyncRequest[T]]
|
|
|
|
waiters: seq[SyncWaiter[T]]
|
|
syncUpdate*: SyncUpdateCallback[T]
|
|
|
|
debtsQueue: HeapQueue[SyncRequest[T]]
|
|
debtsCount: uint64
|
|
readyQueue: HeapQueue[SyncResult[T]]
|
|
|
|
zeroPoint: Option[Slot]
|
|
suspects: seq[SyncResult[T]]
|
|
|
|
SyncManager*[A, B] = ref object
|
|
pool: PeerPool[A, B]
|
|
responseTimeout: chronos.Duration
|
|
sleepTime: chronos.Duration
|
|
maxStatusAge: uint64
|
|
maxHeadAge: uint64
|
|
maxRecurringFailures: int
|
|
toleranceValue: uint64
|
|
getLocalHeadSlot: GetSlotCallback
|
|
getLocalWallSlot: GetSlotCallback
|
|
syncUpdate: SyncUpdateCallback[A]
|
|
chunkSize: uint64
|
|
queue: SyncQueue[A]
|
|
failures: seq[SyncFailure[A]]
|
|
inProgress*: bool
|
|
|
|
SyncMoment* = object
|
|
stamp*: chronos.Moment
|
|
slot*: Slot
|
|
|
|
SyncFailure*[T] = object
|
|
kind*: SyncFailureKind
|
|
peer*: T
|
|
stamp*: chronos.Moment
|
|
|
|
SyncManagerError* = object of CatchableError
|
|
BeaconBlocksRes* = NetRes[seq[SignedBeaconBlock]]
|
|
|
|
proc getShortMap*[T](req: SyncRequest[T],
|
|
data: openarray[SignedBeaconBlock]): string =
|
|
## Returns all slot numbers in ``data`` as placement map.
|
|
var res = newStringOfCap(req.count)
|
|
var slider = req.slot
|
|
var last = 0
|
|
for i in 0 ..< req.count:
|
|
if last < len(data):
|
|
for k in last ..< len(data):
|
|
if slider == data[k].message.slot:
|
|
res.add('x')
|
|
last = k + 1
|
|
break
|
|
elif slider < data[k].message.slot:
|
|
res.add('.')
|
|
break
|
|
else:
|
|
res.add('.')
|
|
slider = slider + req.step
|
|
result = res
|
|
|
|
proc contains*[T](req: SyncRequest[T], slot: Slot): bool {.inline.} =
|
|
slot >= req.slot and slot < req.slot + req.count * req.step and
|
|
((slot - req.slot) mod req.step == 0)
|
|
|
|
proc cmp*[T](a, b: SyncRequest[T]): int =
|
|
result = cmp(uint64(a.slot), uint64(b.slot))
|
|
|
|
proc checkResponse*[T](req: SyncRequest[T],
|
|
data: openarray[SignedBeaconBlock]): bool =
|
|
if len(data) == 0:
|
|
# Impossible to verify empty response.
|
|
return true
|
|
|
|
if uint64(len(data)) > req.count:
|
|
# Number of blocks in response should be less or equal to number of
|
|
# requested blocks.
|
|
return false
|
|
|
|
var slot = req.slot
|
|
var rindex = 0'u64
|
|
var dindex = 0
|
|
|
|
while (rindex < req.count) and (dindex < len(data)):
|
|
if slot < data[dindex].message.slot:
|
|
discard
|
|
elif slot == data[dindex].message.slot:
|
|
inc(dindex)
|
|
else:
|
|
return false
|
|
slot = slot + req.step
|
|
rindex = rindex + 1'u64
|
|
|
|
if dindex == len(data):
|
|
return true
|
|
else:
|
|
return false
|
|
|
|
proc getFullMap*[T](req: SyncRequest[T],
|
|
data: openarray[SignedBeaconBlock]): string =
|
|
# Returns all slot numbers in ``data`` as comma-delimeted string.
|
|
result = mapIt(data, $it.message.slot).join(", ")
|
|
|
|
proc init*[T](t1: typedesc[SyncRequest], t2: typedesc[T], slot: Slot,
|
|
count: uint64): SyncRequest[T] {.inline.} =
|
|
result = SyncRequest[T](slot: slot, count: count, step: 1'u64)
|
|
|
|
proc init*[T](t1: typedesc[SyncRequest], t2: typedesc[T], start: Slot,
|
|
finish: Slot): SyncRequest[T] {.inline.} =
|
|
let count = finish - start + 1'u64
|
|
result = SyncRequest[T](slot: start, count: count, step: 1'u64)
|
|
|
|
proc init*[T](t1: typedesc[SyncRequest], t2: typedesc[T], slot: Slot,
|
|
count: uint64, item: T): SyncRequest[T] {.inline.} =
|
|
result = SyncRequest[T](slot: slot, count: count, item: item, step: 1'u64)
|
|
|
|
proc init*[T](t1: typedesc[SyncRequest], t2: typedesc[T], start: Slot,
|
|
finish: Slot, item: T): SyncRequest[T] {.inline.} =
|
|
let count = finish - start + 1'u64
|
|
result = SyncRequest[T](slot: start, count: count, step: 1'u64, item: item)
|
|
|
|
proc init*[T](t1: typedesc[SyncFailure], kind: SyncFailureKind,
|
|
peer: T): SyncFailure[T] {.inline.} =
|
|
result = SyncFailure[T](kind: kind, peer: peer, stamp: now(chronos.Moment))
|
|
|
|
proc empty*[T](t: typedesc[SyncRequest],
|
|
t2: typedesc[T]): SyncRequest[T] {.inline.} =
|
|
result = SyncRequest[T](step: 0'u64, count: 0'u64)
|
|
|
|
proc setItem*[T](sr: var SyncRequest[T], item: T) =
|
|
sr.item = item
|
|
|
|
proc isEmpty*[T](sr: SyncRequest[T]): bool {.inline.} =
|
|
result = (sr.step == 0'u64) and (sr.count == 0'u64)
|
|
|
|
proc init*[T](t1: typedesc[SyncQueue], t2: typedesc[T],
|
|
start, last: Slot, chunkSize: uint64,
|
|
updateCb: SyncUpdateCallback[T],
|
|
queueSize: int = -1): SyncQueue[T] =
|
|
## Create new synchronization queue with parameters
|
|
##
|
|
## ``start`` and ``last`` are starting and finishing Slots.
|
|
##
|
|
## ``chunkSize`` maximum number of slots in one request.
|
|
##
|
|
## ``queueSize`` maximum queue size for incoming data. If ``queueSize > 0``
|
|
## queue will help to keep backpressure under control. If ``queueSize <= 0``
|
|
## then queue size is unlimited (default).
|
|
##
|
|
## ``updateCb`` procedure which will be used to send downloaded blocks to
|
|
## consumer. Procedure should return ``false`` only when it receives
|
|
## incorrect blocks, and ``true`` if sequence of blocks is correct.
|
|
|
|
# SyncQueue is the core of sync manager, this data structure distributes
|
|
# requests to peers and manages responses from peers.
|
|
#
|
|
# Because SyncQueue is async data structure it manages backpressure and
|
|
# order of incoming responses and it also resolves "joker's" problem.
|
|
#
|
|
# Joker's problem
|
|
#
|
|
# According to current Ethereum2 network specification
|
|
# > Clients MUST respond with at least one block, if they have it and it
|
|
# > exists in the range. Clients MAY limit the number of blocks in the
|
|
# > response.
|
|
#
|
|
# Such rule can lead to very uncertain responses, for example let slots from
|
|
# 10 to 12 will be not empty. Client which follows specification can answer
|
|
# with any response from this list (X - block, `-` empty space):
|
|
#
|
|
# 1. X X X
|
|
# 2. - - X
|
|
# 3. - X -
|
|
# 4. - X X
|
|
# 5. X - -
|
|
# 6. X - X
|
|
# 7. X X -
|
|
#
|
|
# If peer answers with `1` everything will be fine and `block_pool` will be
|
|
# able to process all 3 blocks. In case of `2`, `3`, `4`, `6` - `block_pool`
|
|
# will fail immediately with chunk and report "parent is missing" error.
|
|
# But in case of `5` and `7` blocks will be processed by `block_pool` without
|
|
# any problems, however it will start producing problems right from this
|
|
# uncertain last slot. SyncQueue will start producing requests for next
|
|
# blocks, but all the responses from this point will fail with "parent is
|
|
# missing" error. Lets call such peers "jokers", because they are joking
|
|
# with responses.
|
|
#
|
|
# To fix "joker" problem i'm going to introduce "zero-point" which will
|
|
# represent first non-empty slot in gap at the end of requested chunk.
|
|
# If SyncQueue receives chunk of blocks with gap at the end and this chunk
|
|
# will be successfully processed by `block_pool` it will set `zero_point` to
|
|
# the first uncertain (empty) slot. For example:
|
|
#
|
|
# Case 1
|
|
# X X X X X -
|
|
# 3 4 5 6 7 8
|
|
#
|
|
# Case2
|
|
# X X - - - -
|
|
# 3 4 5 6 7 8
|
|
#
|
|
# In Case 1 `zero-point` will be equal to 8, in Case 2 `zero-point` will be
|
|
# set to 5.
|
|
#
|
|
# When `zero-point` is set and the next received chunk of blocks will be
|
|
# empty, then peer produced this chunk of blocks will be added to suspect
|
|
# list.
|
|
#
|
|
# If the next chunk of blocks has at least one non-empty block and this chunk
|
|
# will be successfully processed by `block_pool`, then `zero-point` will be
|
|
# reset and suspect list will be cleared.
|
|
#
|
|
# If the `block_pool` failed to process next chunk of blocks, SyncQueue will
|
|
# perform rollback to `zero-point` and penalize all the peers in suspect list.
|
|
|
|
doAssert(chunkSize > 0'u64, "Chunk size should not be zero")
|
|
result = SyncQueue[T](
|
|
startSlot: start,
|
|
lastSlot: last,
|
|
chunkSize: chunkSize,
|
|
queueSize: queueSize,
|
|
syncUpdate: updateCb,
|
|
waiters: newSeq[SyncWaiter[T]](),
|
|
counter: 1'u64,
|
|
pending: initTable[uint64, SyncRequest[T]](),
|
|
debtsQueue: initHeapQueue[SyncRequest[T]](),
|
|
inpSlot: start,
|
|
outSlot: start
|
|
)
|
|
|
|
proc `<`*[T](a, b: SyncRequest[T]): bool {.inline.} =
|
|
result = (a.slot < b.slot)
|
|
|
|
proc `<`*[T](a, b: SyncResult[T]): bool {.inline.} =
|
|
result = (a.request.slot < b.request.slot)
|
|
|
|
proc `==`*[T](a, b: SyncRequest[T]): bool {.inline.} =
|
|
result = ((a.slot == b.slot) and (a.count == b.count) and
|
|
(a.step == b.step))
|
|
|
|
proc lastSlot*[T](req: SyncRequest[T]): Slot {.inline.} =
|
|
## Returns last slot for request ``req``.
|
|
result = req.slot + req.count - 1'u64
|
|
|
|
proc makePending*[T](sq: SyncQueue[T], req: var SyncRequest[T]) =
|
|
req.index = sq.counter
|
|
sq.counter = sq.counter + 1'u64
|
|
sq.pending[req.index] = req
|
|
|
|
proc updateLastSlot*[T](sq: SyncQueue[T], last: Slot) {.inline.} =
|
|
## Update last slot stored in queue ``sq`` with value ``last``.
|
|
doAssert(sq.lastSlot <= last,
|
|
"Last slot could not be lower then stored one " &
|
|
$sq.lastSlot & " <= " & $last)
|
|
sq.lastSlot = last
|
|
|
|
proc wakeupWaiters[T](sq: SyncQueue[T], flag = true) {.inline.} =
|
|
## Wakeup one or all blocked waiters.
|
|
for item in sq.waiters:
|
|
if not(item.future.finished()):
|
|
item.future.complete(flag)
|
|
|
|
proc waitForChanges[T](sq: SyncQueue[T],
|
|
req: SyncRequest[T]): Future[bool] {.async.} =
|
|
## Create new waiter and wait for completion from `wakeupWaiters()`.
|
|
var waitfut = newFuture[bool]("SyncQueue.waitForChanges")
|
|
let waititem = SyncWaiter[T](future: waitfut, request: req)
|
|
sq.waiters.add(waititem)
|
|
try:
|
|
result = await waitfut
|
|
finally:
|
|
sq.waiters.delete(sq.waiters.find(waititem))
|
|
|
|
proc wakeupAndWaitWaiters[T](sq: SyncQueue[T]) {.async.} =
|
|
## This procedure will perform wakeupWaiters(false) and blocks until last
|
|
## waiter will be awakened.
|
|
var waitChanges = sq.waitForChanges(SyncRequest.empty(T))
|
|
sq.wakeupWaiters(false)
|
|
discard await waitChanges
|
|
|
|
proc resetWait*[T](sq: SyncQueue[T], toSlot: Option[Slot]) {.async.} =
|
|
## Perform reset of all the blocked waiters in SyncQueue.
|
|
##
|
|
## We adding one more waiter to the waiters sequence and
|
|
## call wakeupWaiters(false). Because our waiter is last in sequence of
|
|
## waiters it will be resumed only after all waiters will be awakened and
|
|
## finished.
|
|
|
|
# We are clearing pending list, so that all requests that are still running
|
|
# around (still downloading, but not yet pushed to the SyncQueue) will be
|
|
# expired. Its important to perform this call first (before await), otherwise
|
|
# you can introduce race problem.
|
|
sq.pending.clear()
|
|
|
|
# We calculating minimal slot number to which we will be able to reset,
|
|
# without missing any blocks. There 3 sources:
|
|
# 1. Debts queue.
|
|
# 2. Processing queue (`inpSlot`, `outSlot`).
|
|
# 3. Requested slot `toSlot` (which can be `zero-point` slot).
|
|
#
|
|
# Queue's `outSlot` is the lowest slot we added to `block_pool`, but
|
|
# `zero-point` slot can be less then `outSlot`. `debtsQueue` holds only not
|
|
# added slot requests, so it can't be bigger then `outSlot` value.
|
|
var minSlot = sq.outSlot
|
|
if toSlot.isSome():
|
|
minSlot = min(toSlot.get(), sq.outSlot)
|
|
sq.debtsQueue.clear()
|
|
sq.debtsCount = 0
|
|
sq.readyQueue.clear()
|
|
sq.inpSlot = minSlot
|
|
sq.outSlot = minSlot
|
|
|
|
# We are going to wakeup all the waiters and wait for last one.
|
|
await sq.wakeupAndWaitWaiters()
|
|
|
|
proc isEmpty*[T](sr: SyncResult[T]): bool {.inline.} =
|
|
## Returns ``true`` if response chain of blocks is empty (has only empty
|
|
## slots).
|
|
len(sr.data) == 0
|
|
|
|
proc hasEndGap*[T](sr: SyncResult[T]): bool {.inline.} =
|
|
## Returns ``true`` if response chain of blocks has gap at the end.
|
|
let lastslot = sr.request.slot + sr.request.count - 1'u64
|
|
if len(sr.data) == 0:
|
|
return true
|
|
if sr.data[^1].message.slot != lastslot:
|
|
return true
|
|
return false
|
|
|
|
proc getLastNonEmptySlot*[T](sr: SyncResult[T]): Slot {.inline.} =
|
|
## Returns last non-empty slot from result ``sr``. If response has only
|
|
## empty slots, original request slot will be returned.
|
|
if len(sr.data) == 0:
|
|
# If response has only empty slots we going to use original request slot
|
|
sr.request.slot
|
|
else:
|
|
sr.data[^1].message.slot
|
|
|
|
proc toDebtsQueue[T](sq: SyncQueue[T], sr: SyncRequest[T]) {.inline.} =
|
|
sq.debtsQueue.push(sr)
|
|
sq.debtsCount = sq.debtsCount + sr.count
|
|
|
|
proc push*[T](sq: SyncQueue[T], sr: SyncRequest[T],
|
|
data: seq[SignedBeaconBlock]) {.async, gcsafe.} =
|
|
## Push successfull result to queue ``sq``.
|
|
mixin updateScore
|
|
|
|
if sr.index notin sq.pending:
|
|
# If request `sr` not in our pending list, it only means that
|
|
# SyncQueue.resetWait() happens and all pending requests are expired, so
|
|
# we swallow `old` requests, and in such way sync-workers are able to get
|
|
# proper new requests from SyncQueue.
|
|
return
|
|
|
|
sq.pending.del(sr.index)
|
|
|
|
# This is backpressure handling algorithm, this algorithm is blocking
|
|
# all pending `push` requests if `request.slot` not in range:
|
|
# [current_queue_slot, current_queue_slot + sq.queueSize * sq.chunkSize].
|
|
var exitNow = false
|
|
while true:
|
|
if (sq.queueSize > 0) and
|
|
(sr.slot >= sq.outSlot + uint64(sq.queueSize) * sq.chunkSize):
|
|
let res = await sq.waitForChanges(sr)
|
|
if res:
|
|
continue
|
|
else:
|
|
# SyncQueue reset happens (it can't be `zero-point` reset, or continous
|
|
# failure reset). We are exiting to wake up sync-worker.
|
|
exitNow = true
|
|
break
|
|
let syncres = SyncResult[T](request: sr, data: data)
|
|
sq.readyQueue.push(syncres)
|
|
exitNow = false
|
|
break
|
|
|
|
if exitNow:
|
|
return
|
|
|
|
while len(sq.readyQueue) > 0:
|
|
let minSlot = sq.readyQueue[0].request.slot
|
|
if sq.outSlot != minSlot:
|
|
break
|
|
let item = sq.readyQueue.pop()
|
|
let res = sq.syncUpdate(item.request, item.data)
|
|
if res.isOk:
|
|
if sq.zeroPoint.isSome():
|
|
if item.isEmpty():
|
|
# If the `zeropoint` is set and response is empty, we will add this
|
|
# request to suspect list.
|
|
debug "Adding peer to suspect list", peer = item.request.item,
|
|
request_slot = item.request.slot,
|
|
request_count = item.request.count,
|
|
request_step = item.request.step,
|
|
response_count = len(item.data), topics = "syncman"
|
|
sq.suspects.add(item)
|
|
else:
|
|
# If the `zeropoint` is set and response is not empty, we will clean
|
|
# suspect list and reset `zeropoint`.
|
|
sq.suspects.setLen(0)
|
|
sq.zeroPoint = none[Slot]()
|
|
# At this point `zeropoint` is unset, but received response can have
|
|
# gap at the end.
|
|
if item.hasEndGap():
|
|
debug "Zero-point reset and new zero-point found",
|
|
peer = item.request.item, request_slot = item.request.slot,
|
|
request_count = item.request.count,
|
|
request_step = item.request.step,
|
|
response_count = len(item.data),
|
|
blocks_map = getShortMap(item.request, item.data),
|
|
topics = "syncman"
|
|
sq.suspects.add(item)
|
|
sq.zeroPoint = some(item.getLastNonEmptySlot())
|
|
else:
|
|
debug "Zero-point reset", peer = item.request.item,
|
|
request_slot = item.request.slot,
|
|
request_count = item.request.count,
|
|
request_step = item.request.step,
|
|
response_count = len(item.data),
|
|
blocks_map = getShortMap(item.request, item.data),
|
|
topics = "syncman"
|
|
else:
|
|
# If the `zeropoint` is not set and response has gap at the end, we
|
|
# will add first suspect to the suspect list and set `zeropoint`.
|
|
if item.hasEndGap():
|
|
debug "New zero-point found", peer = item.request.item,
|
|
request_slot = item.request.slot,
|
|
request_count = item.request.count,
|
|
request_step = item.request.step,
|
|
response_count = len(item.data),
|
|
blocks_map = getShortMap(item.request, item.data),
|
|
topics = "syncman"
|
|
sq.suspects.add(item)
|
|
sq.zeroPoint = some(item.getLastNonEmptySlot())
|
|
|
|
sq.outSlot = sq.outSlot + item.request.count
|
|
sq.wakeupWaiters()
|
|
else:
|
|
debug "Block pool rejected peer's response", peer = item.request.item,
|
|
request_slot = item.request.slot,
|
|
request_count = item.request.count,
|
|
request_step = item.request.step,
|
|
blocks_map = getShortMap(item.request, item.data),
|
|
blocks_count = len(item.data), errCode = res.error
|
|
|
|
var resetSlot: Option[Slot]
|
|
|
|
if res.error == BlockError.MissingParent:
|
|
if sq.zeroPoint.isSome():
|
|
# If the `zeropoint` is set and we are unable to store response in
|
|
# `block_pool` we are going to revert suspicious responses list.
|
|
|
|
# If `zeropoint` is set, suspicious list should not be empty.
|
|
var req: SyncRequest[T]
|
|
if isEmpty(sq.suspects[0]):
|
|
# If initial suspicious response is an empty list, then previous
|
|
# chunk of blocks did not have a gap at the end. So we are going to
|
|
# request suspicious response one more time without any changes.
|
|
req = sq.suspects[0].request
|
|
else:
|
|
# If initial suspicious response is not an empty list, we are going
|
|
# to request only gap at the end of the suspicious response.
|
|
let startSlot = sq.suspects[0].getLastNonEmptySlot() + 1'u64
|
|
let lastSlot = sq.suspects[0].request.lastSlot()
|
|
req = SyncRequest.init(T, startSlot, lastSlot)
|
|
|
|
debug "Resolve joker's problem", request_slot = req.slot,
|
|
request_count = req.count,
|
|
request_step = req.step,
|
|
suspects_count = (len(sq.suspects) - 1)
|
|
|
|
sq.suspects[0].request.item.updateScore(PeerScoreJokeBlocks)
|
|
|
|
sq.toDebtsQueue(req)
|
|
# We move all left suspicious responses to the debts queue.
|
|
if len(sq.suspects) > 1:
|
|
for i in 1 ..< len(sq.suspects):
|
|
sq.toDebtsQueue(sq.suspects[i].request)
|
|
sq.suspects[i].request.item.updateScore(PeerScoreJokeBlocks)
|
|
|
|
# Reset state to the `zeropoint`.
|
|
sq.suspects.setLen(0)
|
|
resetSlot = sq.zeroPoint
|
|
sq.zeroPoint = none[Slot]()
|
|
else:
|
|
# If we got `BlockError.MissingParent` and `zero-point` is not set
|
|
# it means that peer returns chain of blocks with holes.
|
|
let req = item.request
|
|
warn "Received sequence of blocks with holes", peer = req.item,
|
|
request_slot = req.slot, request_count = req.count,
|
|
request_step = req.step, blocks_count = len(item.data),
|
|
blocks_map = getShortMap(req, item.data)
|
|
req.item.updateScore(PeerScoreBadBlocks)
|
|
elif res.error == BlockError.Invalid:
|
|
let req = item.request
|
|
warn "Received invalid sequence of blocks", peer = req.item,
|
|
request_slot = req.slot, request_count = req.count,
|
|
request_step = req.step, blocks_count = len(item.data),
|
|
blocks_map = getShortMap(req, item.data)
|
|
req.item.updateScore(PeerScoreBadBlocks)
|
|
else:
|
|
let req = item.request
|
|
warn "Received unexpected response from block_pool", peer = req.item,
|
|
request_slot = req.slot, request_count = req.count,
|
|
request_step = req.step, blocks_count = len(item.data),
|
|
blocks_map = getShortMap(req, item.data), errorCode = res.error
|
|
req.item.updateScore(PeerScoreBadBlocks)
|
|
|
|
# We need to move failed response to the debts queue.
|
|
sq.toDebtsQueue(item.request)
|
|
if resetSlot.isSome():
|
|
await sq.resetWait(resetSlot)
|
|
debug "Zero-point reset happens", queue_input_slot = sq.inpSlot,
|
|
queue_output_slot = sq.outSlot
|
|
break
|
|
|
|
proc push*[T](sq: SyncQueue[T], sr: SyncRequest[T]) =
|
|
## Push failed request back to queue.
|
|
if sr.index notin sq.pending:
|
|
# If request `sr` not in our pending list, it only means that
|
|
# SyncQueue.resetWait() happens and all pending requests are expired, so
|
|
# we swallow `old` requests, and in such way sync-workers are able to get
|
|
# proper new requests from SyncQueue.
|
|
return
|
|
sq.pending.del(sr.index)
|
|
sq.toDebtsQueue(sr)
|
|
|
|
proc pop*[T](sq: SyncQueue[T], maxslot: Slot, item: T): SyncRequest[T] =
|
|
if len(sq.debtsQueue) > 0:
|
|
if maxSlot < sq.debtsQueue[0].slot:
|
|
return SyncRequest.empty(T)
|
|
|
|
var sr = sq.debtsQueue.pop()
|
|
if sr.lastSlot() <= maxSlot:
|
|
sq.debtsCount = sq.debtsCount - sr.count
|
|
sr.setItem(item)
|
|
sq.makePending(sr)
|
|
return sr
|
|
|
|
var sr1 = SyncRequest.init(T, sr.slot, maxslot, item)
|
|
let sr2 = SyncRequest.init(T, maxslot + 1'u64, sr.lastSlot())
|
|
sq.debtsQueue.push(sr2)
|
|
sq.debtsCount = sq.debtsCount - sr1.count
|
|
sq.makePending(sr1)
|
|
return sr1
|
|
else:
|
|
if maxSlot < sq.inpSlot:
|
|
return SyncRequest.empty(T)
|
|
|
|
if sq.inpSlot > sq.lastSlot:
|
|
return SyncRequest.empty(T)
|
|
|
|
let lastSlot = min(maxslot, sq.lastSlot)
|
|
let count = min(sq.chunkSize, lastSlot + 1'u64 - sq.inpSlot)
|
|
var sr = SyncRequest.init(T, sq.inpSlot, count, item)
|
|
sq.inpSlot = sq.inpSlot + count
|
|
sq.makePending(sr)
|
|
return sr
|
|
|
|
proc len*[T](sq: SyncQueue[T]): uint64 {.inline.} =
|
|
## Returns number of slots left in queue ``sq``.
|
|
if sq.inpSlot > sq.lastSlot:
|
|
result = sq.debtsCount
|
|
else:
|
|
result = sq.lastSlot - sq.inpSlot + 1'u64 - sq.debtsCount
|
|
|
|
proc total*[T](sq: SyncQueue[T]): uint64 {.inline.} =
|
|
## Returns total number of slots in queue ``sq``.
|
|
result = sq.lastSlot - sq.startSlot + 1'u64
|
|
|
|
proc progress*[T](sq: SyncQueue[T]): uint64 =
|
|
## Returns queue's ``sq`` progress string.
|
|
let curSlot = sq.outSlot - sq.startSlot
|
|
result = (curSlot * 100'u64) div sq.total()
|
|
|
|
proc now*(sm: typedesc[SyncMoment], slot: Slot): SyncMoment {.inline.} =
|
|
result = SyncMoment(stamp: now(chronos.Moment), slot: slot)
|
|
|
|
proc speed*(start, finish: SyncMoment): float {.inline.} =
|
|
## Returns number of slots per second.
|
|
let slots = finish.slot - start.slot
|
|
let dur = finish.stamp - start.stamp
|
|
let secs = float(chronos.seconds(1).nanoseconds)
|
|
if isZero(dur):
|
|
result = 0.0
|
|
else:
|
|
let v = float(slots) * (secs / float(dur.nanoseconds))
|
|
# We doing round manually because stdlib.round is deprecated
|
|
result = round(v * 10000) / 10000
|
|
|
|
proc newSyncManager*[A, B](pool: PeerPool[A, B],
|
|
getLocalHeadSlotCb: GetSlotCallback,
|
|
getLocalWallSlotCb: GetSlotCallback,
|
|
updateLocalBlocksCb: UpdateLocalBlocksCallback,
|
|
maxStatusAge = uint64(SLOTS_PER_EPOCH * 4),
|
|
maxHeadAge = uint64(SLOTS_PER_EPOCH * 4),
|
|
sleepTime = (int(SLOTS_PER_EPOCH) *
|
|
int(SECONDS_PER_SLOT)).seconds,
|
|
chunkSize = uint64(SLOTS_PER_EPOCH),
|
|
toleranceValue = uint64(1),
|
|
maxRecurringFailures = 3
|
|
): SyncManager[A, B] =
|
|
|
|
proc syncUpdate(req: SyncRequest[A],
|
|
list: openarray[SignedBeaconBlock]): Result[void, BlockError] {.gcsafe.} =
|
|
let peer = req.item
|
|
let res = updateLocalBlocksCb(list)
|
|
if res.isOk:
|
|
peer.updateScore(PeerScoreGoodBlocks)
|
|
return res
|
|
|
|
let queue = SyncQueue.init(A, getLocalHeadSlotCb(), getLocalWallSlotCb(),
|
|
chunkSize, syncUpdate, 2)
|
|
|
|
result = SyncManager[A, B](
|
|
pool: pool,
|
|
maxStatusAge: maxStatusAge,
|
|
getLocalHeadSlot: getLocalHeadSlotCb,
|
|
syncUpdate: syncUpdate,
|
|
getLocalWallSlot: getLocalWallSlotCb,
|
|
maxHeadAge: maxHeadAge,
|
|
maxRecurringFailures: maxRecurringFailures,
|
|
sleepTime: sleepTime,
|
|
chunkSize: chunkSize,
|
|
queue: queue
|
|
)
|
|
|
|
proc getBlocks*[A, B](man: SyncManager[A, B], peer: A,
|
|
req: SyncRequest): Future[BeaconBlocksRes] {.async.} =
|
|
mixin beaconBlocksByRange, getScore, `==`
|
|
doAssert(not(req.isEmpty()), "Request must not be empty!")
|
|
debug "Requesting blocks from peer", peer = peer,
|
|
slot = req.slot, slot_count = req.count, step = req.step,
|
|
peer_score = peer.getScore(), topics = "syncman"
|
|
var workFut = awaitne beaconBlocksByRange(peer, req.slot, req.count, req.step)
|
|
if workFut.failed():
|
|
debug "Error, while waiting getBlocks response", peer = peer,
|
|
slot = req.slot, slot_count = req.count, step = req.step,
|
|
errMsg = workFut.readError().msg, topics = "syncman"
|
|
else:
|
|
let res = workFut.read()
|
|
if res.isErr:
|
|
debug "Error, while reading getBlocks response",
|
|
peer = peer, slot = req.slot, count = req.count,
|
|
step = req.step, topics = "syncman"
|
|
result = res
|
|
|
|
template headAge(): uint64 =
|
|
wallSlot - headSlot
|
|
|
|
template peerAge(): uint64 =
|
|
if peerSlot > wallSlot: 0'u64 else: wallSlot - peerSlot
|
|
|
|
proc syncWorker*[A, B](man: SyncManager[A, B],
|
|
peer: A): Future[A] {.async.} =
|
|
# Sync worker is the lowest level loop which performs syncing with single
|
|
# peer.
|
|
#
|
|
# Logic here is pretty simple:
|
|
# 1. Obtain request from SyncQueue.
|
|
# 2. Send this request to a peer and obtain response.
|
|
# 3. Push response to the SyncQueue, (doesn't matter if it success or failure)
|
|
# 4. Update main SyncQueue last slot with wall time slot number.
|
|
# 5. From time to time we also requesting peer's status information.
|
|
# 6. If our current head slot is near equal to peer's head slot we are
|
|
# exiting this loop and finishing that sync-worker task.
|
|
# 7. Repeat
|
|
|
|
mixin getKey, getScore, getHeadSlot
|
|
|
|
debug "Starting syncing with peer", peer = peer,
|
|
peer_score = peer.getScore(),
|
|
topics = "syncman"
|
|
try:
|
|
while true:
|
|
var wallSlot = man.getLocalWallSlot()
|
|
var headSlot = man.getLocalHeadSlot()
|
|
var peerSlot = peer.getHeadSlot()
|
|
|
|
man.queue.updateLastSlot(wallSlot)
|
|
|
|
debug "Peer's syncing status", wall_clock_slot = wallSlot,
|
|
remote_head_slot = peerSlot, local_head_slot = headSlot,
|
|
peer_score = peer.getScore(), peer = peer, topics = "syncman"
|
|
|
|
if peerSlot > wallSlot + man.toleranceValue:
|
|
# Our wall timer is broken, or peer's status information is invalid.
|
|
debug "Local timer is broken or peer's status information is invalid",
|
|
wall_clock_slot = wallSlot, remote_head_slot = peerSlot,
|
|
local_head_slot = headSlot, peer = peer,
|
|
tolerance_value = man.toleranceValue,
|
|
peer_score = peer.getScore(), topics = "syncman"
|
|
let failure = SyncFailure.init(SyncFailureKind.StatusInvalid, peer)
|
|
man.failures.add(failure)
|
|
break
|
|
|
|
if peerAge >= man.maxStatusAge:
|
|
# Peer's status information is very old, we going to update it.
|
|
debug "Updating peer's status information", wall_clock_slot = wallSlot,
|
|
remote_head_slot = peerSlot, local_head_slot = headSlot,
|
|
peer = peer, peer_score = peer.getScore(), topics = "syncman"
|
|
let res = await peer.updateStatus()
|
|
if not(res):
|
|
peer.updateScore(PeerScoreNoStatus)
|
|
debug "Failed to get remote peer's status, exiting", peer = peer,
|
|
peer_score = peer.getScore(), peer_head_slot = peerSlot,
|
|
topics = "syncman"
|
|
let failure = SyncFailure.init(SyncFailureKind.StatusDownload, peer)
|
|
man.failures.add(failure)
|
|
break
|
|
|
|
let newPeerSlot = peer.getHeadSlot()
|
|
if peerSlot >= newPeerSlot:
|
|
peer.updateScore(PeerScoreStaleStatus)
|
|
debug "Peer's status information is stale, exiting",
|
|
wall_clock_slot = wallSlot, remote_old_head_slot = peerSlot,
|
|
local_head_slot = headSlot,
|
|
remote_new_head_slot = newPeerSlot,
|
|
peer = peer, peer_score = peer.getScore(), topics = "syncman"
|
|
let failure = SyncFailure.init(SyncFailureKind.StatusStale, peer)
|
|
man.failures.add(failure)
|
|
break
|
|
|
|
debug "Peer's status information updated", wall_clock_slot = wallSlot,
|
|
remote_old_head_slot = peerSlot, local_head_slot = headSlot,
|
|
remote_new_head_slot = newPeerSlot, peer = peer,
|
|
peer_score = peer.getScore(), topics = "syncman"
|
|
peer.updateScore(PeerScoreGoodStatus)
|
|
peerSlot = newPeerSlot
|
|
|
|
if (peerAge <= man.maxHeadAge) and (headAge <= man.maxHeadAge):
|
|
debug "We are in sync with peer, exiting", wall_clock_slot = wallSlot,
|
|
remote_head_slot = peerSlot, local_head_slot = headSlot,
|
|
peer = peer, peer_score = peer.getScore(), topics = "syncman"
|
|
break
|
|
|
|
let req = man.queue.pop(peerSlot, peer)
|
|
if req.isEmpty():
|
|
debug "Empty request received from queue, exiting", peer = peer,
|
|
local_head_slot = headSlot, remote_head_slot = peerSlot,
|
|
queue_input_slot = man.queue.inpSlot,
|
|
queue_output_slot = man.queue.outSlot,
|
|
queue_last_slot = man.queue.lastSlot,
|
|
peer_score = peer.getScore(), topics = "syncman"
|
|
# Sometimes when syncing is almost done but last requests are still
|
|
# pending, this can fall into endless cycle, when low number of peers
|
|
# are available in PeerPool. We going to wait for RESP_TIMEOUT time,
|
|
# so all pending requests should be finished at this moment.
|
|
await sleepAsync(RESP_TIMEOUT)
|
|
let failure = SyncFailure.init(SyncFailureKind.EmptyProblem, peer)
|
|
man.failures.add(failure)
|
|
break
|
|
|
|
debug "Creating new request for peer", wall_clock_slot = wallSlot,
|
|
remote_head_slot = peerSlot, local_head_slot = headSlot,
|
|
request_slot = req.slot, request_count = req.count,
|
|
request_step = req.step, peer = peer,
|
|
peer_score = peer.getScore(), topics = "syncman"
|
|
|
|
let blocks = await man.getBlocks(peer, req)
|
|
if blocks.isOk:
|
|
let data = blocks.get()
|
|
let smap = getShortMap(req, data)
|
|
debug "Received blocks on request", blocks_count = len(data),
|
|
blocks_map = smap, request_slot = req.slot,
|
|
request_count = req.count, request_step = req.step,
|
|
peer = peer, peer_score = peer.getScore(), topics = "syncman"
|
|
|
|
if not(checkResponse(req, data)):
|
|
peer.updateScore(PeerScoreBadResponse)
|
|
warn "Received blocks sequence is not in requested range",
|
|
blocks_count = len(data), blocks_map = smap,
|
|
request_slot = req.slot, request_count = req.count,
|
|
request_step = req.step, peer = peer,
|
|
peer_score = peer.getScore(), topics = "syncman"
|
|
let failure = SyncFailure.init(SyncFailureKind.BadResponse, peer)
|
|
man.failures.add(failure)
|
|
break
|
|
|
|
# Scoring will happen in `syncUpdate`.
|
|
await man.queue.push(req, data)
|
|
# Cleaning up failures.
|
|
man.failures.setLen(0)
|
|
else:
|
|
peer.updateScore(PeerScoreNoBlocks)
|
|
man.queue.push(req)
|
|
debug "Failed to receive blocks on request",
|
|
request_slot = req.slot, request_count = req.count,
|
|
request_step = req.step, peer = peer,
|
|
peer_score = peer.getScore(), topics = "syncman"
|
|
let failure = SyncFailure.init(SyncFailureKind.BlockDownload, peer)
|
|
man.failures.add(failure)
|
|
break
|
|
|
|
result = peer
|
|
finally:
|
|
man.pool.release(peer)
|
|
|
|
proc sync*[A, B](man: SyncManager[A, B]) {.async.} =
|
|
# This procedure manages main loop of SyncManager and in this loop it
|
|
# performs
|
|
# 1. It checks for current sync status, "are we synced?".
|
|
# 2. If we are in active syncing, it tries to acquire peers from PeerPool and
|
|
# spawns new sync-workers.
|
|
# 3. It stops spawning sync-workers when we are "in sync".
|
|
# 4. It calculates syncing performance.
|
|
mixin getKey, getScore
|
|
var pending = newSeq[Future[A]]()
|
|
var acquireFut: Future[A]
|
|
var wallSlot, headSlot: Slot
|
|
var syncSpeed: float = 0.0
|
|
|
|
template workersCount(): int =
|
|
if isNil(acquireFut): len(pending) else: (len(pending) - 1)
|
|
|
|
proc watchTask() {.async.} =
|
|
while true:
|
|
let lsm1 = SyncMoment.now(man.getLocalHeadSlot())
|
|
await sleepAsync(chronos.seconds(int(SECONDS_PER_SLOT)))
|
|
let lsm2 = SyncMoment.now(man.getLocalHeadSlot())
|
|
if workersCount() == 0:
|
|
syncSpeed = 0.0
|
|
else:
|
|
if (lsm2.slot - lsm1.slot == 0'u64) and (workersCount() > 1):
|
|
debug "Syncing process is not progressing, reset the queue",
|
|
workers_count = workersCount(),
|
|
to_slot = man.queue.outSlot,
|
|
local_head_slot = lsm1.slot
|
|
await man.queue.resetWait(none[Slot]())
|
|
else:
|
|
syncSpeed = speed(lsm1, lsm2)
|
|
|
|
debug "Synchronization loop started", topics = "syncman"
|
|
|
|
traceAsyncErrors watchTask()
|
|
|
|
while true:
|
|
wallSlot = man.getLocalWallSlot()
|
|
headSlot = man.getLocalHeadSlot()
|
|
|
|
var progress: uint64
|
|
if headSlot <= man.queue.lastSlot:
|
|
progress = man.queue.progress()
|
|
else:
|
|
progress = 100'u64
|
|
|
|
debug "Synchronization loop start tick", wall_head_slot = wallSlot,
|
|
local_head_slot = headSlot, queue_status = progress,
|
|
queue_start_slot = man.queue.startSlot,
|
|
queue_last_slot = man.queue.lastSlot,
|
|
workers_count = workersCount(), topics = "syncman"
|
|
|
|
if headAge <= man.maxHeadAge:
|
|
debug "Synchronization loop sleeping", wall_head_slot = wallSlot,
|
|
local_head_slot = headSlot, workers_count = workersCount(),
|
|
difference = (wallSlot - headSlot),
|
|
max_head_age = man.maxHeadAge, topics = "syncman"
|
|
if len(pending) == 0:
|
|
man.inProgress = false
|
|
await sleepAsync(man.sleepTime)
|
|
else:
|
|
var peerFut = one(pending)
|
|
# We do not care about result here because we going to check peerFut
|
|
# later.
|
|
discard await withTimeout(peerFut, man.sleepTime)
|
|
else:
|
|
man.inProgress = true
|
|
|
|
if isNil(acquireFut):
|
|
acquireFut = man.pool.acquire()
|
|
pending.add(acquireFut)
|
|
|
|
debug "Synchronization loop waiting for new peer",
|
|
wall_head_slot = wallSlot, local_head_slot = headSlot,
|
|
workers_count = workersCount(), topics = "syncman"
|
|
var peerFut = one(pending)
|
|
# We do not care about result here, because we going to check peerFut
|
|
# later.
|
|
discard await withTimeout(peerFut, man.sleepTime)
|
|
|
|
var temp = newSeqOfCap[Future[A]](len(pending))
|
|
# Update slots to with more recent data
|
|
wallSlot = man.getLocalWallSlot()
|
|
headSlot = man.getLocalHeadSlot()
|
|
for fut in pending:
|
|
if fut.finished():
|
|
if fut == acquireFut:
|
|
# We acquired new peer from PeerPool.
|
|
if acquireFut.failed():
|
|
debug "Synchronization loop failed to get new peer",
|
|
wall_head_slot = wallSlot, local_head_slot = headSlot,
|
|
workers_count = workersCount(),
|
|
errMsg = acquireFut.readError().msg, topics = "syncman"
|
|
else:
|
|
var peer = acquireFut.read()
|
|
if headAge <= man.maxHeadAge:
|
|
# If we are already in sync, we going to release just acquired
|
|
# peer and do not acquire peers
|
|
debug "Synchronization loop reached sync barrier", peer = peer,
|
|
wall_head_slot = wallSlot, local_head_slot = headSlot,
|
|
peer_score = peer.getScore(), topics = "syncman"
|
|
man.pool.release(peer)
|
|
else:
|
|
if headSlot > man.queue.lastSlot:
|
|
man.queue = SyncQueue.init(A, headSlot, wallSlot,
|
|
man.chunkSize, man.syncUpdate, 2)
|
|
debug "Synchronization loop starting new worker", peer = peer,
|
|
wall_head_slot = wallSlot, local_head_slot = headSlot,
|
|
peer_score = peer.getScore(), topics = "syncman"
|
|
temp.add(syncWorker(man, peer))
|
|
|
|
acquireFut = nil
|
|
if headAge > man.maxHeadAge:
|
|
acquireFut = man.pool.acquire()
|
|
temp.add(acquireFut)
|
|
else:
|
|
# Worker finished its work
|
|
if fut.failed():
|
|
debug "Synchronization loop got worker finished with an error",
|
|
wall_head_slot = wallSlot, local_head_slot = headSlot,
|
|
errMsg = fut.readError().msg, topics = "syncman"
|
|
else:
|
|
let peer = fut.read()
|
|
debug "Synchronization loop got worker finished",
|
|
wall_head_slot = wallSlot, local_head_slot = headSlot,
|
|
peer = peer, peer_score = peer.getScore(),
|
|
topics = "syncman"
|
|
else:
|
|
if fut == acquireFut:
|
|
if headAge <= man.maxHeadAge:
|
|
debug "Synchronization loop reached sync barrier",
|
|
wall_head_slot = wallSlot, local_head_slot = headSlot,
|
|
topics = "syncman"
|
|
acquireFut = nil
|
|
fut.cancel()
|
|
else:
|
|
temp.add(fut)
|
|
else:
|
|
temp.add(fut)
|
|
|
|
pending = temp
|
|
|
|
if len(man.failures) > man.maxRecurringFailures and (workersCount() > 1):
|
|
debug "Number of recurring failures exceeds limit, reseting queue",
|
|
workers_count = workers_count(), rec_failures = len(man.failures)
|
|
await man.queue.resetWait(none[Slot]())
|
|
|
|
debug "Synchronization loop end tick", wall_head_slot = wallSlot,
|
|
local_head_slot = headSlot, workers_count = workersCount(),
|
|
waiting_for_new_peer = $not(isNil(acquireFut)),
|
|
sync_speed = syncSpeed, queue_slot = man.queue.outSlot,
|
|
topics = "syncman"
|