nimbus-eth2/beacon_chain/sync
Jacek Sieka f70aceef37
Harden handling of unviable forks (#3312)
* Harden handling of unviable forks

In our current handling of unviable forks, we allow peers to send us
blocks that come from a different fork - this is not necessarily an
error as it can happen naturally, but it does open up the client to a
case where the same unviable fork keeps getting requested - rather than
allowing this to happen, we'll now give these peers a small negative
score - if it keeps happening, we'll disconnect them.

* keep track of unviable forks in quarantine, to avoid filling it with
known junk
* collect peer scores in single module
* descore peers when they send unviable blocks during sync
* don't give score for duplicate blocks
* increase quarantine size to a level that allows finality to happen
under optimal conditions - this helps avoid downloading the same blocks
over and over in case of an unviable fork
* increase initial score for new peers to make room for one more failure
before disconnection
* log and score invalid/unviable blocks in requestmanager too
* avoid ChainDAG dependency in quarantine
* reject gossip blocks with unviable parent
* continue processing unviable sync blocks in order to build unviable
dag

* docs

* Update beacon_chain/consensus_object_pools/block_pools_types.nim

* add unviable queue test
2022-01-26 13:20:08 +01:00
..
README.md Consolidate modules by areas [part 1] (#2365) 2021-03-02 11:27:45 +01:00
request_manager.nim Harden handling of unviable forks (#3312) 2022-01-26 13:20:08 +01:00
sync_manager.nim Harden handling of unviable forks (#3312) 2022-01-26 13:20:08 +01:00
sync_protocol.nim rename mergeData to bellatrixData and mergeFork to bellatrixFork (#3315) 2022-01-24 16:23:13 +00:00
sync_queue.nim Harden handling of unviable forks (#3312) 2022-01-26 13:20:08 +01:00

README.md

Block syncing

This folder holds all modules related to block syncing

Block syncing uses ETH2 RPC protocol.

Reference diagram

Block flow

Eth2 RPC in

Blocks are requested during sync by the SyncManager.

Blocks are received by batch:

  • syncStep(SyncManager, index, peer)
  • in case of success:
    • push(SyncQueue, SyncRequest, seq[SignedBeaconBlock]) is called to handle a successful sync step. It calls validate(SyncQueue, SignedBeaconBlock)` on each block retrieved one-by-one
    • validate only enqueues the block in the SharedBlockQueue AsyncQueue[BlockEntry] but does no extra validation only the GossipSub case
  • in case of failure:
    • push(SyncQueue, SyncRequest) is called to reschedule the sync request.

Every second when sync is not in progress, the beacon node will ask the RequestManager to download all missing blocks currently in quarantaine.

  • via handleMissingBlocks
  • which calls fetchAncestorBlocks
  • which asynchronously enqueue the request in the SharedBlockQueue AsyncQueue[BlockEntry].

The RequestManager runs an event loop:

  • that calls fetchAncestorBlocksFromNetwork
  • which RPC calls peers with beaconBlocksByRoot
  • and calls validate(RequestManager, SignedBeaconBlock) on each block retrieved one-by-one
  • validate only enqueues the block in the AsyncQueue[BlockEntry] but does no extra validation only the GossipSub case

Weak subjectivity sync

Not implemented!

Comments

The validate procedure name for SyncManager and RequestManager as no P2P validation actually occurs.

Sync vs Steady State

During sync:

  • The RequestManager is deactivated
  • The syncManager is working full speed ahead
  • Gossip is deactivated

Bottlenecks during sync

During sync:

  • The bottleneck is clearing the SharedBlockQueue AsyncQueue[BlockEntry] via storeBlock which requires full verification (state transition + cryptography)

Backpressure

The SyncManager handles backpressure by ensuring that current_queue_slot <= request.slot <= current_queue_slot + sq.queueSize * sq.chunkSize.

  • queueSize is -1, unbounded, by default according to comment but all init paths uses 1 (?)
  • chunkSize is SLOTS_PER_EPOCH = 32

However the shared AsyncQueue[BlockEntry] itself is unbounded. Concretely:

  • The shared AsyncQueue[BlockEntry] is bounded for sync
  • The shared AsyncQueue[BlockEntry] is unbounded for validated gossip blocks

RequestManager and Gossip are deactivated during sync and so do not contribute to pressure.