nimbus-eth2/ncli/validator_db_reports.ipynb
Zahary Karadjov ac16eb4691 Streamline the validator reward analysis
Notable improvements:

* A separate aggregation pass is no longer required.

* The user can opt to produce only aggregated data
  (resuing in a much smaller data set).

* Large portion of the number cruching in Jupyter is now done in C
  through the rich DataFrames API.

* Added support for comparisons against the "median" validator
  performance in the network.
2022-02-01 11:30:14 +02:00

360 lines
12 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "071e1cb8",
"metadata": {},
"outputs": [],
"source": [
"%load_ext autotime\n",
"%matplotlib inline\n",
"import string\n",
"import sqlite3\n",
"import os\n",
"import re\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import snappy\n",
"from scipy.interpolate import make_interp_spline\n",
"from pathlib import Path\n",
"from io import StringIO"
]
},
{
"cell_type": "markdown",
"id": "f00bca92",
"metadata": {},
"source": [
"**Database connection:**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f69cd8b3",
"metadata": {},
"outputs": [],
"source": [
"database_dir = \"../build/data/mainnetValidatorDb/validatorDb.sqlite3\"\n",
"connection = sqlite3.connect(database_dir)"
]
},
{
"cell_type": "markdown",
"id": "8ccd8945",
"metadata": {},
"source": [
"**Rewards and penalties components:**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "229adad0",
"metadata": {},
"outputs": [],
"source": [
"SOURCE = \"source\"\n",
"TARGET = \"target\"\n",
"HEAD = \"head\"\n",
"INCLUSION_DELAY = \"inclusion_delay\"\n",
"SYNC_COMMITTEE = \"sync_committee\"\n",
"\n",
"CSV_DATA_COLUMNS_NAMES = [\n",
" \"source_outcome\",\n",
" \"max_source_reward\",\n",
" \"target_outcome\",\n",
" \"max_target_reward\",\n",
" \"head_outcome\",\n",
" \"max_head_reward\",\n",
" \"inclusion_delay_outcome\",\n",
" \"max_inclusion_delay_reward\",\n",
" \"sync_committee_outcome\",\n",
" \"max_sync_committee_reward\",\n",
" \"proposer_outcome\",\n",
" \"inactivity_penalty\",\n",
" \"slashing_outcome\",\n",
" \"deposits\",\n",
" \"inclusion_delay\"]"
]
},
{
"cell_type": "markdown",
"id": "9a747287",
"metadata": {},
"source": [
"**Helper functions:**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63fb9f21",
"metadata": {},
"outputs": [],
"source": [
"def valid_public_key(public_key):\n",
" \"\"\"Checks whether a string is a valid hex representation of a public key of an Eth2 validator.\"\"\"\n",
" if len(public_key) != 96:\n",
" return False\n",
" return all(c in string.hexdigits for c in public_key)\n",
"\n",
"def idx(public_key):\n",
" \"\"\"Returns validator's index by its public key.\"\"\"\n",
" \n",
" if public_key.startswith(\"0x\"):\n",
" public_key = public_key[2:]\n",
" \n",
" if not valid_public_key(public_key):\n",
" raise ValueError(f\"The string '{public_key}' is not a valid public key of a validator.\")\n",
" \n",
" QUERY_FIELD = \"validator_index\"\n",
" query = f\"SELECT {QUERY_FIELD} FROM validators_raw WHERE pubkey=x'{public_key}';\"\n",
" query_result = pd.read_sql_query(query, connection)\n",
" \n",
" if len(query_result[QUERY_FIELD]) == 0:\n",
" raise ValueError(f\"Not found a validator with a public key '{public_key}'.\")\n",
" \n",
" if len(query_result[QUERY_FIELD]) > 1:\n",
" raise ValueError(f\"Found multiple validators with a public key '{public_key}'.\")\n",
" \n",
" return query_result[QUERY_FIELD][0]"
]
},
{
"cell_type": "markdown",
"id": "946762c1",
"metadata": {},
"source": [
"**Input parameters:**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e9aca3ed",
"metadata": {},
"outputs": [],
"source": [
"start_epoch = 1\n",
"end_epoch = 94275\n",
"files_dir = \"../build/data/mainnetCompactedValidatorDb/\"\n",
"rewards = [SOURCE, TARGET, HEAD, INCLUSION_DELAY, SYNC_COMMITTEE]\n",
"validators_sets = {\n",
" \"set1\": list(range(10)),\n",
" \"set2\": list(map(idx, [\n",
" \"0x8efba2238a00d678306c6258105b058e3c8b0c1f36e821de42da7319c4221b77aa74135dab1860235e19d6515575c381\",\n",
" \"0xa2dce641f347a9e46f58458390e168fa4b3a0166d74fc495457cb00c8e4054b5d284c62aa0d9578af1996c2e08e36fb6\",\n",
" \"0x98b7d0eac7ab95d34dbf2b7baa39a8ec451671328c063ab1207c2055d9d5d6f1115403dc5ea19a1111a404823bd9a6e9\",\n",
" \"0xb0fd08e2e06d1f4d90d0d6843feb543ebeca684cde397fe230e6cdf6f255d234f2c26f4b36c07170dfdfcbbe355d0848\",\n",
" \"0xab7a5aa955382906be3d76e322343bd439e8690f286ecf2f2a7646363b249f5c133d0501d766ccf1aa1640f0283047b3\",\n",
" \"0x980c0c001645a00b71c720935ce193e1ed0e917782c4cb07dd476a4fdb7decb8d91daf2770eb413055f0c1d14b5ed6df\",\n",
" \"0xac7cbdc535ce8254eb9cdedf10d5b1e75de4cd5e91756c3467d0492b01b70b5c6a81530e9849c6b696c8bc157861d0c3\",\n",
" \"0x98ea289db7ea9714699ec93701a3b6db43900e04ae5497be01fa8cc5a56754c23589eaf1f674de718e291376f452d68c\",\n",
" \"0x92451d4c099e51f54ab20f5c1a4edf405595c60122ccfb0f39250b7e80986fe0fe457bacd8a887e9087cd6fc323f492c\",\n",
" \"0xa06f6c678f0129aec056df309a4fe18760116ecaea2292947c5a9cc997632ff437195309783c269ffca7bb2704e675a0\"\n",
" ])),\n",
" \"set3\": list(range(20, 30))\n",
" }"
]
},
{
"cell_type": "markdown",
"id": "5e0fb2da",
"metadata": {},
"source": [
"**Loading the data and losses calculation:**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "485a2d7e",
"metadata": {},
"outputs": [],
"source": [
"COMPACTED_EPOCH_INFO_FILE_PATTERN = re.compile(r\"(\\d{8})\\_(\\d{8})\\.epoch\")\n",
"\n",
"def get_first_and_last_epoch(file_name):\n",
" m = re.match(COMPACTED_EPOCH_INFO_FILE_PATTERN, file_name)\n",
" if m == None:\n",
" return None\n",
" return int(m.group(1)), int(m.group(2))\n",
"\n",
"def isEpochInfoFile(file_name):\n",
" r = get_first_and_last_epoch(file_name)\n",
" if r == None:\n",
" return False\n",
" file_start_epoch, file_end_epoch = r\n",
" if file_start_epoch > file_end_epoch:\n",
" return False\n",
" if file_end_epoch < start_epoch:\n",
" return False\n",
" if file_start_epoch > end_epoch:\n",
" return False\n",
" return True\n",
"\n",
"def adjust_constraints(sorted_file_names):\n",
" first_start_epoch, first_end_epoch = get_first_and_last_epoch(sorted_file_names[0])\n",
" _, last_end_epoch = get_first_and_last_epoch(sorted_file_names[-1])\n",
" global start_epoch, end_epoch, resolution\n",
" start_epoch = first_start_epoch\n",
" end_epoch = last_end_epoch\n",
" resolution = first_end_epoch - first_start_epoch + 1\n",
"\n",
"def read_csv(file_path):\n",
" return pd.read_csv(\n",
" StringIO(snappy.decompress(file_path.read_bytes()).decode(\"utf-8\")),\n",
" names = CSV_DATA_COLUMNS_NAMES, usecols = set(range(0, 10)))\n",
"\n",
"def get_outcome_var(component):\n",
" return component + \"_outcome\"\n",
"\n",
"def get_max_reward_var(component):\n",
" return \"max_\" + component + \"_reward\"\n",
"\n",
"max_reward_vars = [get_max_reward_var(reward_type) for reward_type in rewards]\n",
"outcome_vars = [get_outcome_var(reward_type) for reward_type in rewards]\n",
"\n",
"def sum_max_values(t):\n",
" return sum(getattr(t, max_reward) for max_reward in max_reward_vars)\n",
"\n",
"def sum_actual_values(t):\n",
" return sum(getattr(t, outcome) for outcome in outcome_vars)\n",
"\n",
"def compute_losses_median(data):\n",
" max_values = data[max_reward_vars].sum(axis = 1)\n",
" actual_values = data[outcome_vars].sum(axis = 1)\n",
" losses = max_values - actual_values\n",
" return losses.median(axis = 0)\n",
"\n",
"total_losses_per_epoch_point = {}\n",
"average_losses_per_epoch_point = {}\n",
"validators_sets_queries = {}\n",
"medians = {}\n",
"\n",
"for set_name, set_values in validators_sets.items():\n",
" total_losses_per_epoch_point[set_name] = {}\n",
" average_losses_per_epoch_point[set_name] = {}\n",
" validators_sets_queries[set_name] = []\n",
"\n",
"file_names = [file_name for file_name in os.listdir(files_dir)\n",
" if isEpochInfoFile(file_name)]\n",
"file_names.sort()\n",
"adjust_constraints(file_names)\n",
"\n",
"previous_validators_count = 0\n",
"for file_name in file_names:\n",
" data = read_csv(Path(files_dir + file_name))\n",
" file_first_epoch, file_last_epoch = get_first_and_last_epoch(file_name)\n",
" file_epoch_range = file_last_epoch - file_first_epoch + 1\n",
" epoch_point = file_first_epoch // resolution\n",
" validators_count = len(data.index)\n",
" for set_name, validators in validators_sets.items():\n",
" for i in range(previous_validators_count, validators_count):\n",
" if i in validators:\n",
" validators_sets_queries[set_name].append(i)\n",
" sums = data.iloc[validators_sets_queries[set_name]].sum(axis = 0)\n",
" difference = sum_max_values(sums) - sum_actual_values(sums)\n",
" set_validators_count = len(validators_sets_queries[set_name])\n",
" average_losses_per_epoch_point[set_name][epoch_point] = \\\n",
" difference / set_validators_count if set_validators_count > 0 else 0\n",
" total_losses_per_epoch_point[set_name][epoch_point] = difference * file_epoch_range\n",
" medians[epoch_point] = compute_losses_median(data)\n",
" previous_validators_count = validators_count\n"
]
},
{
"cell_type": "markdown",
"id": "800ee35b",
"metadata": {},
"source": [
"**Average losses graph:** "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62d1e96d",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"plt.subplots(figsize = (20, 5))\n",
"plt.title(\"Average losses per epoch\")\n",
"plt.xlabel(\"Epoch\")\n",
"plt.ylabel(\"Gwei\")\n",
"\n",
"num_samples = (end_epoch - start_epoch + 1) // resolution * 100\n",
"\n",
"def plot(set_name, set_values):\n",
" epochs = np.array([ep * resolution + resolution // 2 for ep in set_values.keys()])\n",
" values = np.array(list(set_values.values()))\n",
" spline = make_interp_spline(epochs, values)\n",
" x = np.linspace(epochs.min(), epochs.max(), num_samples)\n",
" y = spline(x)\n",
" plt.plot(x, y, label=set_name)\n",
"\n",
"for name, value in average_losses_per_epoch_point.items():\n",
" plot(name, value)\n",
"\n",
"plot(\"median\", medians)\n",
"\n",
"plt.legend(loc=\"best\")"
]
},
{
"cell_type": "markdown",
"id": "0fff538c",
"metadata": {},
"source": [
"**Total losses:**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6ab52601",
"metadata": {},
"outputs": [],
"source": [
"sets_total_losses = {}\n",
"for set_name, epoch_points in total_losses_per_epoch_point.items():\n",
" sets_total_losses[set_name] = 0\n",
" for _, losses in epoch_points.items():\n",
" sets_total_losses[set_name] += losses\n",
"\n",
"plt.title(\"Total losses\")\n",
"plt.xlabel(\"Set\")\n",
"plt.ylabel(\"Ethers\")\n",
"plt.bar(list(sets_total_losses.keys()), [loss * 1e-9 for loss in sets_total_losses.values()])\n",
"print(sets_total_losses)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}