Ethereum Beacon Chain
Nimbus beacon chain is a research implementation of the beacon chain component of the upcoming Ethereum Serenity upgrade, aka eth2. See the main Nimbus project for the bigger picture.
Related
- status-im/nimbus: main Nimbus repository - start here to learn more about the Nimbus eco-system
- ethereum/eth2.0-specs: Serenity specification that this project implements
- ethereum/beacon_chain: reference implementation from the Ethereum foundation
You can check where the beacon chain fits in the Ethereum research ecosystem in the Status Athenaeum.
Building and Testing
Prerequisites
(On Windows, a precompiled DLL collection download is available through the fetch-dlls
Makefile target: (Windows instructions).)
Rocksdb
A recent version of Facebook's RocksDB is needed - it can usually be installed using your system's package manager:
# MacOS with Homebrew
brew install rocksdb
# Fedora
dnf install rocksdb-devel
# Debian and Ubuntu
sudo apt-get install librocksdb-dev
# Arch (AUR)
pakku -S rocksdb
You can also build and install it by following their instructions.
PCRE
If you don't already have it, you will also need PCRE to build Nimbus.
# MacOS with Homebrew
brew install pcre
# Fedora
dnf install pcre
# Ubuntu
sudo apt-get install libpcre-dev
# Debian
apt-get install libpcre3-dev
# Arch (AUR)
pakku -S pcre-static
Developer tools
GNU Make, Bash and the usual POSIX utilities
Build & Develop
POSIX-compatible OS
make # The first `make` invocation will update all Git submodules and prompt you to run `make` again.
# It's only required once per Git clone. You'll run `make update` after each `git pull`, in the future,
# to keep those submodules up to date.
make test # run the test suite
To pull the latest changes in all the Git repositories involved:
git pull
make update
To run a command that might use binaries from the Status Nim fork:
./env.sh bash # start a new interactive shell with the right env vars set
which nim
nim --version
# or without starting a new interactive shell:
./env.sh which nim
./env.sh nim --version
Windows
(Experimental support!)
Install Mingw-w64 for your architecture using the "MinGW-W64 Online Installer" (first link under the directory listing). Run it and select your architecture in the setup menu ("i686" on 32-bit, "x86_64" on 64-bit), set the threads to "win32" and the exceptions to "dwarf" on 32-bit and "seh" on 64-bit. Change the installation directory to "C:\mingw-w64" and add it to your system PATH in "My Computer"/"This PC" -> Properties -> Advanced system settings -> Environment Variables -> Path -> Edit -> New -> C:\mingw-w64\mingw64\bin (it's "C:\mingw-w64\mingw32\bin" on 32-bit)
Install Git for Windows and use a "Git Bash" shell to clone and build nim-beacon-chain.
If you don't want to compile RocksDB and SQLite separately, you can fetch pre-compiled DLLs with:
mingw32-make # this first invocation will update the Git submodules
mingw32-make fetch-dlls # this will place the right DLLs for your architecture in the "build/" directory
You can now follow those instructions in the previous section by replacing make
with mingw32-make
(regardless of your 32-bit or 64-bit architecture):
mingw32-make test # run the test suite
Beacon node simulation
The beacon node simulation will create a full peer-to-peer network of beacon nodes and validators, and run the beacon chain in real time. To change network parameters such as shard and validator counts, see start.sh.
# Clear data files from your last run and start the simulation with a new genesis block:
make eth2_network_simulation
# In another terminal, get a shell with the right environment variables set:
./env.sh bash
# Run an extra node - by default the network will launch with 9 nodes, each
# hosting 10 validators. The last 10 validators are lazy bums that hid from the
# startup script, but you can command them back to work with:
./tests/simulation/run_node.sh 9
# (yes, it's 0-based indexing)
You can also separate the output from each beacon node in its own panel, using multitail:
make USE_MULTITAIL="yes" eth2_network_simulation
You can find out more about it in the development update.
Alternatively, fire up our experimental Vagrant instance with Nim pre-installed and give us yout feedback about the process!
Makefile tips and tricks for developers
- build all those tools known to the Makefile:
# (assuming you have 4 CPU cores and want to take advantage of them):
make -j4
- build a specific tool:
make state_sim
- you can control the Makefile's verbosity with the V variable (defaults to 0):
make V=1 # verbose
make V=2 test # even more verbose
- same for the Chronicles log level:
make LOG_LEVEL=DEBUG bench_bls_sig_agggregation # this is the default
make LOG_LEVEL=TRACE beacon_node # log everything
- pass arbitrary parameters to the Nim compiler:
make NIMFLAGS="-d:release"
- you can freely combine those variables on the
make
command line:
make -j8 NIMFLAGS="-d:release" USE_MULTITAIL=yes eth2_network_simulation
State transition simulation
The state transition simulator can quickly run the Beacon chain state transition function in isolation and output JSON snapshots of the state. The simulation runs without networking and blocks are processed without slot time delays.
# build and run the state simulator, then display its help ("-d:release" speeds it
# up substantially, allowing the simulation of longer runs in reasonable time)
make NIMFLAGS="-d:release" state_sim
build/state_sim --help
Testnet
The beacon chain now has a public testnet available. Connect to it with:
make testnet0
scripts/testnet0.sh # this launches the testnet0-specific node you just built
For more information about the testnet and to find out how to launch your own, see this announcement and the official docs on launching the testnets.
Convention
Ethereum Foundation uses:
- snake_case for fields and procedure names
- MACRO_CASE for constants
- PascalCase for types
Nim NEP-1 recommends:
- camelCase for fields and procedure names
- PascalCase for constants
- PascalCase for types
To facilitate collaboration and comparison, nim-beacon-chain uses the Ethereum Foundation convention.
License
Licensed and distributed under either of
- MIT license: LICENSE-MIT or http://opensource.org/licenses/MIT
or
- Apache License, Version 2.0, (LICENSE-APACHEv2 or http://www.apache.org/licenses/LICENSE-2.0)
at your option. These files may not be copied, modified, or distributed except according to those terms.